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Preface

Complex manifold theory is one of the most beautiful branches of geometry, in
which algebraic topology, differential geometry, algebraic geometry, homological
algebra, complex analysis, and partial differential equations (PDEs) come together
in deep and surprising ways to create a rich theory. This book is meant to be an
introduction to the concepts, techniques, and principal results about complex man-
ifolds (mainly compact ones), aimed primarily at graduate students and researchers
who already have a solid background in differential geometry.

What are complex manifolds? They are defined in exactly the same way as
smooth manifolds, except the local coordinate charts are required to take their val-
ues in ℂ𝑛 and to overlap holomorphically. This might sound like a minor tweak to
the definition of smooth manifolds, but in fact the requirement of holomorphicity
changes everything. For example, on a connected compact complex manifold, the
only global holomorphic functions are the constants, and the space of holomorphic
sections of a holomorphic vector bundle is always finite-dimensional. Whereas ev-
ery smooth manifold can be smoothly embedded in some Euclidean space, only
certain complex manifolds can be holomorphically embedded in ℂ𝑛 or in complex
projective space. There is a deep interplay between differential geometry and com-
plex analysis, especially for Kähler manifolds, the ones on which the metric struc-
ture and the holomorphic structure play together nicely.

Complex manifolds have profound applications in many areas of mathematics.
Here are a few examples:

• Riemann surfaces (1-dimensional complexmanifolds) are essential for un-
derstanding global properties of holomorphic functions in one complex
variable.

• Complex surfaces (2-dimensional complex manifolds) play a central role
in attempts to classify 4-dimensional smooth manifolds.

ix
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• Complex manifolds defined by algebraic equations are among the central
objects of interest in algebraic geometry, and the study of their differential
geometry has contributed important advances in algebraic geometry.

• Calabi–Yau manifolds are complex manifolds that play a crucial role in
string theory.

Because complex manifold theory is so intimately connected with algebraic ge-
ometry and complex analysis as well as differential geometry, there are many paths
one might follow to get to know the subject. This book is about the differential
geometry of complex manifolds, so the techniques and results in it are all firmly
situated in differential geometry. Although I survey quite a few of the connections
with other subjects, especially complex algebraic geometry, my choice of topics
is heavily influenced by my desire to focus on techniques that will be familiar to
those with a good background in differential geometry but not necessarily in com-
mutative algebra or analysis of several complex variables. I have tried to include
enough points of contact with algebraic geometry that the book can serve as a useful
jumping-off point for differential geometers who decide to delve into the algebraic
geometry literature, while at the same time serving to introduce algebraic geometers
and complex analysts to a differential-geometric viewpoint on their subject.

I have chosen to use the Kodaira embedding theorem—which characterizes
those compact complex manifolds that admit holomorphic embeddings into pro-
jective spaces—as a unifying theme for the book, because it draws on most of the
important techniques in complex manifold theory and it illustrates one of the most
profound differences between smooth manifolds and complex ones. Many of the
definitions, theorems, and techniques introduced in the book are collected together
to lay the groundwork for proving that profound theorem. But not everything is
here for that purpose—I also hope to offer readers a strong general background that
will prepare them for more advanced study in any aspect of complex geometry.

There are many other good introductory books on complex manifolds. Some
excellent examples are [Bal06,Dem12,Huy05,Mor07,Wel08,Zhe00] and the first
few chapters of [GH94]. What distinguishes this book is an approach that readers
of my previous graduate texts will find familiar—instead of aiming for comprehen-
sive coverage of all the aspects of the subject (which would be impossible in any
case), I aim for two overarching goals: first, to make the explanations of definitions
and concepts user-friendly, well motivated, and accessible; and second, to write the
proofs with enough detail and rigor that students will hopefully not be left wonder-
ing how to bridge the gaps. This approach results in explanations that may be more
wordy than some readers are used to; but in my experience it really helps beginners
start to feel comfortable with a new subject.
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Prerequisites

The main prerequisite is familiarity with the foundational results on topolog-
ical, smooth, and Riemannian manifolds. Because this subject draws on so many
of those results, there would be no point in trying to summarize all the requisite
differential-geometric background here. All of the background material on man-
ifolds that a reader needs to understand this book (and more) is contained in my
three previous graduate textbooks [LeeTM,LeeSM,LeeRM], and I draw freely on
them throughout this book (with specific references whenever appropriate).

Familiarity with elementary complex analysis is also a prerequisite, but only
at the level of a typical undergraduate course on complex analysis in one variable.
Any decent undergraduate complex analysis textbook will serve as a reference, such
as [BC13,MH98,Gam01].

Beyond these subjects, the reader should also have a basic familiarity with al-
gebraic topology—particularly singular homology and cohomology at the level of
[Hat02] or [Mun84]. I give references for the main results that I use in the text.

For readers who are well versed in the prerequisite material, this book should
be essentially self-contained, with one major exception: all of the results on Hodge
theory rest on a fundamental Fredholm theorem for elliptic partial differential equa-
tions (Thm. 9.14), which is stated here without proof because developing the ma-
chinery for proving it would carry us too far afield into the weeds of PDE theory.
The theorem is easy to state and easy to use, so readers can accept it on faith; or,
for those who are curious about the proof, I offer several references where proofs
can be found.

Exercises and Problems

Like my other graduate texts, this book includes both exercises (integrated into
the text) and problems (collected at the ends of the chapters). The exercises are
mostly routine verifications, and are there to provide the reader with opportunities
to check how well they have digested the material; while the problems are mostly
more difficult (some considerably so), and are designed to challenge the reader to
grapple more deeply with the ideas in the text. As was the case with my previous
books, I have not and do not intend to prepare written solutions to the problems
or the exercises, because I do not want to deprive readers of the opportunity to get
“stuck” on a problem and do the productive work of finding their ownways forward.
In any case, most of these are not problems that have a single “right answer.”

Typographical Conventions

This book generally follows the same typographical conventions as my previ-
ous graduate texts. Mathematical terms are typeset in bold italics when they are
officially defined, to make them easy to spot on the page. The exercises in the text
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are indicated with the symbol ►, and numbered consecutively with the theorems to
make them easy to find. The symbol□marks the ends of proofs, and also marks the
ends of statements of corollaries that follow so easily that they do not need proofs.
The symbol // marks the ends of numbered examples. End-of-chapter problems
are numbered 1-1, 1-2, 1-3, etc., with hyphens instead of dots, to make it easier to
distinguish problem references from exercise references.

Acknowledgements

As always, I owe a lot to my students who have given me feedback on early
drafts of this text, especially Shahriar Talebi. I also want to thank Jim Isenberg,
who gave the whole book a close reading and contributed invaluable suggestions.
Finally, I want to thank Ina Mette at the AMS, who has been wonderfully encour-
aging and patient as I have struggled to bring this project to fruition.

I welcome feedback from readers about any aspects of the book, especially if
you find mistakes or unclear passages. There will be an updated list of corrections
on my website. I hope you enjoy the book.

Seattle, Washington, USA John M. Lee
johnmlee@uw.edu

www.math.washington.edu/~lee/
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Chapter 1

The Basics

If you are familiar with the prerequisites for reading this book, you are proba-
bly already familiar with the notion of a smooth manifold—a topological mani-
fold equipped with an atlas of coordinate charts whose transition functions are all
smooth. (Precise definitions will be found farther down in this chapter.)

You may also have encountered variations on that theme—different classes
of manifolds that can be defined by modifying the compatibility condition for
charts. For example, a 𝑪𝒌 manifold is one equipped with an atlas whose transi-
tion functions are all of class 𝐶𝑘 (meaning 𝑘 times continuously differentiable),
and a real-analytic manifold is one with an atlas whose transition functions are all
real-analytic (meaning they are equal to the sum of a convergent power series in a
neighborhood of each point).

Another variation on that theme, and the one to which this book is devoted, is
a complex manifold—this is a topological manifold equipped with an atlas whose
transition functions are all holomorphic. While the other classes of manifolds men-
tioned above are really just slight variations on the theme of smooth manifolds, it
turns out that nearly everything changes when we move into the holomorphic cate-
gory, as you will soon see. That is why the subject of complex manifolds is worth
an entire book of its own.

In this chapter we introduce the main definitions, and describe some examples
and basic properties of complex manifolds.

Definitions
The most basic type of manifold is a topological manifold: this is a second-
countable Hausdorff topological space with the property that every point has a
neighborhood homeomorphic to an open subset of ℝ𝑛 for some fixed 𝑛, called the

1
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2 1. The Basics

dimension of the manifold. (In this book, all manifolds are understood to be mani-
folds without boundary unless otherwise specified.)

By adding extra structure to a topological manifold, we can obtain other types
of manifolds. Differential geometry is concerned primarily with smooth mani-
folds, which are topological manifolds endowed with smooth structures, defined
as follows: If 𝑀 is a topological manifold of dimension 𝑛, a coordinate chart
(often called just a chart) for 𝑀 is a pair (𝑈, 𝜑), where 𝑈 is an open subset of
𝑀 and 𝜑 is a homeomorphism from 𝑈 to an open subset of ℝ𝑛. An atlas for
𝑀 is a collection of charts whose domains cover 𝑀 . Given two charts (𝑈, 𝜑) and
(𝑉 , 𝜓)with overlapping domains, their transition functions are the compositemaps
𝜓 ∘𝜑−1 ∶ 𝜑(𝑈 ∩𝑉 ) → 𝜓(𝑈 ∩𝑉 ) and their inverses 𝜑∘𝜓−1 ∶ 𝜓(𝑈 ∩𝑉 ) → 𝜑(𝑈 ∩𝑉 ).
Two charts are said to be smoothly compatible if their domains are disjoint or their
transition functions are smooth as maps between open subsets of ℝ𝑛. (Here and
throughout the book, smooth means infinitely differentiable or of class 𝐶∞.) A
smooth atlas for 𝑀 is an atlas with the property that any two charts in the atlas
are smoothly compatible with each other. Finally, a smooth structure for 𝑀 is a
smooth atlas that ismaximal, meaning that it is not properly contained in any larger
smooth atlas; to say that 𝒜 is a maximal smooth atlas just means that every chart
that is smoothly compatible with every chart in 𝒜 is already in 𝒜 .

The definition of a complex manifold is, at first glance, just a minor modifica-
tion of the definition of smooth manifolds. The main change is that we require each
transition function to be holomorphic, meaning that it is continuous and each of its
complex-valued component functions has complex partial derivatives with respect
to each of the independent complex variables 𝑧1, … , 𝑧𝑛. (We will explore proper-
ties of holomorphic functions in more depth below; for now, it suffices to know that
they are smooth and that compositions of holomorphic functions are holomorphic.)
To apply this requirement to the transition functions for topological manifolds, we
choose the following standard identification between ℝ2𝑛 and ℂ𝑛:

(𝑥1, 𝑦1, … , 𝑥𝑛, 𝑦𝑛) ↔ (𝑥1 + 𝑖𝑦1, … , 𝑥𝑛 + 𝑖𝑦𝑛).
(As in [LeeSM] and [LeeRM], we index coordinate functions with upper indices
to be consistent with the Einstein summation convention, described later in this
chapter.) With this identification, it makes sense to ask whether a map between
open subsets of ℝ2𝑛 is holomorphic.

Now suppose 𝑀 is a 2𝑛-dimensional topological manifold. If (𝑈, 𝜑) and (𝑉 , 𝜓)
are two coordinate charts for 𝑀 , we say they are holomorphically compatible if
𝑈 ∩ 𝑉 = ∅ or both transition functions are holomorphic under our standard iden-
tification of 𝜑(𝑈 ∩ 𝑉 ) and 𝜓(𝑈 ∩ 𝑉 ) as open subsets of ℂ𝑛. A holomorphic atlas
for 𝑀 is an atlas with the property that any two charts in the atlas are holomorphi-
cally compatible with each other, and a holomorphic structure for 𝑀 is a maximal
holomorphic atlas. An 𝒏-dimensional complex manifold (or holomorphic mani-
fold) is a topological manifold of dimension 2𝑛 endowed with a given holomorphic
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structure. A complex manifold of dimension 1 is called a complex curve, and one
of dimension 2 is called a complex surface. A complex manifold of dimension 3
or higher is sometimes called a complex threefold, fourfold, etc. When it is neces-
sary to distinguish between the dimension of an 𝑛-dimensional complex manifold
and the dimension of its underlying topological 2𝑛-manifold, we call 𝑛 the complex
dimension (denoted by dimℂ 𝑀) and 2𝑛 the real dimension (denoted by dimℝ 𝑀).
Any one of the charts in the maximal holomorphic atlas is called a holomorphic
coordinate chart, and the complex-valued coordinate functions (𝑧1, … , 𝑧𝑛) (where
𝑧𝑗 = 𝑥𝑗 + 𝑖𝑦𝑗) are called holomorphic coordinates. We denote the complex conju-
gate of 𝑧𝑗 by 𝑧𝑗 = 𝑥𝑗 − 𝑖𝑦𝑗 .

Holomorphic structures on manifolds are traditionally called complex struc-
tures, but that term risks confusion with complex structures on vector bundles, to
be discussed below.

Because all holomorphic functions are smooth (see Thm. 1.21 below), a holo-
morphic atlas is also a smooth atlas and thus determines a unique smooth structure
on 𝑀 ; thus every complex manifold is also a smooth manifold in a canonical way.
On the other hand, it is important to note that a given even-dimensional smooth
manifold may have many different holomorphic structures that induce the given
smooth structure (see Problem 1-4), or it may have none at all. The simplest exam-
ple of an even-dimensional smooth manifold that carries no holomorphic structure
is 𝕊4; see the discussion following Theorem 1.63 for more detail.

Proposition 1.1. Let 𝑀 be a topological manifold.

(a) Every holomorphic atlas 𝒜 for 𝑀 is contained in a unique maximal holo-
morphic atlas, called the holomorphic structure determined by𝓐.

(b) Two holomorphic atlases for 𝑀 determine the same holomorphic struc-
ture if and only if their union is a holomorphic atlas.

Proof. The proof is essentially identical to that of its smooth counterpart [LeeSM,
Prop. 1.17]. □

To turn a set into a complex manifold using the definitions directly, it would
be necessary to go through the separate steps of constructing a topology, verifying
that it is a manifold, and then constructing a holomorphic structure for it. But in
most cases the following shortcut can be used.

Lemma 1.2 (ComplexManifold Chart Lemma). Let 𝑀 be a set, and suppose we
are given a collection {𝑈𝛼}𝛼∈𝐴 of subsets of 𝑀 together with maps 𝜑𝛼 ∶ 𝑈𝛼 → ℂ𝑛,
such that the following properties are satisfied:

(i) For each 𝛼, 𝜑𝛼 is a bijection between𝑈𝛼 and an open subset𝜑𝛼(𝑈𝛼) ⊆ ℂ𝑛.
(ii) For each 𝛼 and 𝛽, the sets 𝜑𝛼(𝑈𝛼 ∩ 𝑈𝛽) and 𝜑𝛽(𝑈𝛼 ∩ 𝑈𝛽) are open in ℂ𝑛.
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(iii) When 𝑈𝛼 ∩ 𝑈𝛽 ≠ ∅, the map 𝜑𝛽 ∘ 𝜑−1
𝛼 ∶ 𝜑𝛼(𝑈𝛼 ∩ 𝑈𝛽) → 𝜑𝛽(𝑈𝛼 ∩ 𝑈𝛽) is

holomorphic.

(iv) Countably many of the sets 𝑈𝛼 cover 𝑀 .

(v) Whenever 𝑝, 𝑞 are distinct points in 𝑀, either there exists some 𝑈𝛼 con-
taining both 𝑝 and 𝑞 or there exist disjoint sets 𝑈𝛼 , 𝑈𝛽 with 𝑝 ∈ 𝑈𝛼 and
𝑞 ∈ 𝑈𝛽 .

Then 𝑀 has a unique structure as a complex manifold such that each (𝑈𝛼 , 𝜑𝛼) is a
holomorphic chart.

► Exercise 1.3. Prove this lemma by verifying that the proof of Lemma 1.35 of
[LeeSM] goes through in this setting.

Some Examples

Before we go much further, we should have a few examples of complex mani-
folds to think about. We will introduce many more examples in Chapter 2.

Example 1.4 (Complex 𝒏-Space). It follows from Proposition 1.1(a) that ℂ𝑛 has a
canonical holomorphic structure determined by the holomorphic atlas consisting of
the single coordinate chart (ℂ𝑛, Idℂ𝑛). Similarly, the canonical holomorphic struc-
ture on every open subset 𝑈 ⊆ ℂ𝑛 is defined by the single chart (𝑈, Id𝑈 ). When
working with ℂ, ℂ𝑛, or their open subsets, we always use this holomorphic struc-
ture, typically without further comment. Here are some specific open subsets that
will play important roles in what follows:

• For any 𝑝 ∈ ℂ𝑛 and any 𝑟 > 0, the (open) ball of radius 𝒓 around 𝒑 is
the set 𝐵𝑟(𝑝) = {𝑧 ∈ ℂ𝑛 ∶ |𝑧 − 𝑝| < 𝑟}, where | ⋅ | denotes the norm
associated with the Euclidean inner product on ℂ𝑛 ≈ ℝ2𝑛, which can
be written in complex coordinates as ⟨𝑧, 𝑤⟩ = 𝑧 ⋅ 𝑤 = ∑𝑛

𝑗=1 𝑧𝑗𝑤𝑗 . The
unit ball of real dimension 2𝑛, denoted by 𝔹2𝑛, is the open ball of radius
1 about the origin in ℂ𝑛.

• An open ball in ℂ is called a disk, and the notation is modified accordingly.
Thus 𝐷𝑟(𝑝) represents the disk of radius 𝑟 about 𝑝 ∈ ℂ, and the unit disk
is the disk 𝐷1(0), denoted by 𝔻.

• A polydisk is a Cartesian product of open disks, that is, an open subset of
the form 𝐷𝑟1(𝑝1) × ⋯ × 𝐷𝑟𝑛(𝑝𝑛) ⊆ ℂ𝑛 for a point 𝑝 = (𝑝1, … , 𝑝𝑛) ∈ ℂ𝑛

and positive real numbers 𝑟1, … , 𝑟𝑛. When the radii are all equal, we use
the notation 𝐷𝑛

𝑟 (𝑝) for the polydisk 𝐷𝑟(𝑝1) × ⋯ × 𝐷𝑟(𝑝𝑛). //

Example 1.5 (Open Submanifolds). Somewhat more generally, if 𝑀 is a complex
𝑛-manifold and 𝑈 is an open subset of 𝑀 , we can define a canonical holomorphic
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structure on 𝑈 consisting of all holomorphic charts for 𝑀 whose domains are con-
tained in 𝑈 . With this holomorphic structure, 𝑈 is a complex 𝑛-manifold, called an
open submanifold of 𝑴 . //
Example 1.6 (Complex Vector Spaces). If 𝑉 is a finite-dimensional complex
vector space, any choice of ordered basis (𝑏1, … , 𝑏𝑛) defines an isomorphism
𝐵 ∶ ℂ𝑛 → 𝑉 by
(1.1) 𝐵(𝑧1, … , 𝑧𝑛) = 𝑧𝑗𝑏𝑗 .
(Here and throughout the book, we use the Einstein summation convention: each
index name that appears twice in the same monomial term, once as an upper index
and once as a lower one, is understood to be summed over all possible values of that
index, typically from 1 to the dimension of the space. In formula (1.1), since 𝑉 has
dimension 𝑛, the implied summation is from 1 to 𝑛.) Interpreting 𝐵−1 as a global
chart thus defines a holomorphic structure on 𝑉 . Since the transition map between
any two such charts is an invertible complex-linear transformation and therefore
holomorphic along with its inverse, this structure is independent of the choice of
basis. We will call this the standard holomorphic structure on 𝑽 . //
Example 1.7 (0-Manifolds). A topological 0-manifold is just a countable discrete
space. Each point has a unique map to ℂ0 = {0}, and the transition functions be-
tween these maps are vacuously holomorphic, so every 0-manifold has a canonical
holomorphic structure. //
Example 1.8 (Product Manifolds). If 𝑀1, … , 𝑀𝑘 are complex manifolds, their
Cartesian product 𝑀1 ×⋯×𝑀𝑘 (with the product topology) is a complex manifold
whose dimension is the sum of the dimensions of the factors, with products of
holomorphic coordinate maps providing holomorphic coordinates. //
Example 1.9 (Complex Projective Spaces). The next examples are, after ℂ𝑛 itself,
the most important complex manifolds of all. For any nonnegative integer 𝑛, we
define the complex projective space of dimension 𝒏, denoted by ℂℙ𝑛, to be the
set of complex 1-dimensional subspaces of ℂ𝑛+1, which we can identify with the
quotient of ℂ𝑛+1 ∖ {0} by the equivalence relation defined by 𝑤 ∼ 𝑤′ if and only if
𝑤′ = 𝜆𝑤 for some nonzero complex number 𝜆. We endow ℂℙ𝑛 with the quotient
topology. By this definition, ℂℙ0 is a single point.

We denote the equivalence class of a point 𝑤 = (𝑤0, 𝑤1, … , 𝑤𝑛) ∈ ℂ𝑛+1 ∖ {0}
by [𝑤] = [𝑤0, … , 𝑤𝑛]. The complex numbers (𝑤0, … , 𝑤𝑛) are traditionally called
homogeneous coordinates of the point [𝑤]; but be careful about using this termi-
nology, because they are not actually coordinates in the usual sense. The same point
[𝑤] is represented by any homogeneous coordinates of the form (𝜆𝑤0, … , 𝜆𝑤𝑛)
with 𝜆 ≠ 0, so there is not a one-to-one correspondence between points and homo-
geneous coordinates, even in a small neighborhood of a point.

We can construct honest coordinates for ℂℙ𝑛 as follows. For each 𝛼 = 0, … , 𝑛,
let 𝑈𝛼 ⊆ ℂℙ𝑛 be the open subset 𝑈𝛼 = {[𝑤] ∈ ℂℙ𝑛 ∶ 𝑤𝛼 ≠ 0}, and define a map
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𝜑𝛼 ∶ 𝑈𝛼 → ℂ𝑛 by

𝜑𝛼([𝑤0, … , 𝑤𝑛]) = (
𝑤0

𝑤𝛼 , … , 𝑤𝛼−1

𝑤𝛼 , 𝑤𝛼+1

𝑤𝛼 , … , 𝑤𝑛

𝑤𝛼 ) .

It is continuous by the characteristic property of the quotient topology [LeeTM,
Thm. 3.70], and it is a homeomorphism because it has a continuous inverse given
by

𝜑−1
𝛼 (𝑧1, … , 𝑧𝑛) = [𝑧1, … , 𝑧𝛼−1, 1, 𝑧𝛼 , … , 𝑧𝑛].

Thus each (𝑈𝛼 , 𝜑𝛼) is a coordinate chart, called affine coordinates for ℂℙ𝒏. Cou-
pled with the facts that ℂℙ𝑛 is Hausdorff and second-countable (Exercise 1.10),
this shows that ℂℙ𝑛 is a topological manifold of real dimension 2𝑛. It is com-
pact and connected, because it is the image of the surjective continuous map
𝑞 ∶ 𝕊2𝑛+1 → ℂℙ𝑛 given by 𝑞(𝑤0, … , 𝑤𝑛) = [𝑤0, … , 𝑤𝑛], where 𝕊2𝑛+1 is the
set of unit vectors in ℂ𝑛+1.

For 𝛼 < 𝛽, the transition function between these charts can be computed ex-
plicitly as

𝜑𝛼 ∘ 𝜑−1
𝛽 (𝑧1, … , 𝑧𝑛) = (

𝑧1

𝑧𝛼 , … , 𝑧̂𝛼

𝑧𝛼 , … , 1
𝑧𝛼 , … , 𝑧𝑛

𝑧𝛼 ) ,

where the hat indicates that the term in position 𝛼 is omitted, and the 1/𝑧𝛼 term is
in position 𝛽; the formula for 𝛼 > 𝛽 is similar. These transition functions are all
holomorphic, so they turn ℂℙ𝑛 into a complex manifold of dimension 𝑛. //

► Exercise 1.10. Verify that ℂℙ𝑛 is Hausdorff and second-countable.

Example 1.11 (Projectivization of a Vector Space). For some purposes, it is use-
ful to construct projective spaces starting with different complex vector spaces in
place of ℂ𝑛+1 itself. Suppose 𝑉 is an 𝑛-dimensional complex vector space with
𝑛 > 0. The projectivization of 𝑽 , denoted by ℙ(𝑉 ), is the set of 1-dimensional
complex subspaces of 𝑉 , endowed with the quotient topology obtained from the
equivalence relation on 𝑉 ∖ {0} given by 𝑣1 ∼ 𝑣2 if 𝑣2 = 𝜆𝑣1 for some 𝜆 ∈ ℂ ∖ {0}.
A choice of basis for 𝑉 yields an isomorphism 𝑉 ≅ ℂ𝑛 that descends to a bijection
ℙ(𝑉 ) → ℂℙ𝑛−1, which we can use to give ℙ(𝑉 ) the structure of a complex mani-
fold. In the next chapter, we will see that the holomorphic structure obtained in this
way is independent of the choice of basis (see Exercise 2.10). //

Example 1.12 (Complex Grassmannians). Suppose 𝑉 is an 𝑛-dimensional com-
plex vector space with 𝑛 > 0, and 𝑘 is a nonnegative integer less than or equal to
𝑛. Let G𝑘(𝑉 ) be the set of 𝑘-dimensional complex-linear subspaces of 𝑉 , called a
complex Grassmannian. (The case 𝑘 = 1 is exactly the projective space ℙ(𝑉 ).)
We can construct complex coordinates on G𝑘(𝑉 ) as follows. Choose a subspace
𝑃 ⊆ 𝑉 of dimension 𝑘 and a complementary (𝑛 − 𝑘)-dimensional subspace 𝑄, and
write 𝑉 = 𝑃 ⊕ 𝑄. Then the graph of each complex-linear map 𝑋 ∶ 𝑃 → 𝑄 is a
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𝑘-dimensional subspace Γ(𝑋) ⊆ 𝑉 , and every subspace whose intersection with
𝑄 is trivial is the graph of a unique such map. Let 𝑈𝑄 ⊆ G𝑘(𝑉 ) denote the set of
such subspaces. By choosing bases for 𝑃 and 𝑄, we obtain a bijection from 𝑈𝑄 to
the vector space M((𝑛 − 𝑘) × 𝑘, ℂ) of complex (𝑛 − 𝑘) × 𝑘 matrices, whose matrix
entries we can use as coordinates on 𝑈𝑄. The argument in [LeeSM, Example 1.36]
(adapted in an obvious way to the complex case) shows that when two such charts
overlap, the matrix entries in the new chart are rational functions of the original
ones, so any two such charts overlap holomorphically. The arguments of that ex-
ample also show that hypotheses (iv) and (v) of the chart lemma are satisfied, so
G𝑘(𝑉 ) is a complex manifold of dimension (𝑛 − 𝑘)𝑘. Problem 1-5 shows that it is
compact. //

Holomorphic Maps
We define holomorphic maps between complex manifolds in the same way as one
defines smooth maps between smooth manifolds: if 𝑀 and 𝑁 are complex mani-
folds, a holomorphic map from 𝑀 to 𝑁 is a map 𝑓 ∶ 𝑀 → 𝑁 with the property
that for every 𝑝 ∈ 𝑀 there exist holomorphic coordinate charts (𝑈, 𝜑) for 𝑀 and
(𝑉 , 𝜓) for 𝑁 whose domains contain 𝑝 and 𝑓(𝑝), respectively, such that 𝑓(𝑈) ⊆ 𝑉
and the composite map 𝜓 ∘ 𝑓 ∘ 𝜑−1 is holomorphic as a map from 𝜑(𝑈) to 𝜓(𝑉 ).
The function 𝑓 = 𝜓 ∘ 𝑓 ∘ 𝜑−1 is called the coordinate representation of 𝒇 with
respect to the given holomorphic coordinates. As is the case in smooth manifold
theory (see [LeeSM, pp. 15–16]), one often uses a coordinate map to temporarily
identify an open subset of a manifold with an open subset of ℂ𝑛, and uses the same
notation for a map and its coordinate representation.

When the codomain of a map 𝑓 is ℂ𝑘 (or an open subset of ℂ𝑘) with its canon-
ical holomorphic structure, we can always use the identity map as a holomorphic
coordinate chart on ℂ𝑘, so being holomorphic is equivalent to the requirement that
for each 𝑝 ∈ 𝑀 , there is a holomorphic chart (𝑈, 𝜑) for 𝑀 whose domain contains
𝑝 such that 𝑓 ∘𝜑−1 is holomorphic from 𝜑(𝑈) to ℂ𝑘. It is standard practice to reserve
the term holomorphic function for holomorphic maps whose codomains are open
subsets of ℂ (scalar-valued holomorphic functions) or ℂ𝑘 (vector valued holomor-
phic functions); the terms holomorphic map and holomorphic mapping can refer to
maps between arbitrary complex manifolds.

If 𝑀 is a complex manifold, the notation 𝒪(𝑀) means the set of all holomor-
phic functions from 𝑀 to ℂ. This applies, in particular, to any open submanifold
of 𝑀 : if 𝑈 ⊆ 𝑀 is open, 𝒪(𝑈) is the set of holomorphic functions from 𝑈 to ℂ.

A bijective holomorphic map with holomorphic inverse is called a biholomor-
phism, and a biholomorphism from a complex manifold to itself is called an auto-
morphism. More generally, a map 𝐹 ∶ 𝑀 → 𝑁 is called a local biholomorphism
if every 𝑝 ∈ 𝑀 has a neighborhood 𝑈 such that 𝐹 |𝑈 is a biholomorphism onto an
open subset of 𝑁 .
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The following facts about holomorphic maps are proved just like their smooth
analogues [LeeSM, Props. 2.6 and 2.10 and Example 2.14(b)].

Proposition 1.13.
(a) The restriction of a holomorphic map to an open subset is holomorphic.
(b) If a map 𝑓 has the property that each point in the domain has a neighbor-

hood 𝑈 on which the restriction 𝑓|𝑈 is holomorphic, then 𝑓 is holomor-
phic.

(c) Every constant map between complex manifolds is holomorphic.
(d) The identity map of every complex manifold is holomorphic.
(e) The inclusion map of every open submanifold is holomorphic.
(f) Every holomorphic coordinate chart is a biholomorphism onto its image.
(g) Every composition of holomorphic maps between complex manifolds is

holomorphic.

Two complex manifolds are said to be biholomorphic if there is a biholomor-
phism between them. For example, if 𝑉 is an 𝑛-dimensional complex vector space,
any choice of basis determines a complex-linear isomorphism between 𝑉 and ℂ𝑛,
so all such vector spaces are biholomorphic to ℂ𝑛. Similarly, a choice of basis yields
a biholomorphism between ℙ(𝑉 ) and ℂℙ𝑛−1, and between G𝑘(𝑉 ) and G𝑘(ℂ𝑛) for
each 𝑘. It is easy to check that being biholomorphic is an equivalence relation on the
class of all complex manifolds. The main subject matter of this book is properties
of complex manifolds that are preserved by biholomorphisms.

Because holomorphic maps are smooth, biholomorphic manifolds are automat-
ically diffeomorphic. However, the converse might not be true: Example 1.31 and
Problem 1-4 describe complex manifolds that are diffeomorphic but not biholomor-
phic.

Covering Manifolds and Quotient Manifolds
In this section, we discuss some ways to produce new complex manifolds from old
ones. Recall that a covering map is a surjective continuous map 𝜋 ∶ 𝑀 → 𝑁
between connected and locally path-connected topological spaces such that every
point of 𝑁 has a neighborhood 𝑈 that is evenly covered, meaning that 𝜋−1(𝑈) is a
disjoint union of connected open subsets each of which is mapped homeomorphi-
cally onto 𝑈 by 𝜋. A covering map 𝜋 ∶ 𝑀 → 𝑁 is said to be normal if for some
𝑥 ∈ 𝑀 , the induced subgroup 𝜋∗(𝜋1(𝑀, 𝑥)) ⊆ 𝜋1(𝑁, 𝜋(𝑥)) is a normal subgroup
(meaning it is invariant under conjugation). Equivalently, 𝜋 is normal if the group
of covering automorphisms (homeomorphisms 𝜑∶ 𝑀 → 𝑀 satisfying 𝜋 ∘ 𝜑 = 𝜋)
acts transitively on each fiber 𝜋−1(𝑦). A discussion of the properties of covering
maps can be found in [LeeTM, Chaps. 11 & 12].
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Suppose 𝜋 ∶ 𝑀 → 𝑁 is a coveringmap. If 𝑀 and 𝑁 are smoothmanifolds and
𝜋 is a local diffeomorphism, then it is called a smooth covering map. Properties of
smooth covering maps are discussed in [LeeSM, pp. 91–95]. Similarly, if 𝑀 and 𝑁
are complex manifolds and 𝜋 is a local biholomorphism, it is called a holomorphic
covering map.

► Exercise 1.14. Suppose 𝜋 ∶ 𝑀 → 𝑁 is a holomorphic covering map. Show
that every point of 𝑀 is in the image of a holomorphic local section of 𝜋, that
is, a holomorphic map 𝜎 ∶ 𝑈 → 𝑀 defined on an open subset 𝑈 ⊆ 𝑁 such that
𝜋 ∘ 𝜎 = Id𝑈 .

The next proposition shows that every covering space of a connected complex
manifold is a complex manifold in a natural way.

Proposition 1.15 (Coverings of Complex Manifolds are Complex Manifolds).
Suppose 𝑀 is a connected complex manifold and 𝜋 ∶ 𝐸 → 𝑀 is a (topological)
covering map. Then 𝐸 is a topological manifold and has a unique holomorphic
structure such that 𝜋 is a holomorphic covering map.

Proof. Proposition 4.40 in [LeeSM] shows that 𝐸 is a topological manifold and
has a unique smooth structure such that 𝜋 is a smooth covering map. We can de-
fine holomorphic charts on 𝐸 as follows: Given a point 𝑝 ∈ 𝐸, let 𝑈 be an evenly
covered neighborhood of 𝜋(𝑝). After shrinking 𝑈 if necessary, we can find a holo-
morphic coordinate map 𝜑∶ 𝑈 → ℂ𝑛. Let 𝑈 be the connected component of
𝜋−1(𝑈) containing 𝑝, and define 𝜑̃ = 𝜑 ∘ 𝜋 ∶ 𝑈 → ℂ𝑛. The argument in the proof
of [LeeSM, Prop. 4.40] shows that when two such charts (𝑈, 𝜑̃) and (𝑉 , 𝜓̃) over-
lap, in a neighborhood of each point the transition function can be expressed as
𝜓̃−1 ∘ 𝜑̃−1 = 𝜓−1 ∘ 𝜑−1, which in this case is holomorphic. Then 𝜋 is a local bi-
holomorphism because its coordinate representation is the identity with respect to
the holomorphic coordinates (𝑈, 𝜑̃) on 𝐸 and (𝑈, 𝜑) on 𝑀 .

If 𝐸 is the same topological space 𝐸 with another holomorphic structure such
that 𝜋 ∶ 𝐸 → 𝑀 is a holomorphic covering map, then because 𝜋 is a local biholo-
morphism, each of the charts constructed above must be a holomorphic chart for 𝐸,
so the holomorphic structure of 𝐸 is the same as the one constructed above. □

Under certain circumstances, we can also put holomorphic structures on man-
ifolds covered by complex manifolds. Suppose Γ is a discrete Lie group (i.e., a
countable group with the discrete topology). Recall that an action of Γ on a man-
ifold 𝑀 is free if 𝑔 ⋅ 𝑥 = 𝑥 for some 𝑔 ∈ Γ and 𝑥 ∈ 𝑀 implies 𝑔 is the identity;
and it is proper if the map Γ × 𝑀 → 𝑀 × 𝑀 given by (𝑔, 𝑥) ↦ (𝑔 ⋅ 𝑥, 𝑥) is
a proper map, meaning that the preimage of every compact set is compact. (See
[LeeSM, pp. 543–544].) If 𝑀 is a complex manifold, the action is holomorphic if
the map 𝑥 ↦ 𝑔 ⋅ 𝑥 is holomorphic for each 𝑔 ∈ Γ.
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Theorem 1.16 (Holomorphic Quotient Manifold Theorem). Suppose Γ is a dis-
crete Lie group acting holomorphically, freely, and properly on a complex manifold
𝑀 . Then the quotient space 𝑀/Γ has a unique complex manifold structure such
that the quotient map 𝑞 ∶ 𝑀 → 𝑀/Γ is a holomorphic normal covering map.

Proof. Smooth manifold theory shows that 𝑀/Γ has a unique smooth manifold
structure such that 𝑞 is a smooth normal covering map [LeeSM, Thm. 21.13]. To
define a complex manifold structure on 𝑀/Γ, let 𝑈 ⊆ 𝑀/Γ be any evenly covered
open set, and choose a smooth local section 𝜎 ∶ 𝑈 → 𝑀 . Because 𝑀 is a complex
manifold, 𝜎(𝑈) has a covering by holomorphic charts (𝑈𝛼 , 𝜑𝛼), and for each such
chart we can define (𝜎−1(𝑈𝛼), 𝜑𝛼 ∘𝜎)) as a chart for 𝑀/Γ. For a fixed local section 𝜎,
all of these charts are holomorphically compatible with each other. If 𝜎 ∶ 𝑈 → 𝑀
is any other local section, there is an element 𝑔 ∈ Γ such that 𝜎(𝑥) = 𝑔 ⋅ 𝜎(𝑥) for
all 𝑥 ∈ 𝑈 ; and the fact that 𝑥 ↦ 𝑔 ⋅ 𝑥 is a biholomorphism of 𝑀 with inverse
𝑥 ↦ 𝑔−1 ⋅ 𝑥 guarantees that the charts obtained from 𝜎 will be holomorphically
compatible with those obtained from 𝜎. □

A complex Lie group is a complex manifold 𝐺 endowed with a group structure
such that the multiplication map 𝑚∶ 𝐺 × 𝐺 → 𝐺 and the inversion map 𝑖∶ 𝐺 → 𝐺
are holomorphic. Here are some simple examples; we will see more in the next
chapter (see Example 2.26).

• Every countable discrete group is a 0-dimensional complex Lie group.
• Every finite-dimensional complex vector space is a complex Lie group

under addition.
• The group GL(𝑛, ℂ) of invertible 𝑛 × 𝑛 complex matrices is a complex

Lie group of dimension 𝑛2, with the matrix entries as global holomorphic
coordinates. The component functions of the multiplication map are holo-
morphic polynomials in the matrix entries, and those of the inversion map
are holomorphic rational functions.

• Given any 𝑛-dimensional complex vector space 𝑉 , the group GL(𝑉 ) of
complex linear automorphisms of 𝑉 becomes a Lie group isomorphic to
GL(𝑛, ℂ) once we choose a basis for 𝑉 , and the resulting holomorphic
structure is independent of the choice of basis.

Corollary 1.17. Suppose 𝐺 is a connected complex Lie group and Γ ⊆ 𝐺 is a
discrete subgroup. The left coset space 𝐺/Γ is a complex manifold, and the quotient
map 𝜋 ∶ 𝐺 → 𝐺/Γ is a holomorphic normal covering map. If Γ is also a normal
subgroup, then 𝐺/Γ is a complex Lie group and 𝜋 is a group homomorphism.

Proof. The left coset space 𝐺/Γ is the quotient of 𝐺 by the action of Γ by right
translation. This action is holomorphic by the definition of a complex Lie group,
and the proof of Theorem 21.17 in [LeeSM] shows that it is free and proper. Thus
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Theorem 1.16 above shows that 𝐺/Γ has the structure of a complex manifold and 𝜋
is a holomorphic normal covering map.

If Γ is a normal subgroup, then elementary group theory shows that 𝐺/Γ is
a group and 𝜋 is a homomorphism. To see that the group operations in 𝐺/Γ are
holomorphic, just note that given any pair of points 𝑝, 𝑞 ∈ 𝐺/Γ, we can choose
neighborhoods 𝑈 of 𝑝 and 𝑉 of 𝑞 on which there exist holomorphic local sections
𝜎 ∶ 𝑈 → 𝐺 and 𝜏 ∶ 𝑉 → 𝐺. Then the multiplication map 𝑚̃∶ 𝐺/Γ × 𝐺/Γ → 𝐺/Γ
can be written in a neighborhood of (𝑝, 𝑞) as 𝜋 ∘ 𝑚 ∘ (𝜎 × 𝜏):

𝐺 × 𝐺 𝑚
// 𝐺

𝜋
��

𝐺/Γ × 𝐺/Γ
𝜎 × 𝜏

OO

𝑚̃
// 𝐺/Γ.

This is a composition of holomorphic maps and thus holomorphic. A similar argu-
ment applies to inversion. □

Example 1.18 (Complex Tori). Suppose 𝑉 is an 𝑛-dimensional complex vector
space, considered as an abelian complex Lie group. A lattice in 𝑉 is a discrete
additive subgroup Λ ⊆ 𝑉 generated by 2𝑛 vectors 𝑣1, … , 𝑣2𝑛 that are linearly inde-
pendent over ℝ. Corollary 1.17 shows that 𝑉 /Λ is an 𝑛-dimensional complex Lie
group, called a complex torus. When 𝑛 = 0, it is just a single point. When 𝑛 > 0,
the real-linear isomorphism 𝐴∶ ℝ2𝑛 → 𝑉 given by 𝐴(𝑥1, … , 𝑥2𝑛) = 𝑥𝑗𝑣𝑗 de-
scends to a diffeomorphism from ℝ2𝑛/ℤ2𝑛 to 𝑉 /Λ; since ℝ2𝑛/ℤ2𝑛 is diffeomorphic
to the 2𝑛-torus 𝕊1 × ⋯ × 𝕊1, so is 𝑉 /Λ. Thus the complex tori defined by different
lattices are all diffeomorphic to each other. They are typically not biholomorphic,
however; see Problem 1-4 for an example. //

Example 1.19 (Hopf Manifolds). Let 𝜆 = (𝜆1, … , 𝜆𝑛) be an ordered 𝑛-tuple of
real numbers with 0 < 𝜆𝑗 < 1, and define an action of ℤ on ℂ𝑛 ∖ {0} by 𝑘 ⋅
𝑧 = ((𝜆1)𝑘𝑧1, … , (𝜆𝑛)𝑘𝑧𝑛). This action is holomorphic, free, and proper, so the
quotient 𝐻𝜆 = (ℂ𝑛 ∖ {0})/ℤ is an 𝑛-dimensional complex manifold called a Hopf
manifold. Regarding 𝕊2𝑛−1 as the set of unit vectors in ℂ𝑛, we define a smooth map
𝐴∶ 𝕊2𝑛−1 ×ℝ → ℂ𝑛∖{0} by 𝐴(𝑧, 𝑡) = ((𝜆1)𝑡𝑧1, … , (𝜆𝑛)𝑡𝑧𝑛); if 𝜋 ∶ ℂ𝑛 ∖ {0} → 𝐻𝜆
is the quotient map, one can check that 𝜋 ∘ 𝐴 makes the same identifications as the
quotient map from 𝕊2𝑛−1 ×ℝ to 𝕊2𝑛−1 ×(ℝ/ℤ) ≈ 𝕊2𝑛−1 × 𝕊1, so all Hopf manifolds
are diffeomorphic to 𝕊2𝑛−1 × 𝕊1. //

Example 1.20 (Iwasawa Manifolds). Consider the subgroup 𝐺 ⊆ GL(3, ℂ) con-
sisting of matrices of the form

⎛
⎜
⎜
⎝

1 𝑧1 𝑧3

0 1 𝑧2

0 0 1

⎞
⎟
⎟
⎠
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for 𝑧1, 𝑧2, 𝑧3 ∈ ℂ. It is a complex Lie group, biholomorphic to ℂ3, with multipli-
cation given by

(𝑧1, 𝑧2, 𝑧3) ⋅ (𝑤1, 𝑤2, 𝑤3) = (𝑧1 + 𝑤1, 𝑧2 + 𝑤2, 𝑧3 + 𝑤3 + 𝑧1𝑤2).
For a discrete subgroup Γ ⊆ 𝐺, the left coset space 𝐺/Γ is a complex 3-manifold
by Corollary 1.17. An Iwasawa manifold is a left coset space of the form 𝐺/Γ for
a discrete subgroup Γ that is cocompact, meaning that 𝐺/Γ is compact. (Some au-
thors use quotients by left Γ-actions in their definitions, corresponding to right coset
spaces; group inversion in 𝐺 induces a biholomorphism between the left and right
coset spaces, so there is no real difference.) The simplest example is the standard
Iwasawa manifold, obtained by taking Γ to be the subgroup consisting of matrices
in which 𝑧1, 𝑧2, 𝑧3 are Gaussian integers, that is, complex numbers of the form
𝑚 + 𝑛𝑖 for 𝑚, 𝑛 ∈ ℤ. It is cocompact by the result of Problem 1-1. //

Some Complex Analysis
In this book, we assume you are familiar with basic undergraduate-level complex
analysis in one variable; if your complex analysis is rusty, this would be a good time
to review. (Some suggested texts are listed in the Preface.)

Recall the definition of a holomorphic function of one complex variable: if
𝑊 ⊆ ℂ is an open subset and 𝑓 ∶ 𝑊 → ℂ is a function, then 𝑓 is said to be
holomorphic if it has a complex derivative at each point 𝑝 ∈ 𝑊 , defined by

𝑓 ′(𝑎) = lim
ℎ→0

𝑓(𝑎 + ℎ) − 𝑓(𝑎)
ℎ .

Holomorphic functions are sometimes called complex-analytic, or just analytic if
there can be no confusion with real-analytic functions.

For convenience, let us recall some basic facts from the one-variable theory.
In these statements, 𝑊 represents an arbitrary open subset of ℂ and 𝑓 ∶ 𝑊 → ℂ
is an arbitrary holomorphic function. We write the standard coordinate on ℂ as
𝑧 = 𝑥 + 𝑖𝑦.

• CAUCHY INTEGRAL FORMULA: If 𝑎 ∈ 𝑊 and 𝑟 > 0 is chosen so that the
closed disk 𝐷𝑟(𝑎) is contained in 𝑊 , then the following formula holds for
all 𝑧 in the open disk 𝐷𝑟(𝑎):

ℎ(𝑧) = 1
2𝜋𝑖 ∫

|𝜁−𝑎|=𝑟

ℎ(𝜁)
𝜁 − 𝑧 𝑑𝜁.

• CAUCHY–RIEMANN EQUATIONS: The real and imaginary parts 𝑢 and 𝑣 of
𝑓 satisfy the equations

𝜕𝑢
𝜕𝑥 = 𝜕𝑣

𝜕𝑦 , 𝜕𝑢
𝜕𝑦 = − 𝜕𝑣

𝜕𝑥.
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• POWER SERIES EXPANSION: For each 𝑎 ∈ 𝑊 , if the disk 𝐷𝑟(𝑎) is con-
tained in 𝑊 , then 𝑓|𝐷 is equal to a convergent series in powers of (𝑧 − 𝑎).
It has complex derivatives of all orders, which may be computed by dif-
ferentiating the series term-by-term.

• ZEROS ARE ISOLATED AND HAVE FINITE ORDER: If 𝑓(𝑎) = 0 for some
𝑎 ∈ 𝑊 and 𝑓 is not identically zero, then there is a disk 𝐷𝑟(𝑎) ⊆ 𝑊 such
that 𝑓(𝑧) ≠ 0 for 𝑧 ∈ 𝐷𝑟(𝑎) ∖ {𝑎}; and there is a positive integer 𝑚 (called
the order or multiplicity of the zero), such that 𝑓(𝑧) = (𝑧 − 𝑎)𝑚ℎ(𝑧) for
some holomorphic function ℎ that does not vanish at 𝑎. The order of a
zero is equal to the smallest integer 𝑚 such that 𝑓 (𝑚)(𝑎) ≠ 0. A zero of
order 1 is called a simple zero.

• MAXIMUM PRINCIPLE: If 𝑊 is connected and |𝑓 (𝑧)| attains a maximum
at a point 𝑧 ∈ 𝑊 , then 𝑓 is constant.

• LIOUVILLE’S THEOREM: If 𝑊 = ℂ and 𝑓 is bounded, then it is constant.
• RIEMANN’S REMOVABLE SINGULARITY THEOREM: If 𝑊 = 𝑊 ∖ {𝑎} for

some open set 𝑊 and some point 𝑎 ∈ 𝑊 , and 𝑓 is bounded, then 𝑓
extends to a holomorphic function on all of 𝑊 .

For our study of complex manifolds, we need to extend some of the results of
the one-variable theory to functions of several complex variables. Many of these re-
sults will look familiar, but some properties of holomorphic functions are decidedly
different in higher dimensions.

We begin with the official definition of holomorphic functions of several vari-
ables. Suppose𝑈 ⊆ ℂ𝑛 is an open subset and 𝑓 ∶ 𝑈 → ℂ. For 𝑝 = (𝑝1, … , 𝑝𝑛) ∈ 𝑈
and 𝑗 ∈ {1, … , 𝑛}, we say 𝑓 has a complex partial derivative at 𝒑 with respect to
𝒛𝒋if the following limit exists:

(1.2) 𝜕𝑓
𝜕𝑧𝑗 (𝑝) = lim

ℎ→0
𝑓(𝑝1, … , 𝑝𝑗 + ℎ, … , 𝑝𝑛) − 𝑓(𝑝1, … , 𝑝𝑛)

ℎ ,

where the limit is taken over all ℎ in some punctured disk centered at the origin in
ℂ. Such a function is said to be holomorphic if it is continuous and has a complex
partial derivative with respect to each variable 𝑧1, … , 𝑧𝑛 at each point of 𝑈 . More
generally, a vector-valued function 𝐹 ∶ 𝑈 → ℂ𝑘 is said to be holomorphic if each
of its component functions is holomorphic.

Our definition of holomorphic functions is essentially the same as the one-
variable definition, except in that case the assumption of continuity is not needed
because a simple argument shows that continuity follows from the existence of a
complex derivative. It is worth noting, in fact, that the continuity assumption is ac-
tually not needed in higher dimensions either: the Germanmathematician Friedrich
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Hartogs proved in 1906 [Har06] that a function that has complex partial deriva-
tives at every point of an open subset of ℂ𝑛 is automatically continuous. That proof
(which can be found in [Kra01, Section 2.4]) is difficult, though, so it is much more
convenient simply to assume continuity as part of our definition.

In one complex variable, there are several equivalent ways to characterize holo-
morphic functions: having a complex derivative everywhere, or having continuous
partial derivatives that satisfy the Cauchy–Riemann equations, or being the sum
of a convergent power series in a neighborhood of each point. There are similar
equivalent characterizations for holomorphic functions of several variables.

Theorem 1.21. Let𝑈 ⊆ ℂ𝑛 be open and 𝑓 ∶ 𝑈 → ℂ. The following are equivalent.

(a) 𝑓 is holomorphic (i.e., it is continuous and has a complex partial deriva-
tive with respect to each variable at each point of 𝑈 ).

(b) 𝑓 is smooth and satisfies the following Cauchy–Riemann equations:

𝜕𝑢
𝜕𝑥𝑗 = 𝜕𝑣

𝜕𝑦𝑗 , 𝜕𝑢
𝜕𝑦𝑗 = − 𝜕𝑣

𝜕𝑥𝑗 , 𝑗 = 1, … , 𝑛,

where 𝑧𝑗 = 𝑥𝑗 + 𝑖𝑦𝑗 and 𝑓(𝑧) = 𝑢(𝑧) + 𝑖𝑣(𝑧).
(c) For each 𝑝 = (𝑝1, … , 𝑝𝑛) ∈ 𝑈 , there exists a neighborhood of 𝑝 in 𝑈 on

which 𝑓 is equal to the sum of an absolutely convergent power series of
the form

(1.3) 𝑓(𝑧) =
∞

∑
𝑘1,…,𝑘𝑛=0

𝑎𝑘1…𝑘𝑛(𝑧1 − 𝑝1)𝑘1 ⋯ (𝑧𝑛 − 𝑝𝑛)𝑘𝑛 .

Remarks.

• In the decomposition 𝑓(𝑧) = 𝑢(𝑧) + 𝑖𝑣(𝑧) in part (b), it is understood that
𝑢(𝑧) and 𝑣(𝑧) are real. The same applies to 𝑧𝑗 = 𝑥𝑗 +𝑖𝑦𝑗 and everywhere in
the book when wewrite such a decomposition, unless otherwise specified.

• In (c), the reason we insist on absolute convergence is that a sum over
multiple indices can be ordered in various ways, and absolute convergence
ensures that the ordering of terms does not matter.

Proof. We will prove (a) ⇔ (b) and (a) ⇔ (c).
Suppose 𝑓 satisfies (a). Because 𝑓 is holomorphic in each variable separately,

the one-variable theory shows that it satisfies the Cauchy–Riemann equations with
respect to each variable. To show that it is smooth, given 𝑝 ∈ 𝑈 , choose 𝑟 > 0
such that the closed polydisk 𝐷𝑛

𝑟 (𝑝) is contained in 𝑈 . Because 𝑓 is holomorphic
in each variable separately, we can apply the single-variable version of the Cauchy
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integral formula repeatedly to obtain the following for all 𝑧 ∈ 𝐷𝑛
𝑟 (𝑝):

(1.4)

𝑓(𝑧1, … , 𝑧𝑛)

= 1
2𝜋𝑖 ∫

|𝜁𝑛−𝑝𝑛|=𝑟

𝑓(𝑧1, … , 𝑧𝑛−1, 𝜁𝑛)
𝜁𝑛 − 𝑧𝑛 𝑑𝜁𝑛

= 1
(2𝜋𝑖)2 ∫

|𝜁𝑛−𝑝𝑛|=𝑟
∫

|𝜁𝑛−1−𝑝𝑛−1|=𝑟

𝑓(𝑧1, … , 𝜁𝑛−1, 𝜁𝑛)
(𝜁𝑛 − 𝑧𝑛)(𝜁𝑛−1 − 𝑧𝑛−1)

𝑑𝜁𝑛−1𝑑𝜁𝑛

⋮

= 1
(2𝜋𝑖)𝑛 ∫

|𝜁𝑛−𝑝𝑛|=𝑟

… ∫
|𝜁1−𝑝1|=𝑟

𝑓(𝜁1, … , 𝜁𝑛)
(𝜁𝑛 − 𝑧𝑛) ⋯ (𝜁1 − 𝑧1)

𝑑𝜁1 ⋯ 𝑑𝜁𝑛.

Since the domain of integration is compact and the integrand is continuous in all
variables and smooth as a function of (the real and imaginary parts of) 𝑧1, … , 𝑧𝑛,
we can differentiate under the integral sign as often as we like with respect to 𝑥𝑗

and 𝑦𝑗 to conclude that 𝑓 is smooth. This proves (b).
To prove that 𝑓 also satisfies (c), note that

1
𝜁 𝑗 − 𝑧𝑗 = 1

(𝜁 𝑗 − 𝑝𝑗) − (𝑧𝑗 − 𝑝𝑗) = 1
𝜁 𝑗 − 𝑝𝑗

1

1 − (
𝑧𝑗 − 𝑝𝑗

𝜁 𝑗 − 𝑝𝑗 )

,

and since |𝑧𝑗 − 𝑝𝑗|/|𝜁 𝑗 − 𝑝𝑗| < 1 on the domain of integration in (1.4), we can
expand the last fraction on the right in a power series to obtain

1
𝜁 𝑗 − 𝑧𝑗 = 1

𝜁 𝑗 − 𝑝𝑗

∞

∑
𝑘=0

(
𝑧𝑗 − 𝑝𝑗

𝜁 𝑗 − 𝑝𝑗 )
𝑘
,

which converges uniformly and absolutely for 𝑧𝑗 in any closed disk 𝐷𝑟′(𝑝𝑗) with 0 <
𝑟′ < 𝑟 by comparison with the geometric series ∑𝑘(𝑟′/𝑟)𝑘. Inserting this formula
for each variable into (1.4), we conclude that 𝑓 satisfies (1.3) with coefficients

𝑎𝑘1…𝑘𝑛 = ∫
|𝜁𝑛−𝑝𝑛|=𝑟

… ∫
|𝜁1−𝑝1|=𝑟

𝑓(𝜁1, … , 𝜁𝑛)
(𝜁𝑛 − 𝑝𝑛)𝑘𝑛+1 ⋯ (𝜁1 − 𝑝1)𝑘1+1 𝑑𝜁1 ⋯ 𝑑𝜁𝑛.

This completes the proof that (a) ⇒ (b) and (a) ⇒ (c).
Conversely, if 𝑓 satisfies (b), then it is certainly continuous, and the one-

variable theory implies that it has a complex derivativewith respect to each variable,
so it also satisfies (a).

Finally, assume 𝑓 satisfies (c), and let 𝑝 ∈ 𝑈 be arbitrary. There is some closed
polydisk 𝐷𝑛

𝑟 (𝑝) contained in 𝑈 and centered at 𝑝 on which the series converges
absolutely. Because the series converges at 𝑧0 = (𝑝1 + 𝑟, … , 𝑝𝑛 + 𝑟), the terms in
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the series for 𝑓(𝑧0) are all uniformly bounded, which means there is a constant 𝐶
such that

|𝑎𝑘1…𝑘𝑛|𝑟𝑘1 ⋯ 𝑟𝑘𝑛 ≤ 𝐶.

On a polydisk 𝐷𝑛
𝑟′(𝑝) for any 0 < 𝑟′ < 𝑟, the terms of the series satisfy the following

bound:

(1.5)
∞

∑
𝑘1,…,𝑘𝑛=0

|𝑎𝑘1…𝑘𝑛(𝑧1 − 𝑝1)𝑘1 ⋯ (𝑧𝑛 − 𝑝𝑛)𝑘𝑛|

≤
∞

∑
𝑘1,…,𝑘𝑛=0

𝐶 (
𝑟′

𝑟 )
𝑘1

⋯ (
𝑟′

𝑟 )
𝑘𝑛

,

and the series on the right is an iterated convergent geometric series. Therefore,
the series for 𝑓 converges uniformly and absolutely on 𝐷𝑛

𝑟′(𝑝) by the Weierstrass
M-test, so 𝑓 is continuous there, and in particular at 𝑝. If we fix all the variables
but 𝑧𝑗 , we obtain a convergent power series in 𝑧𝑗 , which is therefore holomorphic
in 𝑧𝑗 by the one-variable theory, thus proving (a). □

Next we enumerate the basic properties of holomorphic functions that we will
use throughout the book.

Proposition 1.22 (Compositions of Holomorphic Functions are Holomorphic).
Suppose𝑍 ⊆ ℂ𝑚 and𝑊 ⊆ ℂ𝑛 are open subsets and 𝑓 ∶ 𝑍 → 𝑊 and 𝑔 ∶ 𝑊 → ℂ𝑘

are holomorphic functions. Then 𝑔 ∘ 𝑓 ∶ 𝑍 → ℂ𝑘 is holomorphic.

Proof. Certainly 𝑔 ∘ 𝑓 is smooth, so we just need to check that it satisfies the
Cauchy–Riemann equations. Let us write the variables in 𝑍 as 𝑧𝑗 = 𝑥𝑗 + 𝑖𝑦𝑗 ,
those in 𝑊 as 𝑤𝑗 = 𝑢𝑗 + 𝑖𝑣𝑗 , and the component functions of 𝑓 and 𝑔 as
𝑓 𝑘(𝑧) = 𝑈 𝑘(𝑧) + 𝑖𝑉 𝑘(𝑧), 𝑔𝑙(𝑤) = 𝐴𝑙(𝑤) + 𝑖𝐵𝑙(𝑤). Applying the real-variable
chain rule (and using the summation convention), we find

𝜕(𝐴𝑙 ∘ 𝑓 )
𝜕𝑥𝑗 − 𝜕(𝐵𝑙 ∘ 𝑓 )

𝜕𝑦𝑗 = 𝜕𝐴𝑙

𝜕𝑢𝑘
𝜕𝑈 𝑘

𝜕𝑥𝑗 + 𝜕𝐴𝑙

𝜕𝑣𝑘
𝜕𝑉 𝑘

𝜕𝑥𝑗 − 𝜕𝐵𝑙

𝜕𝑢𝑘
𝜕𝑈 𝑘

𝜕𝑦𝑗 − 𝜕𝐵𝑙

𝜕𝑣𝑘
𝜕𝑉 𝑘

𝜕𝑦𝑗 .

Using the Cauchy–Riemann equations for 𝑔 to replace 𝜕𝐴𝑙/𝜕𝑢𝑘 by 𝜕𝐵𝑙/𝜕𝑣𝑘 and
𝜕𝐴𝑙/𝜕𝑣𝑘 by −𝜕𝐵𝑙/𝜕𝑢𝑘 and then applying the Cauchy–Riemann equations for 𝑓 , we
see that this expression is identically zero. A similar computation shows that the
composition also satisfies the other set of Cauchy–Riemann equations. □

Proposition 1.23. Suppose 𝑓, 𝑔 ∶ 𝑈 → ℂ are holomorphic functions on an open
subset 𝑈 ⊆ ℂ𝑛. Then 𝑓 + 𝑔, 𝑓 − 𝑔, and 𝑓𝑔 are holomorphic on 𝑈 , and 𝑓/𝑔 is
holomorphic on 𝑈 ∖ 𝑔−1(0).
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► Exercise 1.24. Prove this proposition.

It follows easily from the two preceding propositions, for example, that all
polynomial functions of 𝑧1, … , 𝑧𝑛 are holomorphic on ℂ𝑛, and all rational func-
tions (quotients of polynomials) are holomorphic wherever their denominators are
nonzero.

Our next proposition relates partial derivatives with respect to complex vari-
ables to those with respect to real variables. If 𝑓 = 𝑢+𝑖𝑣 is a complex-valued func-
tion, the notation 𝜕𝑓 /𝜕𝑥𝑗 denotes the complex-valued function 𝜕𝑢/𝜕𝑥𝑗 + 𝑖𝜕𝑣/𝜕𝑥𝑗 ,
and similarly with 𝑦𝑗 derivatives.

Proposition 1.25. Suppose 𝑈 is an open subset of ℂ𝑛 and 𝑓 ∶ 𝑈 → ℂ is holomor-
phic. Writing 𝑧𝑗 = 𝑥𝑗 + 𝑖𝑦𝑗 for 𝑗 = 1, … , 𝑛, we have

(1.6) 𝜕𝑓
𝜕𝑧𝑗 = 𝜕𝑓

𝜕𝑥𝑗 = 1
𝑖

𝜕𝑓
𝜕𝑦𝑗 .

Proof. Note that the existence of the limit in (1.2) as ℎ approaches zero through all
complex values implies that we obtain the same limit if we restrict ℎ to approach
zero through real values only or imaginary values only. Thus for any 𝑝 ∈ 𝑈 ,

𝜕𝑓
𝜕𝑧𝑗 (𝑝) = lim

ℎ→0
ℎ∈ℝ

𝑓(𝑝1, … , 𝑝𝑗 + ℎ, … , 𝑝𝑛) − 𝑓(𝑝1, … , 𝑝𝑛)
ℎ = 𝜕𝑓

𝜕𝑥𝑗 (𝑝),

𝜕𝑓
𝜕𝑧𝑗 (𝑝) = lim

𝑘→0
𝑘∈ℝ

𝑓(𝑝1, … , 𝑝𝑗 + 𝑖𝑘, … , 𝑝𝑛) − 𝑓(𝑝1, … , 𝑝𝑛)
𝑖𝑘 = 1

𝑖
𝜕𝑓
𝜕𝑦𝑗 (𝑝). □

Next we establish some important properties of multivariable power series.

Proposition 1.26. Suppose 𝑓 is a holomorphic function given by an absolutely
convergent power series of the form (1.3) on a polydisk 𝐷𝑛

𝑟 (𝑝) ⊆ ℂ𝑛. The complex
partial derivatives of 𝑓 of all orders exist and are given by absolutely convergent
power series on the same polydisk, which can be computed by differentiating the
series term by term.

Proof. For any 0 < 𝑟′ < 𝑟1 < 𝑟, the series converges absolutely on 𝐷𝑛
𝑟1(𝑝), and

thus the proof of Theorem 1.21 shows that it converges uniformly and absolutely
on 𝐷𝑛

𝑟′(𝑝). Note that the complex derivative 𝜕𝑓 /𝜕𝑧𝑗 is equal to the real partial
derivative 𝜕𝑓 /𝜕𝑥𝑗 by Proposition 1.25. A standard result in real analysis [Rud76,
Thm. 7.17] shows that we can differentiate the power series term by term with
respect to 𝑥𝑗 on 𝐷𝑛

𝑟′(𝑝) provided the differentiated series converges uniformly there.
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With notation as in (1.5), the differentiated series satisfies
∞

∑
𝑘1,…,𝑘𝑛=0

|
𝜕

𝜕𝑥𝑗 (𝑎𝑘1…𝑘𝑛(𝑧1 − 𝑝1)𝑘1 ⋯ (𝑧𝑛 − 𝑝𝑛)𝑘𝑛)|

=
∞

∑
𝑘1,…,𝑘𝑛=0

|𝑎𝑘1…𝑘𝑛(𝑧1 − 𝑝1)𝑘1 ⋯ 𝑘𝑗(𝑧𝑗 − 𝑝𝑗)𝑘𝑗−1 ⋯ (𝑧𝑛 − 𝑝𝑛)𝑘𝑛|

≤
∞

∑
𝑘1,…,𝑘𝑛=0

𝐶 (
𝑟′

𝑟1 )
𝑘1

⋯ 𝑘𝑗 (
𝑟′

𝑟1 )
𝑘𝑗−1

⋯ (
𝑟′

𝑟1 )
𝑘𝑛

.

The last expression is an iterated sum in which 𝑛 − 1 of the sums are convergent
geometric series, while the 𝑗th one is the series ∑𝑘 𝑘𝑥𝑘−1, which converges ab-
solutely for |𝑥| < 1 by the ratio test. Thus we may apply the Weierstrass M-test
again to conclude that the differentiated series converges uniformly and absolutely
on 𝐷𝑛

𝑟′(𝑝), and therefore is equal to the derivative of 𝑓 there. Since every point in
𝐷𝑛

𝑟 (𝑝) lies in 𝐷𝑛
𝑟′(𝑝) for some 0 < 𝑟′ < 𝑟1 < 𝑟, it follows that 𝜕𝑓 /𝜕𝑧𝑗 is equal to the

sum of the differentiated series on all of 𝐷𝑛
𝑟 (𝑝). It then follows by induction that the

same is true of all higher complex derivatives. □

Corollary 1.27. If 𝑓 is a holomorphic function given by an absolutely convergent
power series of the form (1.3) on a polydisk 𝐷𝑛

𝑟 (𝑝) ⊆ ℂ𝑛, then the power series is
given explicitly by the following formula, called the Taylor series of 𝒇 centered at
𝒑:

𝑓(𝑧) =
∞

∑
𝑘1,…,𝑘𝑛=0

1
𝑘1! ⋯ 𝑘𝑛!

𝜕𝑘1+⋯+𝑘𝑛𝑓(𝑝)
(𝜕𝑧1)𝑘1 ⋯ (𝜕𝑧𝑛)𝑘𝑛

(𝑧1 − 𝑝1)𝑘1 ⋯ (𝑧𝑛 − 𝑝𝑛)𝑘𝑛 .

Proof. Just differentiate (1.3) repeatedly term-by-term and evaluate at 𝑧 = 𝑝 to
determine the coefficients 𝑎𝑘1…𝑘𝑛 . □

Proposition 1.28 (Identity Theorem). Suppose 𝑊 ⊆ ℂ𝑛 is a connected open
subset, and 𝑓, 𝑔 ∶ 𝑊 → ℂ are holomorphic functions that agree on a nonempty
open subset of 𝑊 . Then 𝑓 ≡ 𝑔 on 𝑊 .

Proof. Set ℎ = 𝑓 − 𝑔, so ℎ ≡ 0 on a nonempty open subset 𝑈0 ⊆ 𝑊 . Let

𝑈 = {𝑝 ∈ 𝑊 ∶ ℎ and its complex partial derivatives of all orders vanish at 𝑝}.

Then 𝑈 is nonempty because 𝑈0 ⊆ 𝑈 . We will show that it is open and closed in
𝑊 , which implies by connectivity that it is all of 𝑊 .

Suppose 𝑝 ∈ 𝑈 . Then ℎ is equal to a convergent power series in a neighborhood
of 𝑝, and Corollary 1.27 shows that every term in the series is zero. Thus 𝑈 is open
in 𝑊 .
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Now suppose 𝑝 ∈ 𝑊 is a limit point of 𝑈 . There is a sequence of points 𝑝𝑗 ∈ 𝑈
converging to 𝑝, and the hypothesis implies that all partial derivatives of ℎ vanish
at each 𝑝𝑗 . Thus by continuity, they also vanish at 𝑝, showing that 𝑝 ∈ 𝑈 . Thus 𝑈
is closed in 𝑊 . □

Corollary 1.29 (Identity Theorem for Manifolds). Suppose 𝑀 and 𝑁 are com-
plex manifolds with 𝑀 connected, and 𝑓, 𝑔 ∶ 𝑀 → 𝑁 are holomorphic maps that
agree on a nonempty open subset of 𝑀 . Then 𝑓 ≡ 𝑔 on 𝑀 .

Proof. Proposition 1.28 applied to local coordinate representations of 𝑓 and 𝑔
shows that the set of points where 𝑓 and 𝑔 agree along with their partial deriva-
tives of all orders is both open and closed in 𝑀 , hence all of 𝑀 . □

Proposition 1.30 (Liouville’s Theorem). Every holomorphic function that is de-
fined on all of ℂ𝑛 and bounded is constant.

Proof. Suppose 𝑓 ∶ ℂ𝑛 → ℂ is holomorphic and bounded. Given any point 𝑧 ∈
ℂ𝑛, the function 𝑔(𝜁) = 𝑓(𝜁𝑧) is a bounded holomorphic function defined on all of
ℂ, so it is constant by the one-variable version of Liouville’s theorem. In particular,
this means 𝑓(𝑧) = 𝑓(0). Since 𝑧 is arbitrary, this shows 𝑓 is constant. □

Liouville’s theorem allows us to give our first example of two complex mani-
folds that are diffeomorphic but not biholomorphic.

Example 1.31 (The Unit Ball is Not Biholomorphic to ℂ𝒏). We know that 𝔹2𝑛

and ℂ𝑛 are diffeomorphic (see [LeeSM, Example 2.14]). But if 𝐹 ∶ ℂ𝑛 → 𝔹2𝑛 is
any holomorphic map, each of its coefficient functions is a bounded holomorphic
function on ℂ𝑛 and therefore constant. Thus there is no biholomorphism between
𝔹2𝑛 and ℂ𝑛. //

Proposition 1.32 (The Maximum Principle). Suppose 𝑓 ∶ 𝑈 → ℂ is a holomor-
phic function on a connected open set 𝑈 ⊆ ℂ𝑛. If |𝑓 (𝑧)| attains a maximum value
at some point in 𝑈 , then 𝑓 is constant.

Proof. Suppose |𝑓 (𝑧)| attains a maximum value at 𝑧0 ∈ 𝑈 . Let 𝑐 = 𝑓(𝑧0), and
set 𝑊 = {𝑧 ∈ 𝑈 ∶ 𝑓(𝑧) = 𝑐}. Then 𝑊 is nonempty because 𝑧0 ∈ 𝑊 , and it is
closed in 𝑈 by continuity. Given 𝑧1 ∈ 𝑊 , choose 𝜀 > 0 such that the ball 𝐵𝜀(𝑧1)
is contained in 𝑈 . For each 𝑤 ∈ ℂ𝑛 with |𝑤| = 1, the function 𝑔(𝜁) = 𝑓(𝑧1 + 𝜁𝑤)
is holomorphic on the disk 𝐷𝜀(0) ⊆ ℂ and achieves its maximum modulus at 𝜁 =
0. By the one-variable maximum principle, therefore, 𝑔 is constant. Since 𝑤 is
arbitrary, this shows 𝑓 is constant on 𝐵𝜀(𝑧1). Thus 𝑊 is open, and by connectivity
it is all of 𝑈 . □

This result too has an immediate, and somewhat surprising, application to com-
plex manifolds.



20 1. The Basics

Corollary 1.33. Let 𝑀 be a connected compact complex manifold. Then every
globally defined holomorphic function from 𝑀 to ℂ is constant.

Proof. Suppose 𝑓 ∈ 𝒪(𝑀). By compactness, the continuous function |𝑓 | attains
a maximum value at a point 𝑧0 ∈ 𝑀 . In a holomorphic coordinate ball centered
at 𝑧0, the coordinate representation of 𝑓 is a holomorphic function on an open ball
in ℂ𝑛 that attains its maximum modulus at the origin, so it is constant on the entire
coordinate domain. Thus by the identity theorem, it is constant on all of 𝑀 . □

One of the most striking features of holomorphic functions is described in the
next proposition, which shows in particular that uniform limits of holomorphic
functions are holomorphic. It is worth noting that the analogous result for smooth
functions, or even real-analytic functions, is not true.

Proposition 1.34. Suppose 𝑈 ⊆ ℂ𝑛 is open and 𝑓𝑘 ∶ 𝑈 → ℂ is a sequence of holo-
morphic functions that converge uniformly on compact subsets of 𝑈 to a function
𝑓 ∶ 𝑈 → ℂ. Then 𝑓 is holomorphic.

Proof. Given 𝑝 ∈ 𝑈 , choose 𝑟 > 0 such that 𝐷𝑛
𝑟 (𝑝) ⊆ 𝑈 . For all 𝑧 ∈ 𝐷𝑛

𝑟 (𝑝), we
can apply the Cauchy integral formula to 𝑓𝑘, and uniform convergence guarantees
that

𝑓(𝑧) = lim
𝑘→∞

1
(2𝜋𝑖)𝑛 ∫

|𝜁𝑛−𝑝𝑛|=𝑟

… ∫
|𝜁1−𝑝1|=𝑟

𝑓𝑘(𝜁1, … , 𝜁𝑛)
(𝜁𝑛 − 𝑧𝑛) ⋯ (𝜁1 − 𝑧1)

𝑑𝜁1 ⋯ 𝑑𝜁𝑛

= 1
(2𝜋𝑖)𝑛 ∫

|𝜁𝑛−𝑝𝑛|=𝑟

… ∫
|𝜁1−𝑝1|=𝑟

𝑓(𝜁1, … , 𝜁𝑛)
(𝜁𝑛 − 𝑧𝑛) ⋯ (𝜁1 − 𝑧1)

𝑑𝜁1 ⋯ 𝑑𝜁𝑛.

The integrand in the last expression is continuous in all variables and smooth in
𝑧1, … , 𝑧𝑛, so we can differentiate under the integral sign with respect to 𝑥𝑗 and
𝑦𝑗 as many times as we like to conclude that 𝑓 is smooth. In particular, since the
integrand is holomorphic in 𝑧1, … , 𝑧𝑛, we see that 𝑓 satisfies the Cauchy–Riemann
equations on 𝐷𝑛

𝑟 (𝑝). □

Our next result is a little less elementary, so its one-variable analogue is not
always covered in undergraduate complex analysis texts. We will use it only once,
when we study sections of holomorphic vector bundles (Thm. 3.13).

Proposition 1.35 (Montel’s Theorem). Suppose 𝑈 ⊆ ℂ𝑛 is open and 𝑓𝑘 ∶ 𝑈 → ℂ
is a sequence of holomorphic functions that are uniformly bounded, meaning there
is some 𝐶 > 0 such that |𝑓𝑘(𝑧)| < 𝐶 for all 𝑘 ≥ 1 and all 𝑧 ∈ 𝑈 . Then there
is a subsequence {𝑓𝑘𝑗 }∞

𝑗=1 that converges uniformly on compact subsets of 𝑈 to a
holomorphic function defined on all of 𝑈 .
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Proof. For any closed polydisk 𝐷𝑛
𝑟 (𝑝) ⊆ 𝑈 , we can use Cauchy’s formula to write

each 𝑓𝑘 on 𝐷𝑛
𝑟 (𝑝) in the form

𝑓𝑘(𝑧) = 1
(2𝜋𝑖)𝑛 ∫

|𝜁𝑛−𝑝𝑛|=𝑟

… ∫
|𝜁1−𝑝1|=𝑟

𝑓𝑘(𝜁1, … , 𝜁𝑛)
(𝜁𝑛 − 𝑧𝑛) ⋯ (𝜁1 − 𝑧1)

𝑑𝜁1 ⋯ 𝑑𝜁𝑛.

Differentiating under the integral sign, we obtain

𝜕𝑓𝑘(𝑧)
𝜕𝑥𝑗 = 1

(2𝜋𝑖)𝑛 ∫ … ∫
𝑓𝑘(𝜁1, … , 𝜁𝑛)

(𝜁𝑛 − 𝑧𝑛) ⋯ (𝜁 𝑗 − 𝑧𝑗)2 ⋯ (𝜁1 − 𝑧1)
𝑑𝜁1 ⋯ 𝑑𝜁𝑛.

A simple computation shows that a contour integral over a circle 𝑐 of radius 𝑟 sat-
isfies |∫𝑐 ℎ(𝜁)𝑑𝜁| ≤ 2𝜋𝑟 sup𝑐 |ℎ|. Applying this in turn to each contour integral in
the above formula gives

|
𝜕𝑓𝑘(𝑧)

𝜕𝑥𝑗 | ≤ 𝐶
𝑟 .

This shows that the partial derivatives of 𝑓𝑘 with respect to 𝑥1, … , 𝑥𝑛 are uniformly
bounded on 𝐷𝑛

𝑟 (𝑝), and then the Cauchy–Riemann equations show the same is true
of the derivatives with respect to 𝑦1, … , 𝑦𝑛. Therefore, each 𝑓𝑘 satisfies a Lipschitz
estimate of the form |𝑓𝑘(𝑧1) − 𝑓𝑘(𝑧2)| ≤ (𝐶′/𝑟)|𝑧1 − 𝑧2| there. By continuity,
the same bound holds on the closed polydisk 𝐷𝑛

𝑟 (𝑝). Thus the functions 𝑓𝑘 are
uniformly bounded and uniformly equicontinuous on 𝐷𝑛

𝑟 (𝑝), so the Arzelà–Ascoli
theorem [Rud76, Thm. 7.25] guarantees that a subsequence {𝑓𝑘𝑗 }∞

𝑗=1 converges
uniformly there.

Every 𝑝 ∈ 𝑈 is contained in some polydisk 𝐷𝑛
𝑟 (𝑝) such that 𝐷𝑛

𝑟 (𝑝) ⊆ 𝑈 . The set
of all such polydisks is an open cover of 𝑈 , and thus 𝑈 is covered by countablymany
such polydisks. Let {𝑉𝑚}∞

𝑚=1 be such a countable cover. By the above argument,
we may choose a subsequence {𝑓1,𝑗}∞

𝑗=1 of the original sequence that converges
uniformly on 𝑉 1. From that subsequence, we may choose a further subsequence
{𝑓2,𝑗}∞

𝑗=1 that also converges uniformly on 𝑉 2. Continuing by induction, for each
𝑚 we get a subsequence {𝑓𝑚,𝑗}∞

𝑗=1 converging uniformly on 𝑉 1 ∪ ⋯ ∪ 𝑉 𝑚, such
that the 𝑚th sequence is a subsequence of the (𝑚 − 1)st one. Finally, let {𝑓𝑘𝑗 }∞

𝑗=1
be the diagonal subsequence 𝑓𝑘𝑗 = 𝑓𝑗,𝑗 . If 𝐾 ⊆ 𝑈 is any compact set, there is
some 𝑚 such that 𝐾 ⊆ 𝑉1 ∪ ⋯ ∪ 𝑉𝑚. Since {𝑓𝑘𝑗 } is a subsequence of {𝑓𝑖,𝑗} for
each 𝑖, it converges uniformly on 𝐾 . By Proposition 1.34, the limit function is
holomorphic. □

So far, all these facts about holomorphic functions of several variables have
been straightforward generalizations of standard facts about holomorphic functions
of one variable. The next result, however, is radically different from anything in the
one-variable theory. It was proved by Friedrich Hartogs in 1906 [Har06].
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𝐷𝑅(0) × {(𝑧2, … , 𝑧𝑛)} 𝑧2

Re 𝑧1

Im 𝑧1

|𝑧1| = 𝑟1

𝐷𝑛
𝑟 (0)

𝐷𝑛
𝑅(0)

Figure 1.1. Proof of Hartogs’s extension theorem

Theorem 1.36 (Hartogs’s Extension Theorem). Let 𝑛 ≥ 2, and let Ω ⊆ ℂ𝑛 be
an open set of the form 𝐷𝑛

𝑅(𝑝) ∖ 𝐷𝑛
𝑟 (𝑝) for some 𝑝 ∈ ℂ𝑛 and 0 < 𝑟 < 𝑅. Every

holomorphic function 𝑓 ∶ Ω → ℂ has a unique extension to a holomorphic function
on all of 𝐷𝑛

𝑅(𝑝).

Proof. After a translation, we may assume that 𝑝 = 0. Choose any 𝑟1 such that 𝑟 <
𝑟1 < 𝑅. As long as 𝑟 < |𝑧2| < 𝑅, the function 𝑧1 ↦ 𝑓(𝑧1, … , 𝑧𝑛) is holomorphic
on the entire disk 𝐷𝑅(0) ⊆ ℂ (see Fig. 1.1), so Cauchy’s formula shows that

𝑓(𝑧1, … , 𝑧𝑛) = 1
2𝜋𝑖 ∫

|𝜁|=𝑟1

𝑓(𝜁, 𝑧2, … , 𝑧𝑛)
𝜁 − 𝑧1 𝑑𝜁.

But this formula actually makes sense for all (𝑧1, … , 𝑧𝑛) ∈ 𝐷𝑛
𝑟1(0) because the

integration contour is contained in Ω in that case, and it defines a holomorphic
function 𝑓1 there by differentiation under the integral sign. Because 𝑓1 agrees with
𝑓 on the open subset of 𝐷𝑛

𝑟1(0) where 𝑟 < |𝑧2| < 𝑟1, the identity theorem shows
that it agrees on the entire connected set 𝐷𝑛

𝑟1(0) ∖ 𝐷𝑛
𝑟 (0). Thus we can define a

holomorphic function on all of 𝐷𝑛
𝑅(0) by letting it be equal to 𝑓 on Ω and to 𝑓1 on

𝐷𝑛
𝑟1(0). Uniqueness follows immediately from the identity theorem. □

This theorem is false in the case 𝑛 = 1, because there are many holomorphic
functions with isolated singularities, such as 1/𝑧 or 𝑒1/𝑧, which are holomorphic
on annuli centered at a singular point but have no holomorphic extensions across
that point. Hartogs’s theorem implies that singularities of holomorphic functions
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in two or more variables are never isolated. Moreover, it says something important
about zeros of holomorphic functions as well. In one complex variable, zeros of
holomorphic functions of one variable are always isolated. But if a holomorphic
function 𝑓 had an isolated zero at 𝑝 ∈ ℂ𝑛 with 𝑛 ≥ 2, then 1/𝑓 would have an
isolated singularity, which is impossible. Thus zeros of holomorphic functions of
more than one variable are never isolated either.

The Complexified Tangent and Cotangent Bundles
Now we introduce some extensions to the theory of smooth manifolds that we will
need for working with complex-valued functions. Writing such a function as 𝑓 =
𝑢 + 𝑖𝑣, we would like to express its differential as 𝑑𝑓 = 𝑑𝑢 + 𝑖𝑑𝑣. But this is not
an ordinary 1-form in the sense that the term is used in smooth manifold theory:
sections of a real vector bundle like the cotangent bundle can be multiplied by real
numbers, but not by complex ones.

To make sense of this, we make the following definition. If 𝑉 is a real vector
space, we define the complexification of 𝑽 , denoted by 𝑉ℂ, to be the vector space
𝑉 ⊕ 𝑉 with multiplication by complex numbers defined as follows:

(𝑎 + 𝑖𝑏)(𝑢, 𝑣) = (𝑎𝑢 − 𝑏𝑣, 𝑎𝑣 + 𝑏𝑢) for 𝑎 + 𝑖𝑏 ∈ ℂ.
Together with the usual addition in 𝑉 ⊕ 𝑉 , it turns 𝑉ℂ into a vector space over ℂ.
The map 𝑢 ↦ (𝑢, 0) is a real-linear isomorphism from 𝑉 onto the (real) subspace
𝑉 ⊕ {0} ⊆ 𝑉ℂ, and we typically identify 𝑉 with its image under this map, thus
considering 𝑉 itself to be a real-linear subspace of 𝑉ℂ. With this identification, we
can write (𝑢, 𝑣) = 𝑢 + 𝑖𝑣, and we can think of 𝑉ℂ as consisting of the set of all linear
combinations of elements of 𝑉 with complex coefficients.

If (𝑏1, … , 𝑏𝑛) is any basis for 𝑉 (over ℝ), then ((𝑏1, 0), … , (𝑏𝑛, 0)) is a basis
for 𝑉ℂ over ℂ, which under our identification we can just write as (𝑏1, … , 𝑏𝑛). It
follows that the complex dimension of 𝑉ℂ is the same as the real dimension of 𝑉 .

For example, the complexification of ℝ𝑛 can be naturally identified with ℂ𝑛.
If 𝐿∶ 𝑉 → 𝑊 is a linear map between real vector spaces, it extends canoni-

cally to a complex-linear map 𝐿ℂ ∶ 𝑉ℂ → 𝑊ℂ, called the complexification of 𝑳,
satisfying 𝐿ℂ(𝑢 + 𝑖𝑣) = 𝐿(𝑢) + 𝑖𝐿(𝑣). In cases where it will not cause confusion,
we will often denote the complexification of a linear map 𝐿 by the same symbol 𝐿.

► Exercise 1.37. Show that the assignment 𝑉 ↦ 𝑉ℂ, 𝐿 ↦ 𝐿ℂ defines a co-
variant functor from the category of real vector spaces to the category of complex
ones.

The next exercise describes an alternative definition of the complexification.

► Exercise 1.38. Let 𝑉 be a real vector space. Give the space 𝑉 ⊗ℝ ℂ (the
abstract tensor product of 𝑉 and ℂ, considered as real vector spaces), the structure
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of a complex vector space with the usual addition and with scalar multiplication
defined by

𝛼(
𝑘

∑
𝑗=1

𝑣𝑗 ⊗ 𝛽𝑗) =
𝑘

∑
𝑗=1

𝑣𝑗 ⊗ (𝛼𝛽𝑗),

for 𝑣𝑗 ∈ 𝑉 and 𝛼, 𝛽𝑗 ∈ ℂ. Show that this turns 𝑉 ⊗ℝ ℂ into a complex vector
space, which is canonically isomorphic to 𝑉ℂ via the map (𝑢, 𝑣) ↦ 𝑢 ⊗ 1 + 𝑣 ⊗ 𝑖.

► Exercise 1.39. Suppose 𝑉 is a real vector space.
(a) Given 𝑤 = (𝑢, 𝑣) ∈ 𝑉ℂ, define the conjugate of 𝒘 by 𝑤 = (𝑢, −𝑣). Show

that the map 𝑤 ↦ 𝑤 is a bijective conjugate-linear map from 𝑉ℂ to itself
satisfying 𝑤 = 𝑤 for all 𝑤 ∈ 𝑉ℂ. (A map 𝐹 ∶ 𝑉 → 𝑊 between complex
vector spaces is said to be conjugate-linear if it is linear over ℝ and satisfies
𝐹 (𝛼𝑣) = 𝛼𝐹 (𝑣) for all 𝛼 ∈ ℂ and 𝑣 ∈ 𝑉 .)

(b) An element 𝑤 ∈ 𝑉ℂ is said to be real if 𝑤 = 𝑤. Show that 𝑤 is real if and
only if it lies in the real subspace 𝑉 ⊆ 𝑉ℂ defined above.

(c) For 𝑤 ∈ 𝑉ℂ, define Re𝑤 = 1
2 (𝑤 + 𝑤) and Im𝑤 = 1

2𝑖 (𝑤 − 𝑤). Show that
Re𝑤 and Im𝑤 are real, and 𝑤 = Re𝑤 + 𝑖 Im𝑤.

The complexification functor can be adapted easily to vector bundles. First we
establish some definitions.

Suppose 𝑀 is a topological space. A complex vector bundle of rank 𝒌 over
𝑴 is defined analogously to a real vector bundle (e.g., as in [LeeSM, Chap. 10]):
it is a topological space 𝐸 together with a continuous surjective map 𝜋 ∶ 𝐸 → 𝑀
such that each fiber 𝐸𝑝 = 𝜋−1(𝑝) is given the structure of a 𝑘-dimensional complex
vector space, and each 𝑝 ∈ 𝑀 has a neighborhood 𝑈 over which there exists a local
trivialization, which is a homeomorphism Φ∶ 𝜋−1(𝑈) → 𝑈 × ℂ𝑘 that restricts to
a complex-linear isomorphism from 𝐸𝑞 to {𝑞} × ℂ𝑘 for each 𝑞 ∈ 𝑈 . This means,
in particular, that the following diagram commutes, where 𝜋1 ∶ 𝑈 × ℂ𝑘 → 𝑈 is the
projection on the first factor:

𝜋−1(𝑈) Φ //

𝜋|𝜋−1(𝑈) ##G
GG

GG
GG

GG
𝑈 × ℂ𝑘

𝜋1{{ww
ww
ww
ww
w

𝑈.

If 𝑀 and 𝐸 are smooth manifolds, 𝜋 is a smooth map, and the local trivializations
can be chosen to be diffeomorphisms, it is a smooth complex vector bundle; and
if 𝑀 and 𝐸 are complex manifolds, 𝜋 is holomorphic, and the local trivializations
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can be chosen to be biholomorphisms, it is a holomorphic vector bundle. Any
open cover of 𝑀 such that 𝐸 admits a trivialization over each of the open sets of
the cover is called a trivializing cover for 𝑬. If there is a global trivialization (that
is, a local trivialization over all of 𝑀), the bundle is said to be a trivial bundle. A
line bundle is a (real or complex) vector bundle of rank 1.

If 𝜋 ∶ 𝐸 → 𝑀 and 𝜋′ ∶ 𝐸′ → 𝑀 are complex vector bundles over 𝑀 , a map
𝐹 ∶ 𝐸 → 𝐸′ is called a bundle homomorphism if 𝜋′ ∘ 𝐹 = 𝜋 and for each 𝑝 ∈ 𝑀 ,
the map 𝐹 |𝐸𝑝 ∶ 𝐸𝑝 → 𝐸′

𝑝 is a complex-linear map. A bundle homomorphism that is
also a homeomorphism between 𝐸 and 𝐸′ is called a bundle isomorphism, and the
bundles 𝐸 and 𝐸′ are said to be isomorphic, denoted by 𝐸 ≅ 𝐸′, if there is a bundle
isomorphism between them. If the bundles are smooth and 𝐹 is a diffeomorphism,
it is called a smooth isomorphism, and if the bundles are holomorphic and 𝐹 is a
biholomorphism, it is a holomorphic isomorphism. In each of these cases, it is easy
to check that the inverse map is also a bundle isomorphism. (For some purposes,
it is useful to introduce a more general notion of vector bundle homomorphisms
between bundles over different manifolds, and the kind we have defined here is
identified as a bundle homomorphism over𝑴 ; see [LeeSM, Chap. 10] for details.
Since we will not have any need for that extra generality, we always understand
bundle homomorphisms to be the type we have defined here.)

Most of the standard constructions used for real vector bundles, such as Whit-
ney sums [LeeSM, Example 10.7] and smooth subbundles [LeeSM, pp. 264–266],
carry over in obvious ways to smooth complex bundles.

We will have much more to say about holomorphic vector bundles in Chapter
3; for now we focus attention on smooth bundles.

If 𝜋 ∶ 𝐸 → 𝑀 is a smooth (real or complex) vector bundle, a (global) section
of 𝑬 is a continuous map 𝜎 ∶ 𝑀 → 𝐸 such that 𝜋 ∘ 𝜎 = Id𝑀 . For any open subset
𝑈 ⊆ 𝑀 , a local section of 𝑬 over 𝑼 is a continuous map 𝜎 ∶ 𝑈 → 𝐸 satisfying
𝜎 ∘ 𝜋 = Id𝑈 . Every smooth vector bundle has a smooth zero section 𝜁 , for which
𝜁(𝑝) is the zero element of 𝐸𝑝 for each 𝑝 ∈ 𝑀 . Any section that is not equal to the
zero section will be called a nontrivial section. A rough (local or global) section of
𝑬 is a map 𝜎 ∶ 𝑈 → 𝐸 rough (local or global) section of 𝑬 is a map 𝜎 ∶ 𝑈 → 𝐸
satisfying 𝜎 ∘ 𝜋 = Id𝑈 , but not assumed to be smooth or even continuous. We
denote the space of smooth global sections of 𝐸 by Γ(𝐸). A local frame for 𝑬 is
an ordered 𝑘-tuple of local sections (𝜎1, … , 𝜎𝑘) over an open set 𝑈 ⊆ 𝑀 whose
values at each 𝑝 ∈ 𝑈 form a basis for the fiber 𝐸𝑝.

If 𝜋 ∶ 𝐸 → 𝑀 is a smooth rank-𝑘 real vector bundle over a smooth manifold
𝑀 , we define the complexification of 𝑬 to be the set 𝐸ℂ = ⋃𝑝∈𝑀 (𝐸𝑝)ℂ together
with the obvious projection 𝜋ℂ ∶ 𝐸ℂ → 𝑀 . For each smooth local trivialization
Φ∶ 𝜋−1(𝑈) → 𝑈 × ℝ𝑘, we define a local trivialization Φℂ ∶ 𝜋−1

ℂ (𝑈) → 𝑈 × ℂ𝑘 by

Φℂ(𝜉) = (𝜋ℂ(𝜉), (Φ|𝐸𝜋ℂ(𝜉))ℂ(𝜉)).



26 1. The Basics

Wherever two such trivializations (𝑈, Φ) and (𝑉 , Ψ) overlap, [LeeSM, Lemma
10.15] shows that we can write Ψ ∘ Φ−1(𝑝, 𝑣) = (𝑝, 𝜏(𝑝)𝑣) for some smooth tran-
sition function 𝜏 ∶ 𝑈 ∩ 𝑉 → GL(𝑘, ℝ), and it is straightforward to check that the
transition function from Φℂ to Ψℂ is the same: Ψℂ ∘ Φ−1

ℂ (𝑝, 𝑣) = (𝑝, 𝜏(𝑝)𝑣), where
now we are considering 𝜏 as a map into GL(𝑘, ℂ). It follows from the vector bundle
chart lemma [LeeSM, Lemma 10.6] (adapted in the obvious way for complex vec-
tor bundles) that 𝜋ℂ ∶ 𝐸ℂ → 𝑀 has a unique structure as a smooth rank-𝑘 complex
vector bundle, with the maps constructed above as smooth local trivializations.

What this really amounts to in practice is that, given any smooth local frame
(𝑏1, … , 𝑏𝑘) for 𝐸, we can write a section of 𝐸ℂ locally as a sum 𝑓 𝑗𝑏𝑗 , where now
the coefficient functions 𝑓 𝑗 are allowed to be complex-valued.

► Exercise 1.40. Let 𝐸 → 𝑀 be a smooth real vector bundle. Show that every
smooth (local or global) section of 𝐸ℂ can be written uniquely as a sum 𝛼 + 𝑖𝛽,
where 𝛼 and 𝛽 are smooth local or global sections of 𝐸.

The result of Exercise 1.39 shows that for any real vector bundle 𝐸 → 𝑀 ,
conjugation defines a smooth conjugate-linear bundle homomorphism from 𝐸ℂ to
itself, and the set of real elements (those satisfying 𝑤 = 𝑤) forms a real-linear
subbundle canonically isomorphic to the original bundle 𝐸. It is important to note
that the existence of such a conjugation operator is a special feature of complex-
ifications: in fact, as Problem 1-6 shows, a complex vector bundle admits such a
conjugation operator if and only if it is isomorphic to the complexification of a real
bundle.

When we apply this construction to the tangent and cotangent bundles of a
smooth manifold 𝑀 , we obtain the complexified tangent bundle 𝑇ℂ𝑀 and the
complexified cotangent bundle 𝑇 ∗

ℂ𝑀 , respectively. A section of 𝑇ℂ𝑀 , called a
complex vector field, can be written locally as a linear combination of coordinate
vector fields with complex-valued coefficient functions, or as a sum of a real vector
field plus 𝑖 times another real vector field. A complex vector field 𝑍 = 𝑋 + 𝑖𝑌
acts on a smooth real-valued function 𝑓 by 𝑍𝑓 = 𝑋𝑓 + 𝑖𝑌 𝑓 , and on a complex-
valued function 𝑓 = 𝑢 + 𝑖𝑣 by the same formula, where we interpret 𝑋𝑓 to mean
𝑋𝑢 + 𝑖𝑋𝑣 and similarly for 𝑌 . The Lie bracket operation can be extended to pairs
of smooth complex vector fields by complex bilinearity: [𝑋1 + 𝑖𝑌1, 𝑋2 + 𝑖𝑌2] =
([𝑋1, 𝑋2] − [𝑌1, 𝑌2]) + 𝑖([𝑋1, 𝑌2] + [𝑌2, 𝑋1]). It is straightforward to check that
the formula [𝑓𝑉 , 𝑔𝑊 ] = 𝑓𝑔[𝑉 , 𝑊 ] + 𝑓(𝑉 𝑔)𝑊 − 𝑔(𝑊 𝑓)𝑉 holds equally well
when the vector fields 𝑉 , 𝑊 and the functions 𝑓, 𝑔 are allowed to be complex.

Similarly, a section of 𝑇 ∗
ℂ𝑀 is called a complex 1-form or a complex covector

field, and can be written locally as a linear combination of coordinate 1-forms with
complex coefficients, or as a sum of a real 1-form plus 𝑖 times another real 1-form.
With this construction, we are now justified in writing 𝑑𝑓 = 𝑑𝑢 + 𝑖 𝑑𝑣 whenever
𝑓 = 𝑢 + 𝑖𝑣 is a complex-valued smooth function.
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► Exercise 1.41. Prove that there is a canonical smooth bundle isomorphism
between 𝑇 ∗

ℂ𝑀 and the bundle Homℂ(𝑇ℂ𝑀, ℂ) whose fiber at a point 𝑝 ∈ 𝑀 is
the space of complex-linear maps from (𝑇𝑝𝑀)ℂ to ℂ.

Let us specialize to the case of ℂ𝑛, with its standard holomorphic coordinates
𝑧𝑗 = 𝑥𝑗 + 𝑖𝑦𝑗 . Considering ℂ𝑛 as a smooth manifold of (real) dimension 2𝑛, we
can use (𝑥𝑗 , 𝑦𝑗) as smooth global coordinates. We have a smooth global coframe
{𝑑𝑥𝑗 , 𝑑𝑦𝑗} for 𝑇 ∗ℂ𝑛, which is therefore also a coframe for 𝑇 ∗

ℂℂ𝑛. Consider the 2𝑛
complex 1-forms 𝑑𝑧𝑗 = 𝑑𝑥𝑗 + 𝑖 𝑑𝑦𝑗 and 𝑑𝑧𝑗 = 𝑑𝑥𝑗 − 𝑖 𝑑𝑦𝑗 . Because we can solve
for 𝑑𝑥𝑗 = 1

2 (𝑑𝑧𝑗 + 𝑑𝑧𝑗) and 𝑑𝑦𝑗 = 1
2𝑖 (𝑑𝑧𝑗 − 𝑑𝑧𝑗), it follows that {𝑑𝑧𝑗 , 𝑑𝑧𝑗} is also

a smooth coframe for 𝑇 ∗
ℂℂ𝑛, and arbitrary complex 1-forms can also be expressed

in terms of this coframe. In particular, if 𝑓 ∶ 𝑈 → ℂ is a smooth function on an
open subset 𝑈 ⊆ ℂ𝑛, we can write

𝑑𝑓 = 𝜕𝑓
𝜕𝑥𝑗 𝑑𝑥𝑗 + 𝜕𝑓

𝜕𝑦𝑗 𝑑𝑦𝑗 = 𝐴𝑗 𝑑𝑧𝑗 + 𝐵𝑗 𝑑𝑧𝑗

for some coefficient functions 𝐴𝑗 and 𝐵𝑗 . (When using the summation convention,
the understanding is that an upper index “in the denominator” is to be treated as a
lower index.) To see what these coefficients are, just substitute the formulas for 𝑑𝑥𝑗

and 𝑑𝑦𝑗 in terms of 𝑑𝑧𝑗 , 𝑑𝑧𝑗 and collect terms:

(1.7)
𝑑𝑓 = 𝜕𝑓

𝜕𝑥𝑗 (
𝑑𝑧𝑗 + 𝑑𝑧𝑗

2 ) + 𝜕𝑓
𝜕𝑥𝑗 (

𝑑𝑧𝑗 − 𝑑𝑧𝑗

2𝑖 )

= 1
2 (

𝜕𝑓
𝜕𝑥𝑗 − 𝑖 𝜕𝑓

𝜕𝑦𝑗 ) 𝑑𝑧𝑗 + 1
2 (

𝜕𝑓
𝜕𝑥𝑗 + 𝑖 𝜕𝑓

𝜕𝑦𝑗 ) 𝑑𝑧𝑗 .

Motivated by this calculation, we define 2𝑛 smooth complex vector fields 𝜕/𝜕𝑧𝑗

and 𝜕/𝜕𝑧𝑗 on ℂ𝑛 by

(1.8) 𝜕
𝜕𝑧𝑗 = 1

2 (
𝜕

𝜕𝑥𝑗 − 𝑖 𝜕
𝜕𝑦𝑗 ) , 𝜕

𝜕𝑧𝑗 = 1
2 (

𝜕
𝜕𝑥𝑗 + 𝑖 𝜕

𝜕𝑦𝑗 ) .

(Be sure to notice that the negative sign appears in the formula for 𝜕/𝜕𝑧𝑗 , not 𝜕/𝜕𝑧𝑗 ;
this is not a typo!) A simple computation shows that {𝜕/𝜕𝑧𝑗 , 𝜕/𝜕𝑧𝑗} is the smooth
global frame for 𝑇ℂℂ𝑛 dual to {𝑑𝑧𝑗 , 𝑑𝑧𝑗}. For a smooth complex-valued function
𝑓 defined on an open subset 𝑈 ⊆ ℂ𝑛, formula (1.7) can be rewritten in terms of
this frame as

(1.9) 𝑑𝑓 = 𝜕𝑓
𝜕𝑧𝑗 𝑑𝑧𝑗 + 𝜕𝑓

𝜕𝑧𝑗 𝑑𝑧𝑗 .

In the special case in which 𝑓 is a holomorphic function on an open subset of
ℂ𝑛, you will notice that we had already defined the expression 𝜕𝑓 /𝜕𝑧𝑗 by equation
(1.2); now we seem to have introduced a different meaning for the same expression.
The next proposition ensures that the two definitions are equivalent for holomorphic
functions.
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Proposition 1.42. Suppose 𝑈 ⊆ ℂ𝑛 is open. Let 𝑓 ∶ 𝑈 → ℂ be any smooth
function, and let 𝜕/𝜕𝑧𝑗 and 𝜕/𝜕𝑧𝑗 be the complex vector fields on 𝑈 defined by (1.8).

(a) 𝑓 is holomorphic if and only if 𝜕𝑓 /𝜕𝑧𝑗 = 0 for 𝑗 = 1, … , 𝑛.
(b) If 𝑓 is holomorphic, then for each 𝑗, the expression 𝜕𝑓 /𝜕𝑧𝑗 obtained by

applying the complex vector field 𝜕/𝜕𝑧𝑗 to 𝑓 is equal to the complex partial
derivative defined by (1.2).

Proof. After we substitute 𝑓 = 𝑢 + 𝑖𝑣 into the equation 𝜕𝑓 /𝜕𝑧𝑗 = 0 and separate
its real and imaginary parts, it becomes the 𝑗th pair of Cauchy–Riemann equations
for 𝑓 , thus proving (a). Then (b) follows from Proposition 1.25. □

One must be careful not to read too much into the expressions 𝜕𝑓 /𝜕𝑧𝑗 and
𝜕𝑓 /𝜕𝑧𝑗 when 𝑓 is merely smooth: despite the notation, they are not partial deriva-
tives in the ordinary sense, because, for example, it does not make sense to take a
derivative of a function with respect to 𝑧1 while holding 𝑧2, … , 𝑧𝑛, 𝑧1, … , 𝑧𝑛 fixed.
If you fix 𝑧1, then 𝑧1 remains fixed as well. However, there is a sense in which these
operators behave like partial derivatives, which we now explain.

Suppose 𝑝 is any (not necessarily holomorphic) complex-valued polynomial
function of the real variables {𝑥𝑗 , 𝑦𝑗}:

𝑝(𝑥, 𝑦) = ∑
𝑙1,…,𝑙𝑛

𝑚1,…,𝑚𝑛

𝑎𝑙1,…,𝑙𝑛,𝑚1,…,𝑚𝑛(𝑥1)𝑙1 ⋯ (𝑥𝑛)𝑙𝑛(𝑦1)𝑚1 ⋯ (𝑦𝑛)𝑚𝑛 .

Substituting 𝑥𝑗 = 1
2 (𝑧𝑗 + 𝑧𝑗) and 𝑦𝑗 = 1

2𝑖 (𝑧
𝑗 − 𝑧𝑗) and collecting like terms, we can

express 𝑝 as a polynomial expression in 𝑧𝑗 , 𝑧𝑗 , which we denote by ̃𝑝:

̃𝑝(𝑧) = 𝑝 (
𝑧 + 𝑧

2 , 𝑧 − 𝑧
2𝑖 )

= ∑
𝑙1,…,𝑙𝑛

𝑚1,…,𝑚𝑛

̃𝑎𝑙1,…,𝑙𝑛,𝑚1,…,𝑚𝑛(𝑧1)𝑙1 ⋯ (𝑧𝑛)𝑙𝑛(𝑧1)𝑚1 ⋯ (𝑧𝑛)𝑚𝑛 .

To separate the dependence on 𝑧𝑗 and 𝑧𝑗 , we can introduce new independent
variables 𝑤𝑗 in place of 𝑧𝑗 . Let 𝑞 ∶ ℂ𝑛 × ℂ𝑛 → ℂ be the polynomial function

𝑞(𝑧, 𝑤) = 𝑝 (
𝑧 + 𝑤

2 , 𝑧 − 𝑤
2𝑖 ) ,

so that ̃𝑝(𝑧) = 𝑞(𝑧, 𝑧). Now it makes sense to ask whether 𝑞 is independent of
𝑤1, … , 𝑤𝑛.

► Exercise 1.43. Prove that the original polynomial 𝑝 defines a holomorphic
function if and only if 𝜕𝑞/𝜕𝑤𝑗 = 0 for each 𝑗.

So for a polynomial function 𝑝, in this sense we can say 𝑝 is holomorphic if and
only if it depends only on 𝑧1, … , 𝑧𝑛 with no occurrences of 𝑧1, … , 𝑧𝑛. Exactly the
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same argument can be made when 𝑝 is a real-analytic function, except then the finite
sums above become absolutely convergent infinite series; the absolute convergence
ensures that the convergence is not affected by rearranging the terms. In that case
as well, a real-analytic function 𝑓 is holomorphic if and only if it can be written as
a power series in 𝑧1, … , 𝑧𝑛, with no occurrences of 𝑧1, … , 𝑧𝑛.

For a function that is merely smooth, these computations do not make sense,
because you cannot plug complex numbers into a function that is defined only for
real values of (𝑥1, … , 𝑥𝑛, 𝑦1, … , 𝑦𝑛). But motivated by the computations above, it
is sometimes helpful to think about a holomorphic function intuitively as a “smooth
function that is independent of 𝑧1, … , 𝑧𝑛.”

Complex Coordinate Frames

Now suppose 𝑀 is a complex manifold and (𝑧1, … , 𝑧𝑛) are local holomor-
phic coordinates on an open subset 𝑈 ⊆ 𝑀 . The coordinate map 𝜑∶ 𝑈 → ℂ𝑛

can also be thought of as a smooth coordinate map from 𝑈 to ℝ2𝑛, with smooth
coordinate functions (𝑥1, 𝑦1, … , 𝑥𝑛, 𝑦𝑛) where 𝑧𝑗 = 𝑥𝑗 + 𝑖𝑦𝑗 . These coordinates
yield smooth coordinate vector fields (𝜕/𝜕𝑥1, 𝜕/𝜕𝑦1, … , 𝜕/𝜕𝑥𝑛, 𝜕/𝜕𝑦𝑛), which act on
a smooth function 𝑓 ∶ 𝑈 → ℂ by

(1.10) 𝜕
𝜕𝑥𝑗 |𝑝

𝑓 = 𝜕
𝜕𝑥𝑗 |𝜑(𝑝)

(𝑓 ∘ 𝜑−1), 𝜕
𝜕𝑦𝑗 |𝑝

𝑓 = 𝜕
𝜕𝑦𝑗 |𝜑(𝑝)

(𝑓 ∘ 𝜑−1),

where the expressions on the right-hand sides are ordinary partial derivatives on
ℝ2𝑛 (see [LeeSM, p. 60]). We define a smooth local complex frame {𝜕/𝜕𝑧𝑗 , 𝜕/𝜕𝑧𝑗}
for 𝑇ℂ𝑀 by (1.8), where now 𝜕/𝜕𝑥𝑗 and 𝜕/𝜕𝑦𝑗 are interpreted as smooth vector
fields on 𝑈 ⊆ 𝑀 . These vector fields are called complex coordinate vector fields,
and the corresponding local frame is called a complex coordinate frame.

Lemma 1.44. Suppose 𝑀 is a complex manifold and 𝑓 ∶ 𝑀 → ℂ is a smooth
function. If (𝑧1, … , 𝑧𝑛) are holomorphic coordinates on a subset 𝑈 ⊆ 𝑀 and
{𝜕/𝜕𝑧𝑗 , 𝜕/𝜕𝑧𝑗} are the corresponding complex coordinate vector fields, then 𝑓 is
holomorphic on 𝑈 if and only if 𝜕𝑓 /𝜕𝑧𝑗 ≡ 0 on 𝑈 for 𝑗 = 1, … , 𝑛.

Proof. Let 𝜑∶ 𝑈 → ℂ𝑛 be the holomorphic coordinate map, and let 𝑈 = 𝜑(𝑈) ⊆
ℂ𝑛. It follows from (1.10) together with the definition of 𝜕/𝜕𝑧𝑗 that for all 𝑝 ∈ 𝑈 ,

𝜕𝑓
𝜕𝑧𝑗 (𝑝) = 𝜕(𝑓 ∘ 𝜑−1)

𝜕𝑧𝑗 (𝜑(𝑝)).

The lemma then follows from the fact that 𝑓 ∶ 𝑈 → ℂ is holomorphic by definition
if and only if 𝑓 ∘ 𝜑−1 ∶ 𝑈 → ℂ is holomorphic. □

When 𝑀 and 𝑁 are complex manifolds, the total derivative or differential
of a smooth map 𝐹 ∶ 𝑀 → 𝑁 at a point 𝑝 ∈ 𝑀 is a real-linear map from
𝑇𝑝𝑀 to 𝑇𝐹 (𝑝)𝑁 , and its complexification is a complex-linear map from (𝑇𝑝𝑀)ℂ
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to (𝑇𝐹 (𝑝)𝑁)ℂ. For smooth manifolds, the differential is often denoted by 𝑑𝐹𝑝, but
for reasons that will be explained shortly, in this book we will denote the differential
at 𝑝 (or its complexification) by 𝐷𝐹 (𝑝), and the associated bundle homomorphism,
called the global differential of 𝑭 , by 𝐷𝐹 ∶ 𝑇ℂ𝑀 → 𝑇ℂ𝑁 . The next proposition
shows how to compute it in terms of holomorphic coordinates.

Proposition 1.45 (The Total Derivative in Holomorphic Coordinates). Let 𝑀
and 𝑁 be complex manifolds and 𝐹 ∶ 𝑀 → 𝑁 be a smooth map. Given 𝑝 ∈ 𝑀 ,
let 𝑧𝑗 = 𝑥𝑗 + 𝑖𝑦𝑗 be local holomorphic coordinates for 𝑀 in a neighborhood of 𝑝,
and 𝑤𝑗 = 𝑢𝑗 + 𝑖𝑣𝑗 for 𝑁 in a neighborhood of 𝐹 (𝑝). In terms of the complex local
frames {𝜕/𝜕𝑧𝑗 , 𝜕/𝜕𝑧𝑗} for 𝑀 and {𝜕/𝜕𝑤𝑗 , 𝜕/𝜕𝑤𝑗} for 𝑁 , the total derivative of 𝐹
at 𝑝 has the following coordinate representation:

𝐷𝐹 (𝑝)(
𝜕

𝜕𝑧𝑗 |𝑝) = 𝜕𝐹 𝑘

𝜕𝑧𝑗 (𝑝) 𝜕
𝜕𝑤𝑘 |𝐹 (𝑝)

+ 𝜕𝐹 𝑘

𝜕𝑧𝑗 (𝑝) 𝜕
𝜕𝑤𝑘 |𝐹 (𝑝)

,(1.11)

𝐷𝐹 (𝑝)(
𝜕

𝜕𝑧𝑗 |𝑝) = 𝜕𝐹 𝑘

𝜕𝑧𝑗 (𝑝) 𝜕
𝜕𝑤𝑘 |𝐹 (𝑝)

+ 𝜕𝐹 𝑘

𝜕𝑧𝑗 (𝑝) 𝜕
𝜕𝑤𝑘 |𝐹 (𝑝)

.(1.12)

Proof. Write the real and imaginary parts of (the coordinate representation of) 𝐹
as 𝐹 = 𝑈 + 𝑖𝑉 . Considering 𝑀 and 𝑁 as smooth manifolds, we have the usual
coordinate formula for 𝐷𝐹 (𝑝):

(1.13)
𝐷𝐹 (𝑝)(

𝜕
𝜕𝑥𝑗 |𝑝) = 𝜕𝑈 𝑘

𝜕𝑥𝑗 (𝑝) 𝜕
𝜕𝑢𝑘 |𝐹 (𝑝)

+ 𝜕𝑉 𝑘

𝜕𝑥𝑗 (𝑝) 𝜕
𝜕𝑣𝑘 |𝐹 (𝑝)

,

𝐷𝐹 (𝑝)(
𝜕

𝜕𝑦𝑗 |𝑝
) = 𝜕𝑈 𝑘

𝜕𝑦𝑗 (𝑝) 𝜕
𝜕𝑢𝑘 |𝐹 (𝑝)

+ 𝜕𝑉 𝑘

𝜕𝑦𝑗 (𝑝) 𝜕
𝜕𝑣𝑘 |𝐹 (𝑝)

.

To transform this to holomorphic coordinates, begin with the definitions of 𝜕/𝜕𝑧𝑗

and 𝜕/𝜕𝑧𝑗 , and use (1.13) together with the complex linearity of 𝐷𝐹 (𝑝) to obtain

𝐷𝐹 (𝑝)(
𝜕

𝜕𝑧𝑗 |𝑝) = 𝜕𝑈 𝑘

𝜕𝑧𝑗 (𝑝) 𝜕
𝜕𝑢𝑘 |𝐹 (𝑝)

+ 𝜕𝑉 𝑘

𝜕𝑧𝑗 (𝑝) 𝜕
𝜕𝑣𝑘 |𝐹 (𝑝)

,

𝐷𝐹 (𝑝)(
𝜕

𝜕𝑧𝑗 |𝑝) = 𝜕𝑈 𝑘

𝜕𝑧𝑗 (𝑝) 𝜕
𝜕𝑢𝑘 |𝐹 (𝑝)

+ 𝜕𝑉 𝑘

𝜕𝑧𝑗 (𝑝) 𝜕
𝜕𝑣𝑘 |𝐹 (𝑝)

.

Now substitute 𝜕/𝜕𝑢𝑘 = 𝜕/𝜕𝑤𝑘 + 𝜕/𝜕𝑤𝑘 and 𝜕/𝜕𝑣𝑘 = 𝑖(𝜕/𝜕𝑤𝑘 − 𝜕/𝜕𝑤𝑘) and collect
terms:

𝐷𝐹 (𝑝)(
𝜕

𝜕𝑧𝑗 |𝑝) = (
𝜕𝑈 𝑘

𝜕𝑧𝑗 (𝑝) + 𝑖𝜕𝑉 𝑘

𝜕𝑧𝑗 (𝑝))
𝜕

𝜕𝑤𝑘 |𝐹 (𝑝)

+ (
𝜕𝑈 𝑘

𝜕𝑧𝑗 (𝑝) − 𝑖𝜕𝑉 𝑘

𝜕𝑧𝑗 (𝑝))
𝜕

𝜕𝑤𝑘 |𝐹 (𝑝)
.

This is (1.11), and a similar computation proves (1.12). □
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Corollary 1.46. In addition to the hypotheses of 1.45, suppose 𝐹 is holomorphic.
Then in terms of the local frames {𝜕/𝜕𝑧𝑗 , 𝜕/𝜕𝑧𝑗} and {𝜕/𝜕𝑤𝑗 , 𝜕/𝜕𝑤𝑗}, 𝐷𝐹 (𝑝) is
represented by the block-diagonal matrix

(1.14) (
𝐷′𝐹 (𝑝) 0

0 𝐷′𝐹 (𝑝)) ,

where 𝐷′𝐹 denotes the 𝑛 × 𝑛 complex matrix-valued function (𝜕𝐹 𝑘/𝜕𝑧𝑗), called
the holomorphic Jacobian of 𝑭 . Thus the linear map 𝐷𝐹 (𝑝) is invertible if and
only if the holomorphic Jacobian of 𝐹 is invertible at 𝑝.

Proof. The fact that 𝐹 is holomorphic means that each component function of its
coordinate representation is holomorphic. Thus 𝜕𝐹 𝑘/𝜕𝑧𝑗 vanishes identically, and
by conjugation so does 𝜕𝐹 𝑘/𝜕𝑧𝑗 . Therefore, 𝐷𝐹 (𝑝) has the given matrix repre-
sentation by Proposition 1.45. The last statement then follows from the fact that
det𝐷𝐹 (𝑝) = | det𝐷′𝐹 (𝑝)|2. □
Proposition 1.47 (Chain Rule for Smooth Functions). Suppose 𝑀 and 𝑁 are
complex manifolds, 𝐹 ∶ 𝑀 → 𝑁 is a smooth map, and ℎ∶ 𝑁 → ℂ is a smooth
function. In terms of local holomorphic coordinates (𝑧𝑗) for 𝑀 and (𝜁𝑘) for 𝑁 ,

𝜕(ℎ ∘ 𝐹 )
𝜕𝑧𝑗 = 𝜕ℎ

𝜕𝜁𝑘
𝜕𝐹 𝑘

𝜕𝑧𝑗 + 𝜕ℎ
𝜕𝜁𝑘

𝜕𝐹 𝑘

𝜕𝑧𝑗 ,

𝜕(ℎ ∘ 𝐹 )
𝜕𝑧𝑗 = 𝜕ℎ

𝜕𝜁𝑘
𝜕𝐹 𝑘

𝜕𝑧𝑗 + 𝜕ℎ
𝜕𝜁𝑘

𝜕𝐹 𝑘

𝜕𝑧𝑗 .

Proof. Proposition 1.45 shows that the value of 𝜕(ℎ ∘ 𝐹 )/𝜕𝑧𝑗 at 𝑝 ∈ 𝑀 is equal to
the 𝜕/𝜕𝑤 component of 𝐷(ℎ ∘ 𝐹 )(𝑝)(𝜕/𝜕𝑧𝑗|𝑝) (where 𝑤 denotes the standard holo-
morphic coordinate of ℂ). By smooth manifold theory, 𝐷(ℎ ∘ 𝐹 )(𝑝) = 𝐷ℎ(𝐹 (𝑝)) ∘
𝐷𝐹 (𝑝), which can be computed by applying the formula of Proposition 1.45 to ℎ
and to 𝐹 and composing the two linear maps. A similar argument applies to the 𝑧𝑗

derivative. □
Corollary 1.48 (Chain Rule for Holomorphic Functions). Under the hypotheses
of Proposition 1.47, suppose in addition that 𝐹 and ℎ are holomorphic. Then

𝑑(ℎ ∘ 𝐹 ) = 𝜕ℎ
𝜕𝑤𝑘

𝜕𝐹 𝑘

𝜕𝑧𝑗 𝑑𝑧𝑗 . □

In the theory of smooth (real) manifolds, the differential of a smooth real-valued
function 𝑓 at a point 𝑝 ∈ 𝑀 can be considered either as a linear map from 𝑇𝑝𝑀
to ℝ (a covector) or as a linear map from 𝑇𝑝𝑀 to 𝑇𝑓(𝑝)ℝ; in view of the canonical
identification between 𝑇𝑓(𝑝)ℝ and ℝ, these are the same map, so it makes sense to
use the same notation 𝑑𝑓𝑝 to denote both of them. But in complex manifold theory,
something different happens. Suppose 𝑓 = 𝑢 + 𝑖𝑣∶ 𝑀 → ℂ is a complex-valued
smooth function on a complexmanifold 𝑀 . On the one hand, 𝑑𝑓𝑝 denotes the value
at 𝑝 of the complex-valued 1-form 𝑑𝑓 = 𝑑𝑢 + 𝑖𝑑𝑣, an element of (𝑇 ∗

𝑝 𝑀)ℂ, which
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can also be viewed as a complex-linear map from (𝑇𝑝𝑀)ℂ to ℂ (by Exercise 1.41).
Using the coordinate formula (1.9), we find, for example, that

𝑑𝑓𝑝(
𝜕

𝜕𝑧𝑗 |𝑝) = 𝜕𝑓
𝜕𝑧𝑗 (𝑝) ∈ ℂ.

On the other hand, 𝐷𝑓(𝑝) is a complex-linear map from (𝑇𝑝𝑀)ℂ to (𝑇𝑓(𝑝)ℂ)ℂ, and
Proposition 1.45 shows that

𝐷𝑓(𝑝)(
𝜕

𝜕𝑧𝑗 |𝑝) = 𝜕𝑓
𝜕𝑧𝑗 (𝑝) 𝜕

𝜕𝑤|𝑓(𝑝)
+ 𝜕𝑓

𝜕𝑧𝑗 (𝑝) 𝜕
𝜕𝑤|𝑓(𝑝)

∈ (𝑇𝑓(𝑝)ℂ)ℂ.

These are distinctly different objects—for example, if 𝑓 is holomorphic, then
𝑑𝑓(𝜕/𝜕𝑧𝑗) vanishes identically, but 𝐷𝑓(𝜕/𝜕𝑧𝑗) does not. This is why we use differ-
ent notations for the two kinds of derivatives, and prefer the term “total derivative”
for 𝐷𝑓(𝑝).

Orientations

The computations we just did lead to another important property of complex
manifolds: they all have canonical orientations. (Just to be clear: when we speak
of an orientation of a complex manifold, it means an orientation of its underlying
smooth real manifold.)

Proposition 1.49. Every complex manifold has a canonical orientation, uniquely
determined by the following two properties:

(i) The canonical orientation of ℂ𝑛 is the one determined by the 2𝑛-form

(1.15) 𝜔𝑛 = 𝑑𝑥1 ∧ 𝑑𝑦1 ∧ ⋯ ∧ 𝑑𝑥𝑛 ∧ 𝑑𝑦𝑛.

(ii) Every local biholomorphism is orientation-preserving.

Proof. Let us begin by expressing the real 2𝑛-form 𝜔𝑛 in terms of the complex co-
ordinates (𝑧1, … , 𝑧𝑛). Observe that for each 𝑗, we have 𝑑𝑧𝑗 ∧𝑑𝑧𝑗 = (𝑑𝑥𝑗 + 𝑖 𝑑𝑦𝑗)∧
(𝑑𝑥𝑗 − 𝑖 𝑑𝑦𝑗) = −2𝑖𝑑𝑥𝑗 ∧ 𝑑𝑦𝑗 . Therefore

(1.16) 𝜔𝑛 = (
𝑖
2)

𝑛
𝑑𝑧1 ∧ 𝑑𝑧1 ∧ ⋯ ∧ 𝑑𝑧𝑛 ∧ 𝑑𝑧𝑛.

Let 𝑈 ⊆ ℂ𝑛 be an open subset and 𝐹 ∶ 𝑈 → ℂ𝑛 be a local biholomorphism.
The Jacobian matrix of 𝐹 has the form (1.14) when expressed in terms of the or-
dered frame (𝜕/𝜕𝑧1, … , 𝜕/𝜕𝑧𝑛, 𝜕/𝜕𝑧1, … , 𝜕/𝜕𝑧𝑛). Note that this order is not the
same as the one used in formula (1.16)—they differ by a permutation whose sign
is (−1)(𝑛−1)𝑛/2, as you can check, and therefore

𝜔𝑛 = (−1)(𝑛−1)𝑛/2
(

𝑖
2)

𝑛
𝑑𝑧1 ∧ ⋯ ∧ 𝑑𝑧𝑛 ∧ 𝑑𝑧1 ∧ ⋯ ∧ 𝑑𝑧𝑛.
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The formula for the pullback of a top-degree form (see [LeeSM, Prop. 14.9],
which works equally well for complex-valued forms) gives

𝐹 ∗(𝑑𝑧1 ∧ ⋯ ∧ 𝑑𝑧𝑛 ∧ 𝑑𝑧1 ∧ ⋯ ∧ 𝑑𝑧𝑛)

= det(
𝐷′𝐹 0

0 𝐷′𝐹 ) 𝑑𝑧1 ∧ ⋯ ∧ 𝑑𝑧𝑛 ∧ 𝑑𝑧1 ∧ ⋯ ∧ 𝑑𝑧𝑛

= | det𝐷′𝐹 |2𝑑𝑧1 ∧ ⋯ ∧ 𝑑𝑧𝑛 ∧ 𝑑𝑧1 ∧ ⋯ ∧ 𝑑𝑧𝑛,

and multiplying both sides by (−1)(𝑛−1)𝑛/2(𝑖/2)𝑛 implies

𝐹 ∗𝜔𝑛 = | det𝐷′𝐹 |2𝜔𝑛.

This shows that every biholomorphism between open subsets of ℂ𝑛 is orientation-
preserving.

Now let 𝑀 be an 𝑛-dimensional complex manifold. Because every holomor-
phic coordinate chart is a local biholomorphism, if there is to be an orientation of
𝑀 satisfying (i) and (ii), it must be determined in the domain of each holomorphic
chart by the pullback of 𝜔𝑛 under the coordinate map, and it is uniquely determined
by this property. We just need to verify that the orientations determined by different
holomorphic charts agree.

Suppose two holomorphic charts (𝑈, 𝜑) and (𝑉 , 𝜓) overlap. The transition
function 𝜓 ∘ 𝜑−1 is a biholomorphism between open subsets of ℂ𝑛, so the above
computation shows that (𝜓 ∘ 𝜑−1)∗𝜔𝑛 = 𝑢 𝜔𝑛, where 𝑢 is the positive smooth func-
tion | det𝐷′(𝜓 ∘ 𝜑−1)|2. Thus on 𝑈 ∩ 𝑉 we have

𝜓∗𝜔𝑛 = 𝜑∗(𝜑−1)∗𝜓∗𝜔𝑛

= 𝜑∗((𝜓 ∘ 𝜑−1)∗𝜔𝑛)
= 𝜑∗(𝑢 𝜔𝑛)
= (𝑢 ∘ 𝜑)𝜑∗𝜔𝑛.

Thus the 𝑛-forms determined by 𝜑 and 𝜓 are positive multiples of each other, so
they determine the same orientation on 𝑈 ∩ 𝑉 .

Finally, we need to show that every local biholomorphism between complex
manifolds is orientation-preserving. Suppose 𝐹 ∶ 𝑀 → 𝑁 is a local biholomor-
phism. Let 𝑝 ∈ 𝑀 , and choose holomorphic charts (𝑈, 𝜑) for 𝑀 and (𝑉 , 𝜓) for 𝑁
such that 𝑝 ∈ 𝑈 , 𝐹 (𝑈) ⊆ 𝑉 , and 𝐹 |𝑈 is a biholomorphism onto its image. Then
on 𝑈 ,

𝐹 = (𝜓−1) ∘ (𝜓 ∘ 𝐹 ∘ 𝜑−1) ∘ (𝜑).
The three maps in parentheses above are all orientation-preserving: the first and
third by the way we have defined the orientations on 𝑁 and 𝑀 , and the second
because it is a biholomorphism between open subsets of ℂ𝑛. □



34 1. The Basics

Almost Complex Structures
To delve further into the interaction between a holomorphic structure and its under-
lying smooth structure, we introduce the following linear-algebraic construction.
Let 𝑉 be an 𝑛-dimensional complex vector space, and let 𝑉ℝ be its underlying real
vector space—the same set as 𝑉 , but considered only as a vector space over ℝ. Then
𝑉ℝ is a 2𝑛-dimensional real vector space. The fact that 𝑉 is a complex vector space
is encoded in the rule for multiplying vectors by 𝑖, which is the map 𝐽 ∶ 𝑉 → 𝑉
sending each vector 𝑣 to 𝑖𝑣. By ignoring the complex vector space structure, we
can also think of 𝐽 as a real-linear map 𝐽 ∶ 𝑉ℝ → 𝑉ℝ satisfying 𝐽 ∘ 𝐽 = − Id.

Now suppose 𝑉 is any vector space over ℝ. A complex structure on 𝑽 is a
real-linear endomorphism 𝐽 ∶ 𝑉 → 𝑉 satisfying 𝐽 ∘ 𝐽 = − Id.
Lemma 1.50. Suppose 𝑉 is a real vector space and 𝐽 is a complex structure on
𝑉 . Then the multiplication by complex scalars defined by (𝑎 + 𝑏𝑖)𝑣 = 𝑎𝑣 + 𝑏𝐽𝑣,
together with the given vector addition operation, turns the set 𝑉 into a complex
vector space.

► Exercise 1.51. Prove this lemma by showing that complex multiplication is
associative and distributive.

To understand a complex structure 𝐽 on a vector space 𝑉 more deeply, we need
to look at its eigenvalues. The fact that 𝐽 ∘ 𝐽 = − Id means that every eigenvalue
𝜆 must satisfy 𝜆2 = −1. Thus 𝐽 has no real eigenvalues, and the only possible
complex eigenvalues are ±𝑖. To find eigenspaces, therefore, we must complexify
𝑉 and 𝐽 . Let 𝑉ℂ be the complexification of 𝑉 , and denote the complexification of
𝐽 by 𝐽 ∶ 𝑉ℂ → 𝑉ℂ. It still satisfies 𝐽 ∘ 𝐽 = − Id.
Proposition 1.52. If 𝐽 is a complex structure on the real vector space 𝑉 , then 𝑉ℂ
has a complete eigenspace decomposition of the form

𝑉ℂ = 𝑉 ′ ⊕ 𝑉 ″,
where 𝑉 ′ ⊆ 𝑉ℂ is the 𝑖-eigenspace of 𝐽 and 𝑉 ″ is the (−𝑖)-eigenspace. The
eigenspace decomposition of 𝑤 ∈ 𝑉ℂ is given by 𝑤 = 𝑤′ + 𝑤″, where

(1.17) 𝑤′ = 1
2 (𝑤 − 𝑖𝐽𝑤), 𝑤″ = 1

2 (𝑤 + 𝑖𝐽𝑤).
If 𝑉 is finite-dimensional, then 𝑉 ′ and 𝑉 ″ have the same complex dimension.

Proof. Given 𝑤 ∈ 𝑉ℂ, define 𝑤′, 𝑤″ ∈ 𝑉ℂ by (1.17). Simple computations show
that 𝐽𝑤′ = 𝑖𝑤′ and 𝐽𝑤″ = −𝑖𝑤″. Because 𝑤 = 𝑤′ + 𝑤″, this shows that
𝑉ℂ = 𝑉 ′ + 𝑉 ″. On the other hand, a nonzero vector cannot be an eigenvector with
two different eigenvalues, so 𝑉 ′ ∩ 𝑉 ″ = {0}, which shows that the sum is direct.

To see that the eigenspaces have the same dimension, note that conjugation
(Exercise 1.39) is a bijective real-linear map from 𝑉ℂ to itself, and it interchanges
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𝑉 ′ and 𝑉 ″. Thus the underlying real spaces of 𝑉 ′ and 𝑉 ″ have the same real
dimension, and because the complex dimension is half the real dimension, 𝑉 ′ and
𝑉 ″ have the same complex dimension. □

Corollary 1.53. If a finite-dimensional real vector space admits a complex struc-
ture, then it is even-dimensional.

Proof. If 𝑉 admits a complex structure, the preceding proposition shows that 𝑉ℂ
is even-dimensional. The result follows from the fact that the complex dimension
of 𝑉ℂ is equal to the real dimension of 𝑉 . □

Let us apply this construction to ℂ𝑛 with its standard complex structure. Let
(𝑋1, … , 𝑋𝑛) denote the standard basis for ℂ𝑛 as a complex vector space, where
𝑋𝑗 = (0, … , 1, … , 0) with a 1 in the 𝑗th place. Let 𝑌𝑗 = 𝐽𝑋𝑗 = (0, … , 𝑖, … , 0).
Then (𝑋1, 𝑌1, … , 𝑋𝑛, 𝑌𝑛) is a basis over ℝ for the underlying real vector space
(ℂ𝑛)ℝ, and 𝐽 satisfies 𝐽𝑋𝑗 = 𝑌𝑗 , 𝐽𝑌𝑗 = −𝑋𝑗 . From Proposition 1.52, we see
that the 𝑖-eigenspace (ℂ𝑛)′ is spanned by (𝑍1, … , 𝑍𝑛), where 𝑍𝑗 = 1

2 (𝑋𝑗 − 𝑖𝑌𝑗),
and (ℂ𝑛)″ is spanned by (𝑍1, … , 𝑍𝑛).

All of these constructions can be applied to vector bundles. If 𝐸 → 𝑀 is a
smooth real vector bundle, a complex structure on 𝑬 is a smooth bundle endomor-
phism 𝐽 ∶ 𝐸 → 𝐸 satisfying 𝐽 ∘ 𝐽 = − Id.

Consider the case of ℂ𝑛 as a smooth manifold. For each point 𝑝 ∈ ℂ𝑛, using the
standard identification of 𝑇𝑝ℂ𝑛 with (ℂ𝑛)ℝ, we have the following correspondences:

𝜕
𝜕𝑥𝑗 |𝑝

↔ 𝑋𝑗 , 𝜕
𝜕𝑦𝑗 |𝑝

↔ 𝑌𝑗 , 𝜕
𝜕𝑧𝑗 |𝑝

↔ 𝑍𝑗 .

Thus the bundle 𝑇 ℂ𝑛 has a canonical complex structure 𝐽ℂ𝑛 , which satisfies

𝐽ℂ𝑛
𝜕

𝜕𝑥𝑗 = 𝜕
𝜕𝑦𝑗 , 𝐽ℂ𝑛

𝜕
𝜕𝑦𝑗 = − 𝜕

𝜕𝑥𝑗 .

The complexified tangent bundle 𝑇ℂℂ𝑛 splits as 𝑇ℂℂ𝑛 = 𝑇 ′ℂ𝑛 ⊕ 𝑇 ″ℂ𝑛, with
𝑇 ′ℂ𝑛 spanned by the complex vector fields 𝜕/𝜕𝑧1, … , 𝜕/𝜕𝑧𝑛, and 𝑇 ″ℂ𝑛 spanned
by 𝜕/𝜕𝑧1, … , 𝜕/𝜕𝑧𝑛.

Lemma 1.54. For an open subset 𝑈 ⊆ ℂ𝑛, a smooth function 𝐹 ∶ 𝑈 → ℂ𝑚 is
holomorphic if and only if the following relation holds for all 𝑝 ∈ 𝑈 :

(1.18) 𝐷𝐹 (𝑝) ∘ 𝐽ℂ𝑛 = 𝐽ℂ𝑚 ∘ 𝐷𝐹 (𝑝).

Proof. First suppose that (1.18) holds for all 𝑝 ∈ 𝑈 . After both sides are ex-
tended by complex linearity to act on complex vectors, the two expressions yield
the same result when applied to the elements of the complex coordinate frame
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{𝜕/𝜕𝑧𝑗 , 𝜕/𝜕𝑧𝑗}. Using (1.12), we obtain

0 = 𝐷𝐹 (𝐽ℂ𝑛
𝜕

𝜕𝑧𝑗 ) − 𝐽ℂ𝑚(𝐷𝐹 𝜕
𝜕𝑧𝑗 )

= 𝐷𝐹 (−𝑖 𝜕
𝜕𝑧𝑗 ) − 𝐽ℂ𝑚(𝐷𝐹 𝜕

𝜕𝑧𝑗 )

= −𝑖𝜕𝐹 𝑘

𝜕𝑧𝑗
𝜕

𝜕𝑤𝑘 − 𝑖𝜕𝐹 𝑘

𝜕𝑧𝑗
𝜕

𝜕𝑤𝑘 − 𝐽ℂ𝑚
𝜕𝐹 𝑘

𝜕𝑧𝑗
𝜕

𝜕𝑤𝑘 − 𝐽ℂ𝑚
𝜕𝐹 𝑘

𝜕𝑧𝑗
𝜕

𝜕𝑤𝑘

= −2𝑖𝜕𝐹 𝑘

𝜕𝑧𝑗
𝜕

𝜕𝑤𝑘 .

This shows 𝜕𝐹 𝑘/𝜕𝑧𝑗 ≡ 0 for all 𝑗, 𝑘, so 𝐹 is holomorphic.
Conversely, if 𝐹 is holomorphic, the computation above shows that both sides

of (1.18) yield the same result when applied to 𝜕/𝜕𝑧𝑗 , and conjugation shows that
the same is true when applied to 𝜕/𝜕𝑧𝑗 , using the fact that 𝜕𝐹 𝑘/𝜕𝑧𝑗 = 𝜕𝐹 𝑘/𝜕𝑧𝑗 = 0.
Since both sides are linear over 𝐶∞(𝑀; ℂ), this shows the equation holds when
applied to arbitrary vector fields. □

Lemma 1.54 enables us to define a canonical complex structure on the tangent
bundle of every complex manifold.

Proposition 1.55. For every complex manifold 𝑀 , there is a canonical complex
structure on 𝑇 𝑀 , denoted by 𝐽𝑀 ∶ 𝑇 𝑀 → 𝑇 𝑀 . If 𝑁 is another complex manifold
and 𝐹 ∶ 𝑀 → 𝑁 is a smooth map, then 𝐹 is holomorphic if and only if

(1.19) 𝐷𝐹 ∘ 𝐽𝑀 = 𝐽𝑁 ∘ 𝐷𝐹 .

Proof. Let 𝑛 be the complex dimension of 𝑀 . We define 𝐽𝑀 as follows: given
𝑝 ∈ 𝑀 , choose a holomorphic coordinate chart (𝑈, 𝜑) on a neighborhood of 𝑝, and
define 𝐽𝑀 ∶ 𝑇 𝑀|𝑈 → 𝑇 𝑀|𝑈 by

(1.20) 𝐽𝑀 = 𝐷𝜑−1 ∘ 𝐽ℂ𝑛 ∘ 𝐷𝜑.

Wherever two holomorphic charts (𝑈, 𝜑) and (𝑉 , 𝜓) overlap, the transition map 𝜓 ∘
𝜑−1 is a holomorphic map between open subsets of ℂ𝑛, so its differential commutes
with 𝐽ℂ𝑛 by Lemma 1.54. Therefore,

𝐷𝜓−1 ∘ 𝐽ℂ𝑛 ∘ 𝐷𝜓 = 𝐷𝜓−1 ∘ 𝐽ℂ𝑛 ∘ (𝐷𝜓 ∘ 𝐷𝜑−1) ∘ 𝐷𝜑
= 𝐷𝜓−1 ∘ (𝐷𝜓 ∘ 𝐷𝜑−1) ∘ 𝐽ℂ𝑛 ∘ 𝐷𝜑
= 𝐷𝜑−1 ∘ 𝐽ℂ𝑛 ∘ 𝐷𝜑,

so 𝐽𝑀 is well defined. The fact that it satisfies 𝐽𝑀 ∘ 𝐽𝑀 = − Id follows from the
corresponding fact for 𝐽ℂ𝑛 .
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Now let 𝑁 be a complex 𝑚-manifold and 𝐹 ∶ 𝑀 → 𝑁 be a smooth map.
Because (1.19) is a local statement, it suffices to choose arbitrary local holomorphic
charts (𝑈, 𝜑) for 𝑀 and (𝑉 , 𝜓) for 𝑁 such that 𝐹 (𝑈) ⊆ 𝑉 , and prove that the
restriction of 𝐹 to 𝑈 is holomorphic if and only if it satisfies (1.19) there. By
definition, 𝐹 is holomorphic on 𝑈 if and only if its coordinate representation 𝐹 =
𝜓 ∘𝐹 ∘𝜑−1 is holomorphic, which in turn is true if and only if 𝐷𝐹 ∘𝐽ℂ𝑛 = 𝐽ℂ𝑚 ∘𝐷𝐹
by Lemma 1.54. Using (1.20) for both 𝑀 and 𝑁 , we compute

𝐷𝐹 ∘ 𝐽ℂ𝑛 − 𝐽ℂ𝑚 ∘ 𝐷𝐹 = 𝐷𝜓 ∘ 𝐷𝐹 ∘ 𝐷𝜑−1 ∘ 𝐽ℂ𝑛 − 𝐽ℂ𝑚 ∘ 𝐷𝜓 ∘ 𝐷𝐹 ∘ 𝐷𝜑−1

= 𝐷𝜓 ∘ 𝐷𝐹 ∘ 𝐽𝑀 ∘ 𝐷𝜑−1 − 𝐷𝜓 ∘ 𝐽𝑁 ∘ 𝐷𝐹 ∘ 𝐷𝜑−1

= 𝐷𝜓 ∘ (𝐷𝐹 ∘ 𝐽𝑀 − 𝐽𝑁 ∘ 𝐷𝐹 ) ∘ 𝐷𝜑−1.

Since 𝐷𝜓 and 𝐷𝜑−1 are bundle isomorphisms, this last expression is zero if and
only if (1.18) holds, thus completing the proof. □

Proposition 1.56. Let 𝑀 be a complex manifold and let 𝐽𝑀 ∶ 𝑇 𝑀 → 𝑇 𝑀 be
the associated complex structure on 𝑇 𝑀 . There are smooth subbundles 𝑇 ′𝑀 ,
𝑇 ″𝑀 ⊆ 𝑇ℂ𝑀 whose fibers at each point are the 𝑖-eigenspace and (−𝑖)-eigenspace
of (the complexification of ) 𝐽𝑀 , respectively. The complexified tangent bundle
decomposes as a Whitney sum: 𝑇ℂ𝑀 = 𝑇 ′𝑀 ⊕ 𝑇 ″𝑀 . In terms of any local
holomorphic coordinates 𝑧𝑗 = 𝑥𝑗 + 𝑖𝑦 𝑗 , the complex vector fields 𝜕/𝜕𝑧𝑗 defined by
(1.8) form a local frame for 𝑇 ′𝑀; and the vector fields 𝜕/𝜕𝑧𝑗 form a local frame
for 𝑇 ″𝑀 .

Proof. For each 𝑝 ∈ 𝑀 , the space (𝑇𝑝𝑀)ℂ has such a decomposition by Proposi-
tion 1.52. Suppose 𝑧𝑗 = 𝑥𝑗 +𝑖𝑦𝑗 are holomorphic local coordinates on 𝑀 . Because
the endomorphism 𝐽𝑀 is defined by using the coordinate map to transport 𝐽ℂ𝑛 to
the manifold, it follows that the vector fields 𝜕/𝜕𝑧𝑗 provide a local frame for 𝑇 ′𝑀 ,
as do 𝜕/𝜕𝑧𝑗 for 𝑇 ″𝑀 . Because both subbundles are spanned locally by smooth
vector fields, they are smooth. □

We call the bundles 𝑇 ′𝑀 and 𝑇 ″𝑀 the holomorphic tangent bundle and an-
tiholomorphic tangent bundle of 𝑴 , respectively. The fibers 𝑇 ′

𝑝 𝑀 and 𝑇 ″
𝑝 𝑀 at

a point 𝑝 ∈ 𝑀 are called the holomorphic tangent space and antiholomorphic
tangent space at 𝒑, respectively.

The decomposition of 𝑇ℂ𝑀 into holomorphic and antiholomorphic tangent
bundles allows us to give a coordinate-free interpretation to the holomorphic Ja-
cobian of a holomorphic map. It follows from Proposition 1.55 that if 𝐹 ∶ 𝑀 → 𝑁
is holomorphic, then 𝐷𝐹 (𝑇 ′𝑀) ⊆ 𝑇 ′𝑁 . In local holomorphic coordinates (𝑧𝑗) for
𝑀 and (𝑤𝑘) for 𝑁 , Corollary 1.46 shows that the restriction of 𝐷𝐹 (𝑝) to 𝑇 ′

𝑝 𝑀 is
represented by the holomorphic Jacobian matrix (𝜕𝐹 𝑘(𝑝)/𝜕𝑧𝑗). Henceforth, we will
use the notation 𝐷′𝐹 (𝑝) and the term holomorphic Jacobian to refer either to this



38 1. The Basics

complex-linear map from 𝑇 ′
𝑝 𝑀 to 𝑇 ′

𝐹 (𝑝)𝑁 or to its matrix representation in local
holomorphic coordinates.

For a finite-dimensional real vector space with its natural smooth structure,
the tangent space at each point is canonically identified with the vector space itself
[LeeSM, Prop. 3.13]. The following proposition shows that there is a corresponding
identification for complex vector spaces.
Proposition 1.57 (Holomorphic Tangent Space to a Complex Vector Space).
Suppose 𝑉 is a finite-dimensional complex vector space with its standard holo-
morphic structure. For each 𝑎 ∈ 𝑉 , there is a canonical (basis-independent)
complex-linear isomorphism Φ𝑎 ∶ 𝑉 ≅ 𝑇 ′

𝑎 𝑉 . It is natural in the following sense:
if 𝐿∶ 𝑉 → 𝑊 is a complex-linear map between finite-dimensional complex vector
spaces, then the following diagram commutes for each 𝑎 ∈ 𝑉 :

(1.21)

𝑉
Φ𝑎

//

𝐿
��

𝑇 ′
𝑎 𝑉

𝐷′𝐿(𝑎)
��

𝑊 Φ𝐿(𝑎)
// 𝑇 ′

𝐿(𝑎)𝑊 .

Proof. Given 𝑎, 𝑤 ∈ 𝑉 , let 𝜆𝑎,𝑤 ∶ ℂ → 𝑉 be the holomorphic map 𝜆𝑎,𝑤(𝜏) =
𝑎 + 𝜏𝑤. We define Φ𝑎 ∶ 𝑉 → 𝑇 ′

𝑎 𝑉 by

Φ𝑎(𝑤) = 𝐷′(𝜆𝑎,𝑤)(0) (
𝜕

𝜕𝜏 |0) .

The definition shows that this is independent of any choice of basis for 𝑉 . To see
that it satisfies the required conditions, choose any basis for 𝑉 and let (𝑧1, … , 𝑧𝑛) be
the corresponding linear coordinates. Then a simple computation based on Corol-
lary 1.46 shows that Φ𝑎 has the coordinate representation

Φ𝑎(𝑤1, … , 𝑤𝑛) = 𝑤𝑗 𝜕
𝜕𝑧𝑗 |𝑎

,

which shows that it is a complex-linear isomorphism. If 𝑊 is another finite-
dimensional complex vector space and 𝐿∶ 𝑉 → 𝑊 is a complex-linear map, then
in terms of any linear coordinates (𝜁1, … , 𝜁𝑚) for 𝑊 , we see that

𝐷′𝐿(𝑎)(Φ𝑎(𝑤1, … , 𝑤𝑛)) = 𝐿𝑗
𝑘𝑤𝑘 𝜕

𝜕𝜁 𝑗 |𝐿(𝑎)
= Φ𝐿(𝑎)(𝐿(𝑤1, … , 𝑤𝑛)),

which proves (1.21). □

For a complex manifold 𝑀 , we have now introduced several different varieties
of tangent bundles: 𝑇 𝑀 , 𝑇ℂ𝑀 , 𝑇 ′𝑀 , and 𝑇 ″𝑀 . In case you are not confused
enough already, we now define one more: 𝑇𝐽 𝑀 is the complex vector bundle with
the same total space as the ordinary tangent bundle 𝑇 𝑀 , but endowed with the
complex vector space structure on fibers determined by 𝐽𝑀 as in Lemma 1.50.
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Proposition 1.58. Let 𝑀 be a complex 𝑛-manifold. Then 𝑇𝐽 𝑀 is a smooth rank-𝑛
complex vector bundle over 𝑀 . The complex vector bundles 𝑇𝐽 𝑀 and 𝑇 ′𝑀 are
isomorphic via the map 𝜉 ∶ 𝑇𝐽 𝑀 → 𝑇 ′𝑀 given by 𝜉(𝑣) = 𝑣 − 𝑖𝐽𝑣.

Proof. Problem 1-7. □

For easy reference, here is a summary of all of these bundles. Suppose 𝑀 is a
complex 𝑛-manifold.

• 𝑻𝑴 : The ordinary tangent bundle of the smooth manifold 𝑀 . It is a real
vector bundle of rank 2𝑛.

• 𝑻ℂ𝑴 : The complexified tangent bundle, a complex vector bundle of rank
2𝑛.

• 𝑻 ′𝑴 : The holomorphic tangent bundle, a complex rank-𝑛 vector subbun-
dle of 𝑇ℂ𝑀 . Its fiber at each point is the 𝑖-eigenspace of 𝐽𝑀 .

• 𝑻 ″𝑴 : The antiholomorphic tangent bundle, another complex rank-𝑛 vec-
tor subbundle of 𝑇ℂ𝑀 , whose fibers are (−𝑖)-eigenspaces of 𝐽𝑀 .

• 𝑻𝑱𝑴 : The ordinary tangent bundle of 𝑀 equipped with the complex
structure 𝐽𝑀 , which turns it into a complex vector bundle of rank 𝑛.

Now suppose 𝑀 is an arbitrary smoothmanifold. It makes sense to ask whether
there is a complex structure on 𝑇 𝑀 , that is, a smooth bundle endomorphism
𝐽 ∶ 𝑇 𝑀 → 𝑇 𝑀 satisfying 𝐽 ∘ 𝐽 = − Id. The existence of such an endomor-
phism is a necessary condition for the existence of a holomorphic structure on 𝑀 ,
but it is not sufficient, as we will see below. For this reason, a manifold whose
tangent bundle is endowed with such a complex structure 𝐽 is called an almost
complex manifold, and 𝐽 is called an almost complex structure on 𝑴 . Note the
potentially confusing shift in terminology: a complex structure on 𝑇 𝑀 is called an
almost complex structure on 𝑀 (to distinguish it from the traditional use of “com-
plex structure on 𝑀” to denote what we are calling a holomorphic structure).

Proposition 1.55 shows that a holomorphic structure on a manifold 𝑀 deter-
mines an almost complex structure on 𝑀 (that is, a complex structure on 𝑇 𝑀).
The question naturally arises whether the reverse is true: Given an almost complex
structure 𝐽 on a smooth manifold 𝑀 , is there a holomorphic structure for which
𝐽 is the canonical almost complex structure as described in Proposition 1.55? In
general, the answer is no, because there is a nontrivial necessary condition, as a
consequence of the next proposition.
Proposition 1.59. Suppose 𝑀 is a complex manifold and 𝑉 , 𝑊 ∈ Γ(𝑇 ′𝑀). Then
[𝑉 , 𝑊 ] ∈ Γ(𝑇 ′𝑀).

Proof. In local holomorphic coordinates, we can write

𝑉 = 𝑉 𝑗 𝜕
𝜕𝑧𝑗 , 𝑊 = 𝑊 𝑘 𝜕

𝜕𝑧𝑘 ,
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and therefore,

[𝑉 , 𝑊 ] = 𝑉 𝑗
(

𝜕𝑊 𝑘

𝜕𝑧𝑗 )
𝜕

𝜕𝑧𝑘 − 𝑊 𝑘
(

𝜕𝑉 𝑗

𝜕𝑧𝑘 )
𝜕

𝜕𝑧𝑗 .

This last expression takes its values in 𝑇 ′𝑀 . □

For almost complex structures, it makes sense to ask if the same result holds,
by virtue of the following lemma.

Lemma 1.60. Suppose 𝑀 is a smooth 2𝑛-manifold endowed with an almost com-
plex structure 𝐽 . Then there are smooth rank-𝑛 complex subbundles 𝑇 ′𝑀, 𝑇 ″𝑀 ⊆
𝑇ℂ𝑀 whose fibers are the 𝑖-eigenspaces and (−𝑖)-eigenspaces of 𝐽 , respectively,
such that 𝑇ℂ𝑀 = 𝑇 ′𝑀 ⊕ 𝑇 ″𝑀 .

► Exercise 1.61. Prove this lemma.

An almost complex structure on a smooth manifold 𝑀 is said to be integrable if
whenever 𝑉 , 𝑊 are smooth sections of 𝑇 ′𝑀 , then [𝑉 , 𝑊 ] is also a section of 𝑇 ′𝑀 .
Every almost complex structure on a 2-dimensional real manifold is integrable (see
Problem 1-8), but in higher dimensions integrability is a nontrivial condition, as
Problems 1-11 and 1-13 illustrate.

The integrability condition looks formally similar to the condition of involu-
tivity for a distribution (subbundle of the tangent bundle) on a smooth manifold,
which is a necessary and sufficient condition for the distribution to be tangent to a
foliation (see [LeeSM, Chap. 19]). But there is no foliation associated with 𝑇 ′𝑀
because it is not a subbundle of the (real) tangent bundle of 𝑀 .

The following corollary is an immediate consequence of Proposition 1.59.

Corollary 1.62. If 𝐽 is an almost complex structure on a smooth manifold, a neces-
sary condition for 𝐽 to be the canonical almost complex structure associated with
a holomorphic structure is that 𝐽 be integrable. □

The following important converse was proved in 1957 by August Newlander
and Louis Nirenberg, showing that integrability is also sufficient.

Theorem 1.63 (Newlander–Nirenberg). If an almost complex structure on a
smooth manifold is integrable, then it arises from a holomorphic structure.

We will neither prove nor use this theorem (except in Example 1.64 and Prob-
lem 7-10 below, which are not essential to our main story). There are several known
proofs, all based on deep results from the theory of partial differential equations.
Two different proofs can be found in [Nir73] and [Hör90].

Not every smooth manifold admits an almost complex structure. Two simple
requirements are that the manifold must be even-dimensional (Cor. 1.53) and ori-
entable (Problem 1-9). In two real dimensions, these conditions are sufficient, as
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Example 1.64 below will show. But in higher dimensions, there are other topo-
logical obstructions that are not so easily described. Two spheres that admit almost
complex structures are 𝕊2 (by Example 1.64 below) and 𝕊6 (by Problem 1-13). The
structure on 𝕊2 is integrable, and turns it into a complex manifold biholomorphic to
ℂℙ1 (see Problem 2-4). The known structure on 𝕊6 is not integrable, and it is not
known whether 𝕊6 carries a holomorphic structure. It was proved by Armand Borel
and Jean-Pierre Serre in 1953 [BS53] that 𝕊2 and 𝕊6 are the only spheres that carry
almost complex structures; so no other spheres can be made into complex mani-
folds. A modern proof of this fact can be found in [May99, p. 208]. Since our main
concern is to study complex manifolds, which already come equipped with canon-
ical almost complex structures, we do not pursue the general question of existence
of almost complex structures any further.

Example 1.64 (Holomorphic Structures on 2-Manifolds). Suppose 𝑀 is an ori-
entable real 2-manifold. We can always endow 𝑀 with a Riemannian metric and
an orientation. With that data, we can define an almost complex structure on 𝑀 by
letting 𝐽 be “counterclockwise rotation by 90∘.” More precisely, for each nonzero
𝑣 ∈ 𝑇𝑝𝑀 , we let 𝐽𝑣 be the unique vector 𝑤 such that ⟨𝑣, 𝑤⟩ = 0, |𝑤| = |𝑣|, and
(𝑣, 𝑤) is an oriented basis for 𝑇𝑝𝑀 . If (𝑏1, 𝑏2) is any smooth oriented orthonor-
mal local frame, then we have 𝐽𝑏1 = 𝑏2 and 𝐽𝑏2 = −𝑏1, which shows that 𝐽 is
smooth. This almost complex structure is integrable by the result of Problem 1-
8, so it arises from a holomorphic structure by the Newlander–Nirenberg theorem.
Thus every orientable smooth real 2-manifold can be given a holomorphic struc-
ture. A real 2-manifold endowed with a particular holomorphic structure is called
a Riemann surface. Be careful about the terminology: a Riemann surface is a
complex curve (1-dimensional complex manifold), while a complex surface is a 2-
dimensional complex manifold. (It is possible for the same real 2-manifold to have
different holomorphic structures that are not biholomorphic to each other, however;
see Problem 1-4.) //

Problems
1-1. With 𝐺 ⊆ GL(3, ℂ) as in Example 1.20, let Γ ⊆ 𝐺 be the subgroup con-

sisting of matrices whose entries are Gaussian integers. Prove that Γ is
cocompact by showing that every coset in 𝐺/Γ has at least one represen-
tative lying in the unit cube [0, 1]6 ⊆ ℂ3.

1-2. Suppose 𝑈 ⊆ ℂ𝑛 is open and 𝑓 ∶ 𝑈 → ℂ is a holomorphic function
that is nonzero on 𝑈 ∖ 𝑆, where 𝑆 ⊆ ℂ𝑛 is a complex-linear subspace of
codimension at least 2. Show that 𝑓 is nonzero everywhere in 𝑈 .

1-3. Prove that every 1-dimensional Hopf manifold is biholomorphic to a com-
plex torus ℂ/Λ, and determine an explicit lattice Λ.
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1-4. For any two vectors 𝑣, 𝑤 ∈ ℂ that are linearly independent over ℝ, let
𝑇𝑣,𝑤 = ℂ/Λ(𝑣, 𝑤) denote the 1-dimensional complex torus obtained as a
quotient of ℂ by the lattice Λ(𝑣, 𝑤) generated by 𝑣 and 𝑤.
(a) For any such 𝑣, 𝑤, show that there exists 𝜏 ∈ ℂ with Im 𝜏 > 0 such

that 𝑇𝑣,𝑤 is biholomorphic to 𝑇1,𝜏 .
(b) Let SL(2, ℤ) denote the group of integer matrices with determinant

1. Suppose 𝜏, 𝜏′ ∈ ℂ satisfy Im 𝜏 > 0 and Im 𝜏′ > 0. Show that 𝑇1,𝜏
is biholomorphic to 𝑇1,𝜏′ if and only if there exists ( 𝑎 𝑏

𝑐 𝑑 ) ∈ SL(2, ℤ)
such that 𝜏′ = (𝑎𝜏 + 𝑏)/(𝑐𝜏 + 𝑑). [Hint: Show that any biholomor-
phism 𝑇1,𝜏 → 𝑇1,𝜏′ lifts to an automorphism of ℂ.]

1-5. Show that the Lie group U(𝑛) acts continuously and transitively on the
Grassmannian G𝑘(ℂ𝑛) by 𝐴 ⋅ 𝑆 = 𝐴(𝑆) for 𝐴 ∈ U(𝑛) and 𝑆 ⊆ ℂ𝑛 a
subspace of dimension 𝑘. Use this to show that G𝑘(ℂ𝑛) is compact for
every 𝑘 and 𝑛.

1-6. Suppose 𝐸 → 𝑀 is a complex vector bundle. Show that there exists a
conjugation operator, that is, a conjugate-linear bundle homomorphism
𝑐 ∶ 𝐸 → 𝐸 satisfying 𝑐 ∘ 𝑐 = Id, if and only if 𝐸 is isomorphic (over ℂ)
to the complexification of a real bundle.

1-7. Prove Proposition 1.58 (𝑇𝐽 𝑀 is a smooth complex vector bundle isomor-
phic to 𝑇 ′𝑀).

1-8. Prove that every almost complex structure on a real 2-manifold is inte-
grable.

1-9. Suppose 𝑀 is a smoothmanifold that admits an almost complex structure.
Prove that 𝑀 is orientable.

1-10. Let 𝑀 be a smooth manifold and 𝐽 be an almost complex structure on 𝑀 .
Define a map 𝑁 ∶ Γ(𝑇 𝑀) × Γ(𝑇 𝑀) → Γ(𝑇 𝑀) by

𝑁(𝑋, 𝑌 ) = [𝐽𝑋, 𝐽𝑌 ] − [𝑋, 𝑌 ] − 𝐽[𝑋, 𝐽𝑌 ] − 𝐽[𝐽𝑋, 𝑌 ].

(a) Show that 𝑁 is bilinear over 𝐶∞(𝑀), and therefore defines a (1, 2)-
tensor field on 𝑀 , called the Nijenhuis tensor of 𝑱 .

(b) Show that 𝐽 is integrable if and only if 𝑁 ≡ 0. [Hint: Extend 𝑁 to
act on complex vector fields, and take 𝑋 and 𝑌 to be smooth sections
of 𝑇 ′𝑀 or 𝑇 ″𝑀 .]

1-11. For 𝑛 ≥ 2, define an almost complex structure on ℂ𝑛 as follows:

𝐽 𝜕
𝜕𝑥1 = (1 + (𝑥2)2) 𝜕

𝜕𝑦1 , 𝐽 𝜕
𝜕𝑦1 = − 1

(1 + (𝑥2)2)
𝜕

𝜕𝑥1 ,

𝐽 𝜕
𝜕𝑥𝑘 = 𝜕

𝜕𝑦𝑘 , 𝐽 𝜕
𝜕𝑦𝑘 = − 𝜕

𝜕𝑥𝑘 , 𝑘 = 2, … , 𝑛.

Show that 𝐽 is not integrable.
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1-12. Let 𝑀 be a 2𝑛-dimensional smooth manifold. Suppose 𝜁 is a smooth
closed complex 𝑛-form on 𝑀 that is locally decomposable (i.e., can lo-
cally be written as a wedge product of complex 1-forms), and satisfies
𝜁 ∧ 𝜁 ≠ 0 everywhere on 𝑀 . Show that there is a unique integrable al-
most complex structure on 𝑀 for which 𝑇 ′𝑀 = {𝑣 ∈ 𝑇ℂ𝑀 ∶ 𝑣 ⅃ 𝜁 = 0}
(where ⅃ denotes interior multiplication with a vector field, defined by
(𝑣 ⅃ 𝜁)(… ) = 𝜁(𝑣, … ); see [LeeSM, p. 358]).

1-13. AN ALMOST COMPLEX STRUCTURE ON 𝕊6: Let 𝕆 denote the algebra of oc-
tonions, which is an 8-dimensional nonassociative algebra over ℝ defined
as follows. Start with the quaternions, the 4-dimensional associative al-
gebra ℍ over ℝ with basis (𝟙, 𝕚, 𝕛, 𝕜) and bilinear multiplication defined
by

𝕚2 = 𝕛2 = 𝕜2 = −𝟙, 𝟙𝑞 = 𝑞𝟙 = 𝑞 for all 𝑞 ∈ ℍ,
𝕚𝕛 = −𝕛𝕚 = 𝕜, 𝕛𝕜 = −𝕜𝕛 = 𝕚, 𝕜𝕚 = −𝕚𝕜 = 𝕛.

Then define 𝕆 = ℍ × ℍ, with the bilinear product defined by

(𝑝, 𝑞)(𝑟, 𝑠) = (𝑝𝑟 − 𝑠𝑞∗, 𝑝∗𝑠 + 𝑟𝑞),

where the conjugate of a quaternion is

(𝑤𝟙 + 𝑥𝕚 + 𝑦𝕛 + 𝑧𝕜)∗ = 𝑤𝟙 − 𝑥𝕚 − 𝑦𝕛 − 𝑧𝕜.

Define the conjugate of an octonion 𝑃 = (𝑝, 𝑞) by 𝑃 ∗ = (𝑝∗, −𝑞). Let
ℝ = {𝑃 ∈ 𝕆 ∶ 𝑃 ∗ = 𝑃 } denote the set of real octonions, identified with
the real numbers in the natural way, and 𝔼 = {𝑃 ∈ 𝕆 ∶ 𝑃 ∗ = −𝑃 } the
set of imaginary octonions. Define an inner product on 𝕆 by ⟨𝑃 , 𝑄⟩ =
1
2 (𝑃 ∗𝑄+𝑄∗𝑃 ) ∈ ℝ. Let 𝕊 = {𝑃 ∈ 𝔼 ∶ |𝑃 | = 1} be the unit sphere in 𝔼,
and for each 𝑃 ∈ 𝕊, define a map 𝐽𝑃 ∶ 𝑇𝑃 𝕊 → 𝕆 by 𝐽𝑃 (𝑄) = 𝑄𝑃 , where
we identify 𝑇𝑃 𝕊 with the real-linear subspace 𝑃 ⟂ ∩ 𝔼 ⊆ 𝕆. Although the
multiplication in 𝕆 is not associative, it is the case that (𝑃 𝑄)∗ = 𝑄∗𝑃 ∗

and (𝑃 𝑄)𝑃 = 𝑃 (𝑄𝑃 ) for all 𝑃 , 𝑄 ∈ 𝕆, and you may use these facts
without proof. (See also Problem 8-7 in [LeeSM].)
(a) Show that 𝐽𝑃 maps 𝑇𝑃 𝕊 to itself, and defines an almost complex

structure on 𝕊.
(b) Show that this almost complex structure is not integrable.
[Remark: It is still unknown whether 𝕊6 admits an integrable almost com-
plex structure. Many well-known and respected mathematicians have
written papers purporting to answer this question one way or the other,
but all the proofs have been found to be wrong or incomplete.]
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1-14. Let (𝑀, 𝑔) and (𝑁, ℎ) be Riemannian manifolds of the same dimension.
A smooth map 𝐹 ∶ 𝑀 → 𝑁 is said to be conformal if 𝐹 ∗ℎ = 𝜆𝑔 for
some smooth, positive function 𝜆 on 𝑀 .
(a) Suppose (𝑀, 𝑔) and (𝑁, ℎ) are oriented Riemannian 2-manifolds,

and give 𝑀 and 𝑁 the holomorphic structures described in Exam-
ple 1.64. Suppose 𝐹 ∶ 𝑀 → 𝑁 is a local diffeomorphism. Show
that 𝐹 is holomorphic if and only if it is conformal and orientation-
preserving.

(b) Give examples of diffeomorphisms 𝐹 , 𝐺 ∶ ℂ2 → ℂ2 such that 𝐹 is
holomorphic but not conformal, and 𝐺 is conformal and orientation-
preserving but not holomorphic.



Chapter 2

Complex Submanifolds

In this chapter, we introduce tools for studying complex submanifolds, which will
yield a rich new source of examples of complex manifolds.

Variations on the Inverse Function Theorem
In smooth manifold theory, the primary technical tools for constructing new smooth
manifolds out of old ones are the inverse function theorem and its friends, the im-
plicit function theorem and the rank theorem (see [LeeSM, Chaps. 4 and 5]). All
of these generalize straightforwardly to the holomorphic category.

Theorem 2.1 (Holomorphic Inverse Function Theorem). Suppose 𝑀 and 𝑁 are
complex 𝑛-manifolds, 𝐹 ∶ 𝑀 → 𝑁 is holomorphic, and the holomorphic Jacobian
𝐷′𝐹 (𝑝) is nonsingular for some 𝑝 ∈ 𝑀 . Then there exist connected neighborhoods
𝑈0 of 𝑝 and 𝑉0 of 𝐹 (𝑝) such that 𝐹 restricts to a biholomorphism from 𝑈0 to 𝑉0.

Proof. The hypothesis implies that𝐷𝐹 (𝑝) is nonsingular, so by the ordinary inverse
function theorem there are connected neighborhoods 𝑈0 of 𝑝 and 𝑉0 of 𝐹 (𝑝) such
that 𝐹 |𝑈0 ∶ 𝑈0 → 𝑉0 is a diffeomorphism. We already know 𝐹 is holomorphic, so
it remains only to show that 𝐹 −1 is also.

By choosing local holomorphic coordinates on 𝑈0 and 𝑉0 (after shrinking both
neighborhoods if necessary) and replacing 𝐹 by its coordinate representation, we
can reduce the problem to the case in which 𝐹 is a holomorphic diffeomorphism
between open subsets of ℂ𝑛, and we can use coordinates (𝑧1, … , 𝑧𝑛) for both the
domain and codomain. Let 𝐺 = 𝐹 −1, and consider the 𝑙th coordinate function 𝐺𝑙.
It satisfies 𝐺𝑙 ∘ 𝐹 (𝑧) = 𝑧𝑙. From the chain rule (Prop. 1.47), we see that

0 = 𝜕𝑧𝑙

𝜕𝑧𝑗 = 𝜕(𝐺𝑙 ∘ 𝐹 )
𝜕𝑧𝑗 = 𝜕𝐺𝑙

𝜕𝑧𝑘
𝜕𝐹 𝑘

𝜕𝑧𝑗 + 𝜕𝐺𝑙

𝜕𝑧𝑘
𝜕𝐹 𝑘

𝜕𝑧𝑗 .
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The first term on the right-hand side vanishes because 𝐹 is holomorphic. Because
the matrix (𝜕𝐹 𝑘𝜕𝑧𝑘) is invertible (it is the conjugate of the holomorphic Jacobian
of 𝐹 ), this implies that 𝜕𝐺𝑙/𝜕𝑧𝑘 ≡ 0. Since this is true for all 𝑙 and 𝑘, it follows that
𝐺 is holomorphic. □
Theorem 2.2 (Holomorphic Implicit Function Theorem). Let 𝑈 ⊆ ℂ𝑛 × ℂ𝑚 be
an open subset, and denote the standard holomorphic coordinates there by (𝑧, 𝑤) =
(𝑧1, … , 𝑧𝑛, 𝑤1, … , 𝑤𝑚). Suppose Φ∶ 𝑈 → ℂ𝑚 is a holomorphic map, and the
𝑚 × 𝑚 matrix (𝜕Φ𝑗 /𝜕𝑤𝑘) is nonsingular at some (𝑎, 𝑏) ∈ 𝑈 . Let 𝑐 = Φ(𝑎, 𝑏). Then
there exist neighborhoods 𝑉0 of 𝑎 in ℂ𝑛 and 𝑊0 of 𝑏 in ℂ𝑚 and a holomorphic
function 𝐹 ∶ 𝑉0 → 𝑊0 such that Φ−1(𝑐) ∩ (𝑉0 × 𝑊0) is the graph of 𝐹 :

Φ−1(𝑐) ∩ (𝑉0 × 𝑊0) = {(𝑧, 𝑤) ∈ 𝑉0 × 𝑊0 ∶ 𝑤 = 𝐹 (𝑧)}.

Proof. By shrinking 𝑈 if necessary, we may assume that the matrix (𝜕Φ𝑗 /𝜕𝑤𝑘) is
nonsingular on all of 𝑈 . The hypothesis implies that the holomorphic Jacobian of
the map 𝑤 ↦ Φ(𝑎, 𝑤) is nonsingular at 𝑤 = 𝑏, so Corollary 1.46 shows that the
total derivative of this map is also nonsingular. The smooth version of the implicit
function theorem then implies the existence of neighborhoods 𝑉0 and 𝑊0 and a
smooth function 𝐹 ∶ 𝑉0 → 𝑊0 such that Φ−1(𝑐) ∩ (𝑉0 × 𝑊0) is the graph of 𝐹 . It
remains only to show that 𝐹 is holomorphic.

The fact that Φ(𝑧, 𝐹 (𝑧)) ≡ 𝑐 for 𝑧 ∈ 𝑉0, together with the chain rule, implies
that for each 𝑙 and 𝑗,

0 = 𝜕
𝜕𝑧𝑗 Φ𝑙(𝑧, 𝐹 (𝑧)) = 𝜕Φ𝑙

𝜕𝑧𝑗 + 𝜕Φ𝑙

𝜕𝑤𝑘
𝜕𝐹 𝑘

𝜕𝑧𝑗 + 𝜕Φ𝑙

𝜕𝑤𝑘
𝜕𝐹 𝑘

𝜕𝑧𝑗 .

The first term and the last term on the right-hand side are zero because Φ is holo-
morphic. As in the previous proof, the invertibility of the matrix (𝜕Φ𝑙/𝜕𝑤𝑘) on 𝑈
ensures that 𝜕𝐹 𝑘/𝜕𝑧𝑗 ≡ 0. □
Theorem 2.3 (Holomorphic Rank Theorem). Suppose 𝑀 and 𝑁 are complex
manifolds of dimensions 𝑚 and 𝑛, respectively, and 𝐹 ∶ 𝑀 → 𝑁 is a holomorphic
map whose holomorphic Jacobian has constant rank 𝑟. For each 𝑝 ∈ 𝑀 there exist
holomorphic charts (𝑈, 𝜑) for 𝑀 centered at 𝑝 and (𝑉 , 𝜓) for 𝑁 centered at 𝐹 (𝑝)
such that 𝐹 (𝑈) ⊆ 𝑉 , in which 𝐹 has a coordinate representation of the form

𝐹 (𝑧1, … , 𝑧𝑟, 𝑧𝑟+1, … , 𝑧𝑚) = (𝑧1, … , 𝑧𝑟, 0, … , 0).

► Exercise 2.4. Prove this theorem by verifying that the proof of the ordinary
rank theorem [LeeSM, Thm. 4.12] goes through essentially unchanged with the
holomorphic inverse function theorem substituted for its smooth counterpart.

A holomorphic map between complex manifolds is called a submersion, im-
mersion, or embedding if it has the corresponding property when considered as a
smooth map between smooth manifolds: a submersion has surjective total deriv-
ative everywhere, an immersion has injective total derivative everywhere, and an
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embedding is an immersion that is also a homeomorphism onto its image in the
subspace topology. Because the rank of the total derivative of a holomorphic map
is twice that of its holomorphic Jacobian, these properties can also be characterized
in terms of the latter; in particular, a holomorphic map 𝐹 ∶ 𝑀 → 𝑁 between com-
plex manifolds is a submersion if and only if 𝐷′𝐹 has rank equal to the complex
dimension of 𝑁 everywhere, and is an immersion if and only if 𝐷′𝐹 has rank equal
to the complex dimension of 𝑀 everywhere.

For any continuous map 𝐹 ∶ 𝑀 → 𝑁 between topological spaces, recall that
a local section of 𝑭 is a continuous map 𝜎 ∶ 𝑈 → 𝑀 defined on an open subset
𝑈 ⊆ 𝑁 and satisfying 𝐹 ∘ 𝜎 = Id𝑈 .
Corollary 2.5 (Holomorphic Local Section Theorem). Suppose 𝜋 ∶ 𝑀 → 𝑁 is
a holomorphic submersion. Then every point of 𝑀 is in the image of a holomorphic
local section of 𝜋.

Proof. For any 𝑝 ∈ 𝑀 , by the rank theorem we can choose holomorphic co-
ordinates centered at 𝑝 and 𝜋(𝑝) in which the coordinate representation of 𝜋 is
𝜋(𝑧1, … , 𝑧𝑛) = (𝑧1, … , 𝑧𝑟). Themap 𝜎(𝑧1, … , 𝑧𝑟) = (𝑧1, … , 𝑧𝑟, 0, … , 0) is a holo-
morphic local section of 𝜋 sending 𝜋(𝑝) to 𝑝. □
Corollary 2.6 (Characteristic Property of Surjective Holomorphic Submer-
sions). Suppose 𝑀 , 𝑁 , and 𝑃 are complex manifolds. If 𝜋 ∶ 𝑀 → 𝑁 is a surjec-
tive holomorphic submersion, then a map 𝐹 ∶ 𝑁 → 𝑃 is holomorphic if and only
if 𝐹 ∘ 𝜋 is holomorphic.

Proof. The “only if” claim is just the fact that compositions of holomorphic maps
are holomorphic. For the “if” part, suppose 𝐹 ∘ 𝜋 is holomorphic. Given 𝑞 ∈ 𝑁 ,
we can find a local holomorphic section 𝜎 of 𝜋 defined on a neighborhood 𝑈 of 𝑞,
and then 𝐹 |𝑈 = (𝐹 ∘ 𝜋) ∘ 𝜎, which is a composition of holomorphic maps. □
Corollary 2.7 (Passing to a Holomorphic Quotient). Suppose 𝑀 , 𝑁 , and 𝑃 are
complex manifolds and 𝜋 ∶ 𝑀 → 𝑁 is a surjective holomorphic submersion. If
𝐹 ∶ 𝑀 → 𝑃 is a holomorphic map that is constant on the fibers of 𝜋, then there is
a unique holomorphic map 𝐹 ∶ 𝑁 → 𝑃 such that 𝐹 ∘ 𝜋 = 𝐹 .

► Exercise 2.8. Prove this corollary.

Example 2.9 (Projective Transformations of ℂℙ𝒏). Suppose 𝐴∶ ℂ𝑛+1 → ℂ𝑛+1

is an invertible complex-linear map. Because 𝐴(𝜆𝑧) = 𝜆𝐴(𝑧) for 𝜆 ∈ ℂ and
𝑧 ∈ ℂ𝑛+1, Corollary 2.7 applied to 𝜋 ∘ 𝐴∶ ℂ𝑛+1 ∖ {0} → ℂℙ𝑛 shows that 𝐴 de-
scends to a holomorphic map 𝐴∶ ℂℙ𝑛 → ℂℙ𝑛 defined by 𝐴([𝑧]) = [𝐴𝑧]. Since
𝐴−1 is an inverse for 𝐴, it follows that 𝐴 is an automorphism, called a projective
transformation. In fact, as we will see eventually, every automorphism of ℂℙ𝑛 is
a projective transformation. (See Problem 2-9 for the case 𝑛 = 1, and Problem 9-9
for higher dimensions.) //
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► Exercise 2.10. Let 𝑉 be an 𝑛-dimensional complex vector space and let ℙ(𝑉 )
be its projectivization (see Example 1.11). Show that the bijections ℂℙ𝑛 → ℙ(𝑉 )
determined by any two different bases of 𝑉 differ by a projective transformation
of ℂℙ𝑛, and therefore the complex manifold structure of ℙ(𝑉 ) is independent of
the choice of basis.

Complex Submanifolds
If 𝑀 is a complex manifold, an (embedded) complex submanifold of𝑴 is a subset
𝑆 ⊆ 𝑀 that is a topological manifold in the subspace topology, and is endowed
with a holomorphic structure such that the inclusion 𝑆 ↪ 𝑀 is a holomorphic
embedding. The (complex) codimension of 𝑺 is dimℂ 𝑀 − dimℂ 𝑆. A complex
hypersurface is a complex submanifold of complex codimension 1. (Note that al-
gebraic geometers, such as [Har77,GH94], typically define hypersurfaces more
generally to include subsets with certain kinds of singularities; but for us a hyper-
surface will always mean a complex submanifold.) It is also possible to define im-
mersed complex submanifolds analogously to immersed smooth ones; but we will
not be making use of the immersed case, so we assume henceforth without further
comment that all complex submanifolds are embedded.

For a smooth submanifold of a smooth manifold, we can always canonically
identify the tangent space to the submanifold with a subspace of the ambient tan-
gent space. There is an analogous identification for holomorphic tangent spaces
of complex submanifolds. Suppose 𝑀 is a complex manifold and 𝑆 ⊆ 𝑀 is
an embedded complex submanifold, and let 𝜄∶ 𝑆 ↪ 𝑀 be the inclusion map.
Since 𝜄 is a holomorphic embedding, for each 𝑝 ∈ 𝑆 the holomorphic Jacobian
𝐷′𝜄(𝑝)∶ 𝑇 ′

𝑝 𝑆 → 𝑇 ′
𝑝 𝑀 is an injective complex-linear map. Using this map, we can

identify 𝑇 ′
𝑝 𝑆 as a complex-linear subspace of 𝑇 ′

𝑝 𝑀 .
Suppose (𝑈, 𝜑) is a holomorphic coordinate chart for 𝑀 and 𝐾 ⊆ ℂ𝑛 is a

complex-linear subspace of dimension 𝑘. The subset 𝜑−1(𝐾) is called a holomor-
phic 𝒌-slice of 𝑼 .

Proposition 2.11 (Holomorphic Slice Criterion). Suppose 𝑀 is a complex 𝑛-
manifold and 𝑆 is a subset of 𝑀 with the subspace topology. Then 𝑆 has a unique
complex manifold structure that makes it into an embedded complex submanifold
if and only if for some fixed 𝑘, each 𝑝 ∈ 𝑆 is contained in the domain of a holo-
morphic coordinate chart (𝑈, 𝜑) in which 𝑆 ∩ 𝑈 is a holomorphic 𝑘-slice (called
a holomorphic slice chart for 𝑺).

► Exercise 2.12. Prove this proposition by verifying that the analogous proof for
smoothmanifolds [LeeSM, Thms. 5.8 and 5.31] carries throughwith the holomor-
phic rank theorem in place of its smooth analogue.
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Corollary 2.13. Suppose 𝑀 is a complex 𝑛-manifold and 𝑆 ⊆ 𝑀 . Then 𝑆 is a
complex 𝑘-submanifold if and only if each 𝑝 ∈ 𝑆 has a neighborhood 𝑈 in 𝑀 such
that 𝑆 ∩ 𝑈 is the zero set of a holomorphic submersion 𝐹 ∶ 𝑈 → ℂ𝑛−𝑘 (called a
local defining function for 𝑺).

► Exercise 2.14. Prove this corollary. [Hint: Start by showing that the subspace
𝐾 in the definition of holomorphic slice charts can always be taken to be the sub-
space defined by 𝑧𝑘+1 = ⋯ = 𝑧𝑛 = 0.]

Proposition 2.15 (Local Characterization of Submanifolds). Suppose 𝑀 is a
complex manifold. A subset 𝑆 ⊆ 𝑀 is an embedded complex manifold if and only
if each point of 𝑆 has a neighborhood 𝑈 in 𝑀 such that 𝑈 ∩ 𝑆 is an embedded
complex submanifold of 𝑈 .

► Exercise 2.16. Prove this proposition.

A complex submanifold of codimension 𝑑 is also a real submanifold of codi-
mension 2𝑑. When 𝑑 is positive, this results in the following important property.

Proposition 2.17. Suppose 𝑀 is a connected complex manifold and 𝑆 ⊆ 𝑀
is a closed complex submanifold of positive codimension. Then 𝑀 ∖ 𝑆 is path-
connected.

Proof. Let 𝑛 be the complex dimension of 𝑀 and 𝑘 the complex dimension of 𝑆,
so that 𝑘 < 𝑛. Let 𝑝 and 𝑞 be distinct points in 𝑀 ∖𝑆. Since connected manifolds are
path-connected, there is a continuous path 𝛾 ∶ [0, 1] → 𝑀 such that 𝛾(0) = 𝑝 and
𝛾(1) = 𝑞. For each 𝑡 ∈ [0, 1], we choose a neighborhood 𝑈𝑡 of 𝛾(𝑡) in 𝑀 as follows:
If 𝛾(𝑡) ∉ 𝑆, then because 𝑆 is closed we can choose 𝑈𝑡 such that 𝑈𝑡 ∩ 𝑆 = ∅ and
𝑈𝑡 is path-connected. If 𝛾(𝑡) ∈ 𝑆, let 𝑈𝑡 be the domain of a holomorphic local slice
chart, so 𝑈𝑡 ∩ 𝑆 is a holomorphic 𝑘-slice of 𝑈 . In the latter case, we may shrink 𝑈𝑡
so that it is biholomorphic to a product 𝔹2𝑘 × 𝔹2𝑛−2𝑘, under a biholomorphism that
sends 𝑈𝑡 ∩ 𝑆 to 𝔹2𝑘 × {0}. Thus 𝑈𝑡 ∖ 𝑆 is biholomorphic to 𝔹2𝑘 × (𝔹2𝑛−2𝑘 ∖ {0}).
Because 2𝑛 − 2𝑘 ≥ 2, the set 𝔹2𝑛−2𝑘 ∖ {0} is path-connected, and thus so is 𝑈𝑡 ∖ 𝑆.

By the Lebesgue number lemma [LeeTM, Lemma 7.18], there are points 0 =
𝑡0 < 𝑡1 < ⋯ < 𝑡𝑚 = 1 such that 𝛾([𝑡𝑖−1, 𝑡𝑖]) is contained in one of the sets 𝑈𝑡
described above for each 𝑖; call this set 𝑈𝑖. For each 𝑖 = 1, … , 𝑚 − 1, the open
set 𝑈𝑖 ∩ 𝑈𝑖+1 is nonempty because it contains 𝛾(𝑡𝑖); and because 𝑆 contains no
nonempty open subset of 𝑀 , we can choose a point 𝑥𝑖 ∈ 𝑈𝑖 ∩ 𝑈𝑖+1 ∖ 𝑆. Let 𝑥0 = 𝑝
and 𝑥𝑚 = 𝑞. Then because 𝑈𝑖 ∖ 𝑆 is path connected, for each 𝑖 = 1, … , 𝑚 there is
a path 𝜎𝑖 in 𝑈𝑖 ∖ 𝑆 from 𝑥𝑖−1 to 𝑥𝑖; and then the concatenation of these paths is a
path in 𝑀 ∖ 𝑆 from 𝑝 to 𝑞. □
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Proposition 2.18 (Restricting Domains or Codomains of Holomorphic Maps).
Suppose 𝑀 and 𝑁 are complex manifolds and 𝐹 ∶ 𝑀 → 𝑁 is a holomorphic map.

(a) If 𝑆 ⊆ 𝑀 is an embedded complex submanifold, then 𝐹 |𝑆 ∶ 𝑆 → 𝑁 is
holomorphic.

(b) If 𝑇 ⊆ 𝑁 is an embedded complex submanifold such that 𝐹 (𝑀) ⊆ 𝑇 ,
then 𝐹 is holomorphic as a map from 𝑀 to 𝑇 .

Proof. Part (a) follows because𝐹 |𝑆 is the composition of the inclusion𝑆 ↪ 𝑀 fol-
lowed by 𝐹 . For Part (b), it follows from smooth manifold theory that 𝐹 is smooth
as a map into 𝑇 , and then holomorphicity can be checked by using holomorphic
slice coordinates. □

Examples of Complex Submanifolds

The notion of complex submanifolds gives us some tools for defining many
more examples of complex manifolds.
Example 2.19 (Open Submanifolds). If 𝑀 is a complex manifold, every open
subset of 𝑀 is an embedded complex submanifold of codimension 0. //
Example 2.20 (Images of Holomorphic Embeddings). If 𝐹 ∶ 𝑁 → 𝑀 is a holo-
morphic embedding, then the image 𝐹 (𝑁) is an embedded complex submanifold,
directly from the definition. //
Example 2.21 (Graphs of Holomorphic Maps). Suppose 𝑓 ∶ 𝑀 → 𝑁 is a holo-
morphic map. The graph of 𝒇 is the set Γ(𝑓) = {(𝑝, 𝑓 (𝑝)) ⊆ 𝑀 × 𝑁 ∶ 𝑝 ∈ 𝑀}.
This is a complex submanifold of 𝑀 × 𝑁 , biholomorphic to 𝑀 , because the map
from 𝑀 to 𝑀 × 𝑁 given by 𝑝 ↦ (𝑝, 𝑓 (𝑝)) is a holomorphic embedding. //
Example 2.22 (Regular Level Sets). Suppose 𝑀 and 𝑁 are complex manifolds,
Φ∶ 𝑀 → 𝑁 is a holomorphic map, and 𝑐 ∈ 𝑁 is a regular value of 𝚽 (meaning
that 𝐷Φ(𝑝) is surjective for each 𝑝 ∈ Φ−1(𝑐)). Then the level set Φ−1(𝑐) is a com-
plex submanifold of 𝑀 whose codimension is equal to the dimension of 𝑁 . The
proof is a simple application of the holomorphic rank theorem and the holomorphic
slice criterion. //
Example 2.23 (Transverse Preimages). Suppose 𝑀 and 𝑁 are complex mani-
folds and 𝑆 ⊆ 𝑁 is a complex submanifold. A holomorphic map 𝐹 ∶ 𝑀 → 𝑁 is
said to be transverse to 𝑺 if for every 𝑥 ∈ 𝐹 −1(𝑆), the subspaces 𝐷𝐹 (𝑥)(𝑇𝑥𝑀)
and 𝑇𝐹 (𝑥)𝑆 together span 𝑇𝐹 (𝑥)𝑁 . If this is the case, then 𝐹 −1(𝑆) is a complex
submanifold whose codimension in 𝑀 is equal to the codimension of 𝑆 in 𝑁 . //

► Exercise 2.24. Prove the above claim: the preimage of a complex submani-
fold under a holomorphic map that is transverse to the submanifold is a complex
submanifold of the same codimension. (See Theorem 6.30 of [LeeSM] for the
smooth version; essentially the same proof goes through in the holomorphic case.)
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Example 2.25 (Complex Submanifolds ofℂ𝒏). It is important to observe, to begin
with, that there are no compact complex submanifolds of ℂ𝑛 except 0-dimensional
ones. To verify this, note that if 𝑀 ⊆ ℂ𝑛 is a compact complex submanifold, then
each of the coordinate functions 𝑧𝑗 restricts to a global holomorphic function on 𝑀 ,
which must therefore be constant on each connected component of 𝑀 by Corollary
1.33.

On the other hand, many important examples of noncompact complex mani-
folds arise as complex submanifolds of ℂ𝑛. Some obvious ones are graphs of holo-
morphic functions from ℂ𝑘 to ℂ𝑛−𝑘, and level sets of holomorphic submersions
from ℂ𝑛 to ℂ𝑛−𝑘.

A particularly important class of examples is defined as follows: a subset
𝑉 ⊆ ℂ𝑛 is called an affine algebraic variety if it is the common zero set of a
finite collection 𝑝1, … , 𝑝𝑘 of holomorphic polynomials. (Some authors require that
a variety be irreducible, meaning that it is not the union of two or more nonempty
varieties, but we do not require this.) A point 𝑧0 ∈ 𝑉 is a regular point of 𝑽 if
it has a neighborhood 𝑈 ⊆ ℂ𝑛 such that 𝑉 ∩ 𝑈 is the common zero set of some
of the polynomials 𝑝𝑖1 , … , 𝑝𝑖𝑟 with the property that the differentials 𝑑𝑝𝑖1 , … , 𝑑𝑝𝑖𝑟
are linearly independent at every point of 𝑉 ∩ 𝑈 ; points that are not regular are
called singular points of 𝑽 . An affine algebraic variety is said to be nonsingular
or smooth if it has no singular points; in this case 𝑉 is a complex submanifold of
ℂ𝑛 by Corollary 2.13. //

Example 2.26 (Complex Lie Subgroups). Suppose 𝐺 is a complex Lie group. An
(embedded) complex submanifold of 𝐺 that is also a subgroup is called a complex
Lie subgroup; it inherits a complex Lie group structure of its own because the group
operations are holomorphic by restriction. Some specific examples:

• The group SL(𝑛, ℂ) of complex matrices with determinant 1 is a com-
plex Lie subgroup of GL(𝑛, ℂ) because it is a level set of the holomorphic
submersion det∶ GL(𝑛, ℂ) → ℂ.

• O(𝑛, ℂ) denotes the group of 𝑛 × 𝑛 complex matrices 𝐴 satisfying 𝐴𝑇 𝐴 =
Id. It is a regular level set of the holomorphic polynomial function 𝐴 ↦
𝐴𝑇 𝐴, so it is a complex Lie subgroup of GL(𝑛, ℂ).

• SO(𝑛, ℂ) is the subgroup of O(𝑛, ℂ) consisting of matrices of determinant
1; because it is a regular level set of det∶ O(𝑛, ℂ) → ℂ, it is a complex
Lie subgroup.

It should be noted that the unitary group U(𝑛) ⊆ GL(𝑛, ℂ) is not a complex Lie
group, because it does not have a holomorphic defining function, even locally. (See
Problem 2-1.) //



52 2. Complex Submanifolds

Complex Submanifolds of Projective Spaces
A complex manifold 𝑀 is called a projective manifold if it is biholomorphic to a
closed complex submanifold of ℂℙ𝑛. Because projective manifolds will be among
our main objects of study, it is worthwhile to devote a little more time to under-
standing the structure of submanifolds of ℂℙ𝑛.

The most important examples (in fact, thanks to Chow’s theorem discussed
below, the only examples) are algebraic ones, which we will define shortly. But
since there are no nonconstant holomorphic functions from ℂℙ𝑛 to ℂ, polynomial
or otherwise, we have to be a little more careful about what we mean.

Suppose 𝑝∶ ℂ𝑛+1 → ℂ is a holomorphic polynomial function (that is, a polyno-
mial function of the variables 𝑤0, … , 𝑤𝑛). It is said to be homogeneous of degree
𝒅 for a nonnegative integer 𝑑 if 𝑝(𝜆𝑤) = 𝜆𝑑𝑤 for all 𝜆 ∈ ℂ and 𝑤 ∈ ℂ𝑛+1. This
just means that 𝑝 can be written as a sum of monomial terms each of which has the
same total degree 𝑑. Although such a polynomial does not produce a well-defined
function from ℂℙ𝑛 to ℂ, nonetheless its zero set is a well-defined subset of ℂℙ𝑛,
because if 𝑝(𝑤) = 0, then 𝑝(𝜆𝑤) = 0 for all 𝜆 ∈ ℂ ∖ {0}.

A projective algebraic variety is a subset 𝑉 ⊆ ℂℙ𝑛 of the form

𝑉 = {[𝑤] ∈ ℂℙ𝑛 ∶ 𝑝1(𝑤) = ⋯ = 𝑝𝑘(𝑤) = 0},

where 𝑝1, … , 𝑝𝑘 ∶ ℂ𝑛+1 → ℂ are homogeneous holomorphic polynomials of vari-
ous degrees. A projective variety is said to be nonsingular or smooth if the affine
variety 𝑉 ⊆ ℂ𝑛+1 defined by 𝑝1, … , 𝑝𝑘 has no singular points other than perhaps the
origin. It follows from the next lemma that every nonsingular projective algebraic
variety is actually a complex submanifold of ℂℙ𝑛. Projective algebraic varieties are
the main objects of study in complex algebraic geometry.

Lemma 2.27. Suppose 𝑀 ⊆ ℂℙ𝑛 is a subset and 𝑀̃ = 𝜋−1(𝑀) ⊆ ℂ𝑛+1 ∖ {0},
where 𝜋 ∶ ℂ𝑛+1 ∖ {0} → ℂℙ𝑛 is the canonical projection. Then 𝑀 is a complex 𝑘-
submanifold of ℂℙ𝑛 if and only if 𝑀̃ is a complex (𝑘 + 1)-dimensional submanifold
of ℂ𝑛+1 ∖ {0}.

Proof. Problem 2-2. □

Lemma 2.28. Every projective algebraic variety in ℂℙ𝑛 is compact and therefore
closed in ℂℙ𝑛.

Proof. Let 𝑉 ⊆ ℂℙ𝑛 be the variety determined by homogeneous polynomials
𝑝1, … , 𝑝𝑘 ∶ ℂ𝑛+1 → ℂ, and let 𝑉 = 𝜋−1(𝑉 ) ⊆ ℂ𝑛+1 ∖ {0}, where 𝜋 ∶ ℂ𝑛+1 ∖ {0}
is the canonical projection. By homogeneity, every point [𝑤] ∈ 𝑉 has a preimage
𝑤′ = 𝑤/|𝑤| that lies in 𝑉 ∩ 𝕊2𝑛+1. Thus 𝑉 is the image under 𝜋 of the compact set
𝑉 ∩ 𝕊2𝑛+1, so it is compact. Since ℂℙ𝑛 is a compact Hausdorff space, all compact
subsets of it are closed. □
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The algebraic submanifolds of projective space might seem like a restrictive
special class, but in fact they are quite general, thanks to the following remarkable
theorem proved in 1949 by Wei-Liang Chow [Cho49].

Theorem 2.29 (Chow’s Theorem). Every closed complex submanifold of ℂℙ𝑛 is
algebraic.

Later, we will give a proof of Chow’s theorem for the special case of hypersur-
faces (see Cor. 9.53). We will neither prove nor use the general case, but you can
find a proof in [GH94, p. 167]. (Actually, Chow proved something stronger—if
𝑉 ⊆ ℂℙ𝑛 is a closed analytic variety, meaning that each point of 𝑉 has a neigh-
borhood 𝑈 such that 𝑉 ∩ 𝑈 is the common zero set of finitely many holomorphic
functions defined on 𝑈 , then 𝑉 is actually a projective algebraic variety. In 1956,
Jean-Pierre Serre introduced a vast generalization of Chow’s theorem in a famous
paper called “Géométrie algébrique et géométrie analytique” [Ser55b]: roughly
speaking, it showed that virtually any geometric structure that can be defined holo-
morphically in complex projective space can actually be defined algebraically. That
general fact is now known as the GAGA principle, after the French title of Serre’s
paper.)

We note in passing that in algebraic geometry, there is another topology that
is usually used for affine or projective algebraic varieties. The Zariski topology
on ℂℙ𝑛 is defined by declaring a set to be open if and only if its complement is
an algebraic variety; the Zariski topology on ℂ𝑛 is defined similarly. The Zariski
topology on a projective or affine algebraic variety is then defined as the induced
subspace topology. From an algebraic point of view, this topology is advantageous
because algebraic properties of subsets are directly reflected in topological prop-
erties, and because the topology makes sense for algebraic varieties defined over
arbitrary fields. But the Zariski topology has properties quite different from those
of the usual manifold topologies on ℂ𝑛 and ℂℙ𝑛, most notably the fact that is never
Hausdorff except in the 0-dimensional case. In this book, we will use only the
standard topologies on ℂ𝑛 and ℂℙ𝑛 and their subsets.

Algebraic varieties in ℂℙ1 are easy to describe.

Proposition 2.30. A subset 𝑉 ⊆ ℂℙ1 is an algebraic variety if and only if it is
either finite or all of ℂℙ1.

Proof. Suppose 𝑉 = {𝑎1, … , 𝑎𝑘} is a finite subset of ℂℙ1. If 𝑉 = ∅, then it is the
variety determined by the polynomial 𝑓 ≡ 1. Otherwise, for each 𝑗, we can write
𝑎𝑗 = [𝑎0

𝑗 , 𝑎1
𝑗 ] for some point (𝑎0

𝑗 , 𝑎1
𝑗 ) ∈ ℂ2, so {𝑎𝑗} is the variety determined by the

polynomial 𝑓𝑗(𝑤0, 𝑤1) = 𝑎1
𝑗 𝑤0 − 𝑎0

𝑗 𝑤1. It follows that 𝑉 is the variety determined
by the product 𝑓1 ⋅ ⋯ ⋅ 𝑓𝑘. On the other hand, ℂℙ1 itself is the variety determined
by the zero polynomial.
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Conversely, if 𝑉 is the variety determined by the homogeneous polynomials
𝑓1, … , 𝑓𝑘, and 𝑉 is not equal to ℂℙ1, then at least one of the polynomials, say 𝑓𝑗 ,
is not identically zero. The points of 𝑉 in ℂℙ1 ∖ {[0, 1]} can all be written in the
form [1, 𝑧] where 𝑓𝑗(1, 𝑧) = 0. The polynomial function 𝑧 ↦ 𝑓𝑗(1, 𝑧) has only
finitely many zeros by the fundamental theorem of algebra. □

Our definition of a projective algebraic variety 𝑉 ⊆ ℂℙ𝑛 of codimension 𝑘
allows for the possibility that more than 𝑘 homogeneous polynomials are required
to define it. It turns out that for nonsingular projective hypersurfaces, a single poly-
nomial always suffices. We will not have the tools to prove this until Chapter 9, but
we state it here for convenience because it will make some results easier to state.
For the proof, see Corollary 9.52.

Proposition 2.31 (Algebraic Hypersurface Is Cut Out by a Single Polynomial).
If 𝑉 ⊆ ℂℙ𝑛 is a codimension-1 nonsingular algebraic variety, then 𝑉 is the variety
defined by a single homogeneous polynomial 𝑝∶ ℂ𝑛+1 → ℂ.

To understand submanifolds of ℂℙ𝑛 more deeply, we will use the fact that ℂℙ𝑛

has a lot of symmetry. Because GL(𝑛 + 1, ℂ) acts transitively on 1-dimensional
subspaces of ℂ𝑛+1, it follows that the group of projective transformations acts tran-
sitively on ℂℙ𝑛. Two subsets 𝑆1, 𝑆2 ⊆ ℂℙ𝑛 are said to be projectively equivalent
if there is a projective transformation taking 𝑆1 to 𝑆2.

Let us explore some particular complex submanifolds of ℂℙ𝑛. First of all, if
𝑝1, … , 𝑝𝑛−𝑘 are linearly independent holomorphic linear functions on ℂ𝑛+1, the
variety 𝑉 they determine is a 𝑘-dimensional complex submanifold of ℂℙ𝑛 called a
projective linear subspace. If we choose a basis 𝑏0, … , 𝑏𝑘 for the common kernel
of 𝑝1, … , 𝑝𝑛−𝑘 in ℂ𝑛+1, then the map [𝑤0, … , 𝑤𝑘] ↦ [𝑤0𝑏0 +⋯+𝑤𝑘𝑏𝑘] is a holo-
morphic embedding of ℂℙ𝑘 into ℂℙ𝑛, whose image is exactly the variety 𝑉 . Thus
every 𝑘-dimensional projective linear subspace of ℂℙ𝑛 is biholomorphic to ℂℙ𝑘.
In particular, a 1-dimensional projective linear subspace is called a projective line;
a 2-dimensional one is called a projective plane; and an (𝑛 − 1)-dimensional one
in ℂℙ𝑛 is called a projective hyperplane. Since any two (𝑘 + 1)-dimensional sub-
spaces of ℂ𝑛+1 are related by a holomorphic linear isomorphism, it follows that any
two 𝑘-dimensional projective linear subspaces of ℂℙ𝑛 are projectively equivalent.

Example 2.32 (Dual Projective Spaces). For any positive integer 𝑛, the set of
projective hyperplanes in ℂℙ𝑛 is called the dual projective space to ℂℙ𝑛, and de-
noted by (ℂℙ𝑛)∗. Since each projective hyperplane is the variety determined by
a nonzero complex-linear functional 𝑓 ∈ (ℂ𝑛+1)∗, and two such functionals de-
termine the same variety if and only if they differ by a nonzero complex multiple,
(ℂℙ𝑛)∗ is canonically identified with the projectivization ℙ((ℂ𝑛+1)∗), and there-
fore (ℂℙ𝑛)∗ is biholomorphic to ℂℙ𝑛. One such biholomorphism is obtained by
sending [𝑎0, … , 𝑎𝑛] ∈ ℂℙ𝑛 to the variety determined by the linear functional
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𝑓𝑎(𝑤) = 𝑎0𝑤0 + ⋯ + 𝑎𝑛𝑤𝑛. (But note that this biholomorphism is heavily de-
pendent on working with the standard basis of ℂ𝑛+1; another choice of basis will
result in a different isomorphism between ℂℙ𝑛 and (ℂℙ𝑛)∗.) //

Now consider the map 𝐼 ∶ ℂ𝑛 → ℂℙ𝑛 given by 𝐼(𝑧1, … , 𝑧𝑛) = [1, 𝑧1, … , 𝑧𝑛].
It is the inverse of one of the holomorphic coordinate charts we defined in Example
1.9, and thus it is a biholomorphism onto its image. That image is exactly the
complement of the projective hyperplane Π defined by 𝑧0 = 0, so as a set, ℂℙ𝑛 is
the disjoint union of 𝐼(ℂ𝑛) and Π. We can think of ℂℙ𝑛 as the union of a copy of
ℂ𝑛 together with the (projective) “hyperplane at infinity.”

By following the embedding 𝐼 with a suitable projective transformation, we can
obtain a holomorphic embedding of ℂ𝑛 into ℂℙ𝑛 whose image is the complement
of any arbitrary projective hyperplane. Any such embedding is called an affine
embedding of ℂ𝒏; the embedding 𝐼 described above is called the standard affine
embedding. Thus any nontrivial complex-linear functional 𝑝 on ℂ𝑛+1 determines a
decomposition of ℂℙ𝑛 into a projective hyperplane (determined by the kernel of 𝑝)
and its complement, which is a dense, open subspace that is the image of an affine
embedding.

Proposition 1.57 showed that the holomorphic tangent space to a point of ℂ𝑛

is canonically identified with ℂ𝑛 itself, from which it follows that the holomorphic
tangent space to a complex submanifold of ℂ𝑛 can be identified with a linear sub-
space of ℂ𝑛. The next proposition gives a projective version of this identification.

Proposition 2.33 (The Projective Tangent Space). Suppose 𝑀 ⊆ ℂℙ𝑛 is a 𝑘-
dimensional complex submanifold. For each 𝑝 ∈ 𝑀 , there is a unique 𝑘-dimen-
sional projective linear subspace Π ⊆ ℂℙ𝑛 containing 𝑝 with the property that
𝑇 ′

𝑝 𝑀 = 𝑇 ′
𝑝 Π. It is called the projective tangent space to𝑴 at 𝒑.

Proof. First we prove existence. Let 𝑀̃ = 𝜋−1(𝑀) ⊆ ℂ𝑛+1 ∖ {0}. Lemma 2.27
shows that 𝑀̃ is a (𝑘 + 1)-dimensional complex submanifold. Given 𝑝 ∈ 𝑀 , let

̃𝑝 be any point in 𝜋−1(𝑝). Since 𝜋 maps 𝑀̃ to 𝑀 , the linear map 𝐷′𝜋( ̃𝑝) maps
𝑇 ′

̃𝑝 𝑀̃ into 𝑇 ′
𝑝 𝑀 . The kernel of 𝐷′𝜋( ̃𝑝) is spanned by the vector ̃𝑝𝑗𝜕/𝜕𝑤𝑗| ̃𝑝. This

span is contained in 𝑇 ′
̃𝑝 𝑀̃ , so when 𝐷′𝜋( ̃𝑝) is restricted to the (𝑘 + 1)-dimensional

subspace 𝑇 ′
̃𝑝 𝑀̃ ⊆ 𝑇 ′

̃𝑝 ℂ𝑛+1, its rank is exactly 𝑘. Thus it is surjective onto 𝑇 ′
𝑝 𝑀 for

dimensional reasons: 𝑇 ′
𝑝 𝑀 = 𝐷′𝜋( ̃𝑝)(𝑇 ′

̃𝑝 𝑀̃).
Under the canonical identification of 𝑇 ′

̃𝑝 ℂ𝑛+1 with ℂ𝑛+1 itself (see Prop. 1.57),
wemay consider 𝑇 ′

̃𝑝 𝑀̃ as a (𝑘+1)-dimensional linear subspace Π̃ ⊆ ℂ𝑛+1. Because
̃𝑝𝑗𝜕/𝜕𝑤𝑗| ̃𝑝 ∈ 𝑇 ′

̃𝑝 𝑀̃ , it follows that ̃𝑝 ∈ Π̃. The image of Π̃ in ℂℙ𝑛 is a 𝑘-dimensional
projective linear subspace Π containing 𝑝, and the argument above with Π̃ in place
of 𝑀̃ shows that

𝑇 ′
𝑝 Π = 𝐷′𝜋( ̃𝑝)(𝑇 ′

̃𝑝 Π̃) = 𝐷′𝜋( ̃𝑝)(𝑇 ′
̃𝑝 𝑀̃) = 𝑇 ′

𝑝 𝑀.

Thus Π is the projective subspace we seek.
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If Π′ is another such subspace and Π̃′ = 𝜋−1(Π′), then 𝑇 ′
̃𝑝 Π̃′ contains the vector

̃𝑝𝑗𝜕/𝜕𝑧𝑗| ̃𝑝 and is mapped onto 𝑇 ′
𝑝 𝑀 by 𝐷′𝜋( ̃𝑝). It follows that 𝑇 ′

̃𝑝 Π̃′ = 𝑇 ′
̃𝑝 Π̃, from

which it follows that Π̃′ = Π̃ and therefore Π′ = Π. □

The case of ℂℙ1 is especially notable. In this case, a projective hyperplane
is just a single point, so ℂℙ1 is the union of a copy of ℂ (which we may identify
with the set of points of the form [1, 𝑧] under the standard affine embedding) to-
gether with the “point at infinity” (the point [0, 1], which we denote by ∞ in this
context). Topologically, it is homeomorphic to the one-point compactification of
ℂ, also called the Riemann sphere. In fact, Problem 2-4 shows that ℂℙ1 is diffeo-
morphic to 𝕊2.

Thanks to the result of Problem 2-9, every automorphism of ℂℙ1 is a map of
the form 𝑚([𝑤, 𝑧]) = [𝑐𝑧 + 𝑑𝑤, 𝑎𝑧 + 𝑏𝑤] for some complex numbers 𝑎, 𝑏, 𝑐, 𝑑 with
𝑎𝑑 − 𝑏𝑐 ≠ 0 (to ensure that the corresponding linear map on ℂ2 is invertible).
Assuming 𝑐 ≠ 0, we can write this map in affine coordinates (defined by 𝑤 = 1) as

𝑚(𝑧) =

⎧⎪
⎪
⎨
⎪
⎪⎩

𝑎𝑧 + 𝑏
𝑐𝑧 + 𝑑 , 𝑧 ≠ ∞, −𝑑/𝑐,
𝑎
𝑐 , 𝑧 = ∞,
∞, 𝑧 = −𝑑/𝑐.

In the remaining case 𝑐 = 0, it just maps 𝑧 ∈ ℂ to (𝑎𝑧 + 𝑏)/𝑑 and ∞ to ∞. Any
such automorphism is called a Möbius transformation.

The higher-dimensional projective spaces are not diffeomorphic to spheres. But
we do have the following.
Proposition 2.34. For every 𝑛 ≥ 1, ℂℙ𝑛 is simply connected.

Proof. Wewill prove this by induction on 𝑛. For 𝑛 = 1, it follows from the fact that
ℂℙ1 is diffeomorphic to 𝕊2, which is simply connected. So suppose 𝑛 ≥ 1 and we
have shown that ℂℙ𝑛 is simply connected. We can write ℂℙ𝑛+1 = 𝑈 ∪ 𝑉 , where

𝑈 = {[𝑤0, … , 𝑤𝑛+1] ∈ ℂℙ𝑛+1 ∶ 𝑤0 ≠ 0},
𝑉 = ℂℙ𝑛+1 ∖ {[1, 0, … , 0]}.

Then 𝑈 is the image of the standard affine embedding and thus biholomorphic to
ℂ𝑛+1, so it is simply connected. We will show that 𝑉 is homotopy equivalent to
ℂℙ𝑛. Consider the map 𝐻 ∶ 𝑉 × [0, 1] → 𝑉 given by

𝐻([𝑤0, … , 𝑤𝑛+1], 𝑡) = [𝑡𝑤0, 𝑤1, … , 𝑤𝑛+1].
If we let Π denote the projective hyperplane defined by 𝑤0 = 0, then Π is biholo-
morphic to ℂℙ𝑛, and 𝐻 is a strong deformation retraction of 𝑉 onto Π. It follows
from the induction hypothesis that 𝑉 is also simply connected, so the Seifert–Van
Kampen theorem (specifically, [LeeTM, Cor. 10.5]) shows that ℂℙ𝑛+1 is simply
connected. □
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Next we explore some examples of algebraic submanifolds of ℂℙ𝑛 of degree
higher than 1. Suppose 𝑆 ⊆ ℂℙ𝑛 is a projective algebraic variety defined by a
single homogeneous polynomial of degree 𝑑; in this case we say 𝑑 is the degree of
the variety. Projective varieties cut out by single polynomials of degree 2, 3, 4, and
5 are called projective quadrics, cubics, quartics, and quintics, respectively.

To study projective quadrics, we begin with some general considerations about
homogeneous quadratic polynomials.

Lemma 2.35. Suppose 𝑝 is a homogeneous quadratic holomorphic polynomial
function on an 𝑛-dimensional complex vector space 𝑉 . It is always possible to
find a basis for 𝑉 in which 𝑝 has the coordinate representation

(2.1) 𝑝(𝑤1, … , 𝑤𝑛) = (𝑤1)2 + ⋯ + (𝑤𝑟)2

for some 0 ≤ 𝑟 ≤ 𝑛. The integer 𝑟, called the rank of 𝒑, is independent of the choice
of basis.

Proof. The proof is essentially a complex-linear version of the Gram-Schmidt al-
gorithm. Begin by choosing a basis for 𝑉 and writing 𝑝 in the form 𝑝(𝑧) =
∑𝑗,𝑘 𝑝𝑖𝑗𝑧𝑖𝑧𝑗 . We can assume that the matrix 𝑝𝑖𝑗 is symmetric—if not, just replace
𝑝𝑖𝑗 with 1

2 (𝑝𝑖𝑗 + 𝑝𝑗𝑖), which does not change the values of the polynomial 𝑝. Define
𝐵 ∶ 𝑉 × 𝑉 → ℂ by 𝐵(𝑧, 𝑤) = ∑𝑗,𝑘 𝑝𝑖𝑗𝑧𝑖𝑤𝑗 , so that 𝐵 is a symmetric complex-
bilinear form satisfying 𝐵(𝑧, 𝑧) = 𝑝(𝑧). Note that 𝐵 can also be written in the form
𝐵(𝑧, 𝑤) = 1

4 (𝑝(𝑧 + 𝑤) − 𝑝(𝑧 − 𝑤)), so it is independent of the choice of basis.
We will prove by induction on 𝑛 = dim𝑉 that 𝑉 has a basis in which 𝐵 has the

form 𝐵(𝑧, 𝑤) = 𝑧1𝑤1 + ⋯ + 𝑧𝑟𝑤𝑟 for some 𝑟, which implies the result. For 𝑛 = 0,
there is nothing to prove.

Assume the result is true for spaces of dimension 𝑛 − 1 and suppose 𝑉 has
dimension 𝑛. If 𝐵 ≡ 0, any basis will do. Otherwise, there is some 𝑏1 ∈ 𝑉 such
that 𝐵(𝑏1, 𝑏1) ≠ 0. After multiplying 𝑏1 by an appropriate complex scalar, we can
arrange that 𝐵(𝑏1, 𝑏1) = 1. Let 𝑆 ⊆ 𝑉 be the set {𝑧 ∈ 𝑉 ∶ 𝐵(𝑧, 𝑏1) = 0}. Because
𝑧 ↦ 𝐵(𝑧, 𝑏1) is a nonzero linear functional, 𝑆 is a complex-linear subspace of
dimension 𝑛 − 1. The induction hypothesis shows that 𝑆 has a basis (𝑏2, … , 𝑏𝑛) in
which the restriction of 𝐵 to 𝑆 has the coordinate formula 𝐵(𝑧, 𝑤) = 𝑧2𝑤2 + ⋯ +
𝑧𝑟𝑤𝑟, and then a simple computation shows that the basis (𝑏1, … , 𝑏𝑛) for 𝑉 has the
desired property.

To prove that the rank is independent of the choice of basis, just note that 𝑛 − 𝑟
is equal to the largest dimension of a complex-linear subspace 𝑊 ⊆ 𝑉 such that
𝐵(𝑤, 𝑧) = 0 for all 𝑤 ∈ 𝑊 and 𝑧 ∈ 𝑉 . □

Proposition 2.36. Suppose 𝑝 is a holomorphic homogeneous quadratic polynomial
on ℂ𝑛+1. The variety 𝑉 ⊆ ℂℙ𝑛 defined by 𝑝 is nonsingular if and only if the rank
of 𝑝 is equal to 𝑛 + 1.
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Proof. After a complex-linear change of basis, we may assume that 𝑝 has the form
𝑝(𝑤) = (𝑤0)2 + ⋯ + (𝑤𝑟−1)2, where 𝑟 is the rank of 𝑝. If 𝑟 = 𝑛 + 1, then we can
write the differential of 𝑝 on ℂ𝑛+1 as

𝑑𝑝 = 2(𝑤0 𝑑𝑤0 + ⋯ + 𝑤𝑛 𝑑𝑤𝑛).

This never vanishes except at the origin, showing that 𝑉 is nonsingular.
Conversely, suppose 𝑟 < 𝑛 + 1. In the affine coordinate chart (𝑧1, … , 𝑧𝑛) ↔

[𝑧1, … , 𝑧𝑛, 1], 𝑉 is the set of points where (𝑧1)2 + ⋯ + (𝑧𝑟)2 = 0. All of the
following smooth curves starting at the origin lie in 𝑉 :

𝑡 ↦ (𝑡, 0, … , 0, 𝑖𝑡, 0, … , 0), 𝑡 ↦ (𝑖𝑡, 0, … , 0, 𝑡, 0, … , 0), 𝑗 = 2, … , 𝑛
𝑡 ↦ (𝑡, −𝑖𝑡, 0, … , 0), 𝑡 ↦ (𝑖𝑡, −𝑡, 0, … , 0)

(where the nonzero entries in the first line are in positions 1 and 𝑗). The initial
velocity vectors of these curves span the entire (real) tangent space to ℂ𝑛 at the ori-
gin. Since elsewhere 𝑉 is a complex codimension-1 submanifold and thus a smooth
submanifold of real codimension 2, this shows that 𝑉 is not a smooth submanifold
in a neighborhood of the origin in this affine chart. □

Proposition 2.37. All nonsingular projective quadrics in ℂℙ𝑛 are projectively
equivalent.

Proof. If 𝑉 ⊆ ℂℙ𝑛 is a nonsingular projective quadric defined by a quadratic poly-
nomial 𝑝, Proposition 2.36 shows that 𝑝 has rank 𝑛+1, and then Lemma 2.35 shows
that a change of basis in ℂ𝑛+1 (which induces a projective transformation on ℂℙ𝑛),
puts 𝑝 into the standard form (𝑤0)2 + ⋯ + (𝑤𝑛)2. □

Problems 2-5 and 2-6 show that nonsingular quadrics in ℂℙ2 are biholomorphic
to ℂℙ1, and those in ℂℙ3 are biholomorphic to ℂℙ1×ℂℙ1. The higher-dimensional
ones are diffeomorphic to certain Grassmann manifolds; see Problem 2-7.

Now let us look at some more general projective manifolds. In general, one
can get an idea of the structure of an algebraic variety by expressing it in affine
coordinates; computationally, this just amounts to setting one of the homogeneous
coordinates to 1, which produces an affine algebraic variety that typically includes
an open dense subset of the corresponding projective variety. That is what we did
in the proof of Proposition 2.36, for example.

Conversely, given an affine algebraic hypersurface 𝑉 ⊆ ℂ𝑛 determined by a
holomorphic polynomial 𝑝, we can complete it to a projective variety in the fol-
lowing way. Suppose 𝑝∶ ℂ𝑛 → ℂ is a holomorphic polynomial of degree 𝑚. By
separating the monomial terms by degree, we can write 𝑝 = ∑𝑚

𝑑=0 𝑝(𝑑), where 𝑝(𝑑) is
a homogenenous polynomial of degree 𝑑. Then define a homogeneous polynomial
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̃𝑝∶ ℂ𝑛+1 → ℂ, called the homogenization of 𝒑, by

̃𝑝(𝑤0, … , 𝑤𝑛) =
𝑚

∑
𝑑=0

(𝑤0)𝑚−𝑑𝑝(𝑑)(𝑤1, … , 𝑤𝑛).

This homogeneous polynomial defines a projective hypersurface 𝑉 ⊆ ℂℙ𝑛, called
the projective completion of 𝑽 . The intersection of 𝑉 with the standard embedded
copy of ℂ𝑛 is the original affine algebraic variety. Even if the original variety 𝑉
was smooth, though, 𝑉 might have singularities on the hyperplane at infinity, which
must be checked separately. (Projective completions can also be defined for affine
algebraic varieties of higher codimension, but this requires more delicate algebraic
considerations.)

Example 2.38. Consider the affine cubic 𝑉 = {(𝑧, 𝑤) ∶ 𝑤 = 𝑧3} ⊆ ℂ2. It is the
graph of a holomorphic function and thus a nonsingular affine algebraic variety.
Its projective completion is the variety 𝑉 = {[𝜁, 𝑧, 𝑤] ∈ ℂℙ2 ∶ 𝜁2𝑤 − 𝑧3 = 0}.
The projective hyperplane at infinity is the set of points of the form [0, 𝑧, 𝑤], and 𝑉
contains one point on that hyperplane, namely [0, 0, 1]. To analyze the structure of
the variety near that point, we can switch to affine coordinates (𝛼, 𝛽) ↔ [𝛼, 𝛽, 1]. In
these coordinates 𝑉 has the equation 𝛼2 − 𝛽3 = 0. This polynomial has a singular
point at the origin, which can be verified as follows: suppose 𝛾(𝑡) = (𝑓(𝑡), 𝑔(𝑡)) is
a smooth curve lying in 𝑉 with 𝛾(0) = 0. Then 𝑓(𝑡)2 ≡ 𝑔(𝑡)3. Taking two deriva-
tives and setting 𝑡 = 0 shows that 𝑓 ′(0) = 0, and then taking another derivative
shows that 𝑔′(0) = 0. Thus every tangent vector to 𝑉 at the origin is zero. If 𝑉
were a nonsingular variety, its tangent space at the origin would have to have real
dimension 2. //

Example 2.39 (Fermat Hypersurfaces). The algebraic hypersurface in ℂℙ𝑛 de-
fined in homogeneous coordinates by the equation

(2.2) (𝑤0)𝑑 + ⋯ + (𝑤𝑛)𝑑 = 0
for an integer 𝑑 > 0 is called a Fermat hypersurface of degree 𝑑. Problem 2-8
shows that each such hypersurface is nonsingular. In the special case 𝑛 = 2, it is
called aFermat curve. (The name reflects the fact that the equation (𝑤0)𝑑 +(𝑤1)𝑑 +
(𝑤2)𝑑 = 0 is projectively equivalent under the change of variables 𝑤0 ↦ 𝑖𝑤0 to the
equation (𝑤1)𝑑 + (𝑤2)𝑑 = (𝑤0)𝑑 , which is the basis of Fermat’s last theorem.) //

For future use, we record the following important property of algebraic hyper-
surfaces in ℂℙ𝑛. When 𝑛 ≥ 2, it is easy to see that two projective hyperplanes
in ℂℙ𝑛 must intersect, because two linear codimension-1 subspaces in ℂ𝑛+1 must
have a nontrivial intersection by linear algebra. The next lemma generalizes this to
(possibly singular) algebraic hypersurfaces of any degree.

Lemma 2.40. Let 𝑛 ≥ 2. If 𝑉 , 𝑊 ⊆ ℂℙ𝑛 are algebraic varieties in ℂℙ𝑛, each
defined by a single homogeneous polynomial, then 𝑉 ∩ 𝑊 ≠ ∅.
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Proof. We will prove this by induction on 𝑛. We begin with the case 𝑛 = 2. Let
[𝑤0, 𝑤1, 𝑤2] denote the homogeneous coordinates on ℂℙ2. Suppose 𝑉 , 𝑊 ⊆ ℂℙ2

are the varieties determined by homogeneous polynomials 𝑃 , 𝑄∶ ℂ3 → ℂ of de-
grees 𝑑 and 𝑒, respectively. After a change of basis if necessary, wemay assume that
𝑃 (0, 0, 1) and 𝑄(0, 0, 1) are both nonzero; this means that the coefficient of (𝑤2)𝑑

in 𝑃 and that of (𝑤2)𝑒 in 𝑄 are nonzero. After dividing by suitable constants, we
may assume that both these coefficients are equal to 1.

Define polynomials 𝑝, 𝑞 ∶ ℂ2 → ℂ by
𝑝(𝑥, 𝑦) = 𝑃 (1, 𝑥, 𝑦), 𝑞(𝑥, 𝑦) = 𝑄(1, 𝑥, 𝑦).

By collecting terms in 𝑦, we can write
𝑝(𝑥, 𝑦) = 𝑦𝑑 + 𝑎1(𝑥)𝑦𝑑−1 + ⋯ + 𝑎𝑑−1(𝑥)𝑦 + 𝑎𝑑(𝑥),

for some one-variable polynomials 𝑎1, … , 𝑎𝑑 . By the fundamental theorem of al-
gebra, for each 𝑥 ∈ ℂ the polynomial 𝑝(𝑥, ⋅) has 𝑑 roots 𝜆1(𝑥), … , 𝜆𝑑(𝑥) (listed in
some order, possibly with some roots repeated), and we can write

𝑝(𝑥, 𝑦) = (𝑦 − 𝜆1(𝑥)) ⋅ ⋯ ⋅ (𝑦 − 𝜆𝑑(𝑥)).
Let 𝑟∶ ℂ → ℂ be the function

𝑟(𝑥) = 𝑞(𝑥, 𝜆1(𝑥)) ⋅ ⋯ ⋅ 𝑞(𝑥, 𝜆𝑑(𝑥)),
called the resultant of 𝒑 and 𝒒. Although the 𝜆𝑗’s are not polynomial functions
of 𝑥, it turns out that 𝑟 is a polynomial in 𝑥. To see why, note that the function
𝑅∶ ℂ𝑑+1 → ℂ given by

𝑅(𝑥, 𝑘1, … , 𝑘𝑑) = 𝑞(𝑥, 𝑘1) ⋅ ⋯ ⋅ 𝑞(𝑥, 𝑘𝑑)
is a symmetric polynomial in 𝑘 = (𝑘1, … , 𝑘𝑑) with coefficients given by polyno-
mials in 𝑥, meaning it is unchanged by applying any permutation to the coordinates
of 𝑘. A basic theorem in algebra called the fundamental theorem on symmetric
polynomials says that any such polynomial can be expressed as a polynomial in the
elementary symmetric polynomials 𝜎1(𝑘), … 𝜎𝑑(𝑘), where 𝜎𝑗(𝑘) is defined as the
coefficient of 𝑦𝑑−𝑗 in the expansion

(𝑦 − 𝑘1) ⋅ ⋯ ⋅ (𝑦 − 𝑘𝑑) = 𝑦𝑑 + 𝜎1(𝑘)𝑦𝑑−1 + ⋯ + 𝜎𝑑−1(𝑘)𝑦 + 𝜎𝑑(𝑘),
so that 𝜎𝑗(𝑘) is the sum of all possible 𝑗-fold products of distinct components of
𝑘. (See [Lan02, Thm. 6.1 on p. 191] for a proof of this theorem.) Since the coef-
ficients 𝑎𝑗(𝑥) of 𝑝 are exactly the elementary symmetric polynomials in the roots
𝜆1(𝑥), … , 𝜆𝑑(𝑥), it follows that 𝑟(𝑥) = 𝑅(𝑥, 𝜆1(𝑥), … , 𝜆𝑑(𝑥)) is a polynomial func-
tion of (𝑥, 𝑎1(𝑥), … , 𝑎𝑑(𝑥)), and therefore a polynomial function of 𝑥. By the fun-
damental theorem of algebra, it has a root 𝑥0 ∈ ℂ. This implies that one of the
factors 𝑞(𝑥0, 𝜆𝑗(𝑥0)) in the definition of 𝑟 must vanish. Since 𝑝(𝑥0, 𝜆𝑗(𝑥0)) = 0
by definition, it follows that the point [𝑥0, 𝜆𝑗(𝑥0), 1] lies on both 𝑉 and 𝑊 . This
completes the 𝑛 = 2 case.
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Now let 𝑛 ≥ 2 and assume the result is true for ℂℙ𝑛, and let 𝑉 , 𝑊 be algebraic
varieties in ℂℙ𝑛+1 defined by homogeneous polynomials 𝑃 , 𝑄̃. Let Π ⊆ ℂℙ𝑛+1

be the projective hyperplane determined by 𝑤𝑛+1 = 0; it is biholomorphic to ℂℙ𝑛.
After a projective transformation, we may assume that Π is not contained in either
𝑉 or 𝑊 . Define 𝑃 , 𝑄∶ ℂ𝑛+1 → ℂ by

𝑃 (𝑤0, … , 𝑤𝑛) = 𝑃 (𝑤0, … , 𝑤𝑛, 0), 𝑄(𝑤0, … , 𝑤𝑛) = 𝑄̃(𝑤0, … , 𝑤𝑛, 0).

Then 𝑃 and 𝑄 are nontrivial homogeneous polynomials, and the varieties in Π ≈
ℂℙ𝑛 they determine are 𝑉 ′ = 𝑉 ∩Π and 𝑊 ′ = 𝑊 ∩Π. By the inductive hypothesis,
𝑉 ′ ∩ 𝑊 ′ is nonempty, which shows that 𝑉 and 𝑊 intersect. □

With more work, the argument above in the case of ℂℙ2 can be adapted to
prove the stronger result known as Bézout’s theorem: if 𝑉 , 𝑊 ⊆ ℂℙ2 are distinct
projective algebraic curves defined by irreducible polynomials of degrees 𝑑 and 𝑒,
respectively, then 𝑉 ∩ 𝑊 contains exactly 𝑑𝑒 points counted with multiplicity. See
[Har77, Cor. 7.8] for a proof.

Although nonsingular projective quadrics in ℂℙ𝑛 are all projectively equiva-
lent, the analogous statement is not true for projective hypersurfaces of higher de-
gree: as long as 𝑛 ≥ 1 and 𝑑 ≥ 3, there are nonsingular projective hypersurfaces of
degree 𝑑 in ℂℙ𝑛 that are not biholomorphic to each other. However, it is a remark-
able fact that as smooth manifolds, they are all diffeomorphic, as Theorem 2.43 will
show below. We will not use this result anywhere in the book; but it provides an in-
teresting insight into the nature of projective hypersurfaces. The proof will depend
on two preliminary results: one from differential geometry that we will prove, and
one from commutative algebra that we will accept without proof.

First, the result from differential geometry.

Lemma 2.41. Suppose 𝑀 and 𝑁 are smooth manifolds and 𝜋 ∶ 𝑀 → 𝑁 is a
proper smooth submersion. If 𝑁 is connected, then all fibers of 𝜋 are diffeomorphic
to each other.

Proof. For each smooth vector field 𝑌 on 𝑁 , we will show that there exists a lift
of 𝒀 , that is, a smooth vector field 𝑋 on 𝑀 that is 𝜋-related to 𝑌 , meaning that
𝐷𝜋(𝑞)(𝑋𝑞) = 𝑌𝜋(𝑞) for each 𝑞 ∈ 𝑀 . To see this, note first that the rank theorem
shows that for each 𝑞 ∈ 𝑀 there are smooth coordinate charts (𝑈, (𝑢1, … , 𝑢𝑚)) for
𝑀 containing 𝑞 and (𝑉 , (𝑣1, … , 𝑣𝑛)) for 𝑁 containing 𝜋(𝑞) in which 𝜋 has the local
expression 𝜋(𝑢1, … , 𝑢𝑛, 𝑢𝑛+1, … , 𝑢𝑚) = (𝑢1, … , 𝑢𝑛). If we write the restriction of
𝑌 to 𝑉 as 𝑌 = ∑𝑛

𝑗=1 𝑌 𝑗(𝑣)𝜕/𝜕𝑣𝑗 , an easy computation shows that the vector field
∑𝑛

𝑗=1 𝑌 𝑗(𝑢1, … , 𝑢𝑛)𝜕/𝜕𝑢𝑗 on 𝑈 is 𝜋-related to 𝑌 . Blending together all of these
vector fields on 𝑀 with a partition of unity yields a global vector field that is 𝜋-
related to 𝑌 .
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Now given 𝑝 ∈ 𝑁 , let (𝑥1, … , 𝑥𝑛) be smooth coordinates centered at 𝑝 on
an open set 𝑈 ⊆ 𝑁 whose image is the unit ball 𝐵1(0) ⊆ ℝ𝑛. Given 𝑞 ∈ 𝑈 with
coordinate representation (𝑞1, … , 𝑞𝑛), let 𝑊 be the constant-coefficient vector field
𝑞𝑗𝜕/𝜕𝑥𝑗 on 𝑈 , and let 𝑌 be the vector field on 𝑁 that is zero outside 𝑈 and equal
to 𝜓𝑊 on 𝑈 , where 𝜓 ∶ 𝑁 → [0, 1] is a smooth bump function that is compactly
supported in 𝑈 and equal to 1 on the line segment from 𝑝 to 𝑞. Because 𝑌 is
compactly supported, it is complete. Let 𝜃 ∶ ℝ × 𝑁 → 𝑁 be its flow. The curve
𝛾(𝑡) = (𝑡𝑞1, … , 𝑡𝑞𝑛) satisfies 𝛾′(𝑡) = 𝑌𝛾(𝑡) for 𝑡 ∈ [0, 1], so it is a portion of the
integral curve of 𝑌 starting at 𝑝. Thus the time-1 flow 𝜃1 ∶ 𝑁 → 𝑁 takes 𝑝 to 𝑞.

Let𝑋 be a lift of 𝑌 to𝑀 . Because 𝜋 is proper, 𝑋 is supported in the compact set
𝜋−1(supp 𝑌 ), so it is also complete. Let Θ∶ ℝ × 𝑀 → 𝑀 be its flow. The fact that
𝑌 and 𝑋 are 𝜋-related implies 𝜃1 ∘𝜋 = 𝜋 ∘Θ1 by [LeeSM, Prop. 9.13]. In particular,
this means that for all ̃𝑝 ∈ 𝜋−1(𝑝), we have 𝜋(Θ1( ̃𝑝)) = 𝜃1(𝜋( ̃𝑝)) = 𝜃1(𝑝) = 𝑞, so
Θ1 maps 𝜋−1(𝑝) to 𝜋−1(𝑞). Its inverse Θ−1 maps 𝜋−1(𝑞) to 𝜋−1(𝑝), showing that the
fibers 𝜋−1(𝑝) and 𝜋−1(𝑞) are diffeomorphic.

Now define an equivalence relation on 𝑁 by 𝑝1 ∼ 𝑝2 if and only if 𝜋−1(𝑝1) is
diffeomorphic to 𝜋−1(𝑝2). The argument above shows that each equivalence class
is open in 𝑁 , and since 𝑁 is connected, there is only one equivalence class. □

And here is the commutative algebra result. Proofs can be found in [vdW50,
Section 82] or [GKZ08, Chapter 13].

Lemma 2.42. Suppose 𝑓0, … , 𝑓𝑛 are homogeneous polynomials in 𝑛 + 1 complex
variables. There is a quantity 𝑅(𝑓0, … , 𝑓𝑛) ∈ ℂ, called the resultant of 𝒇0, …, 𝒇𝒏,
which is given by a homogeneous polynomial in the coefficients of 𝑓0, … , 𝑓𝑛, and
which is zero if and only if 𝑓0, … , 𝑓𝑛 have a common zero other than the origin.

Theorem 2.43. Let 𝑛 and 𝑚 be positive integers, with 𝑛 ≥ 2. All nonsingular
projective hypersurfaces of degree 𝑚 in ℂℙ𝑛 are diffeomorphic to each other.

Proof. Let 𝑛 and 𝑚 be fixed. By Proposition 2.31, each nonsingular projective
hypersurface 𝑆 ⊆ ℂℙ𝑛 of degree 𝑚 is the variety determined by a homogeneous
polynomial 𝑝 of degree 𝑚, and nonsingularity means that 𝑑𝑝𝑤 does not vanish at
any nonzero point such that 𝑝(𝑤) = 0. Any two such polynomials that are nonzero
constant multiples of each other determine the same hypersurface. Conversely, if 𝑝1
and 𝑝2 determine the same nonsingular hypersurface, then the ratio 𝑝1/𝑝2 extends
holomorphically across the zero set 𝑝−1

2 (0) to define a global holomorphic function
on ℂ𝑛+1 ∖ {0}, and thus to all of ℂ𝑛+1 by Hartogs’s extension theorem. Because it
is homogeneous of degree zero, it is constant.

Therefore we can parametrize the set of nonsingular projective hypersurfaces of
degree 𝑚 by a certain subset of the projective space ℙ(𝐻), where 𝐻 is the complex
vector space of homogeneous polynomials of degree 𝑚 in 𝑛 + 1 complex variables.
The variety determined by a nonzero element 𝑝 ∈ 𝐻 is nonsingular if and only if
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𝑝, 𝜕0𝑝, … , 𝜕𝑛𝑝 have no common zeros other than the origin (where 𝜕𝑗𝑝 is shorthand
for 𝜕𝑝/𝜕𝑤𝑗). Because 𝑝 is homogeneous, it satisfies Euler’s identity:

𝑤𝑗 𝜕𝑝
𝜕𝑤𝑗 (𝑤) = 𝑚𝑝(𝑤),

which is proved by differentiating the equation 𝑝(𝜆𝑤) = 𝜆𝑚𝑝(𝑤) with respect to 𝜆
and setting 𝜆 = 1. Thus if 𝑎 ∈ ℂ𝑛+1 ∖ {0} is a common zero of 𝜕0𝑝, … , 𝜕𝑛𝑝, it is
also a zero of 𝑝.

This shows that the nonsingular hypersurfaces of degree 𝑚 are exactly the va-
rieties 𝑉𝑝 for which the homogeneous polynomials 𝜕0𝑝, … , 𝜕𝑛𝑝 have no common
zeros other than the origin. Let 𝑊 ⊆ ℙ(𝐻) be the corresponding set. It follows
from Lemma 2.42 that 𝑊 is the complement of the algebraic variety 𝑉𝑅 defined
by a homogeneous polynomial 𝑅. If 𝑉𝑅 were nonsingular, it would follow from
Proposition 2.17 that 𝑊 is path-connected; we can show that the same result holds
even if 𝑉𝑅 has singularities, as follows. Given distinct points [𝑝], [𝑞] ∈ 𝑊 , let
𝐹 ∶ ℂℙ1 → ℙ(𝐻) be the holomorphic embedding 𝐹 ([𝑤0, 𝑤1]) = [𝑤0𝑝 + 𝑤1𝑞],
and let 𝐿 denote the projective line 𝐹 (ℂℙ1) ⊆ ℙ(𝐻). Then

𝐹 −1(𝐿 ∩ 𝑉𝑅) = {[𝑤0, 𝑤1] ∶ 𝑅(𝑤0𝑝 + 𝑤1𝑞) = 0},

which is an algebraic subvariety of ℂℙ1. It is not all of ℂℙ1 because it does not
contain [0, 1] or [1, 0], so by Proposition 2.30 it is finite. Since ℂℙ1 is homeomor-
phic to 𝕊2, the complement of a finite set in ℂℙ1 is path-connected, so there is a
path in 𝐿 ∩ 𝑊 from 𝑝 to 𝑞.

Now define a subset 𝑋 ⊆ ℙ(𝐻) × ℂℙ𝑛 by
𝑋 = {([𝑝], [𝑤]) ∶ [𝑝] ∈ ℙ(𝐻) and [𝑤] ∈ 𝑉𝑝},

and let 𝑋0 = 𝑋 ∩ 𝜋−1
1 (𝑊 ), where 𝜋1 ∶ ℙ(𝐻) × ℂℙ𝑛 → ℙ(𝐻) is the projection. Let

Π∶ 𝑋0 → 𝑊 be the restriction of 𝜋1. For each [𝑝] ∈ 𝑊 , the preimage Π−1{[𝑝]}
is the set {[𝑝]} × 𝑉𝑝, which is biholomorphic to 𝑉𝑝; thus the fibers of Π are exactly
the nonsingular degree-𝑚 hypersurfaces in ℂℙ𝑛.

Note that 𝑋 is the image of the set
𝑋 = {(𝑝, 𝑤) ∶ 𝑝(𝑤) = 0} ⊆ (𝐻 ∖ {0}) × (ℂ𝑛+1 ∖ {0})

under the projection 𝑞 ∶ (𝐻 ∖{0})×(ℂ𝑛+1 ∖{0}) → ℙ(𝐻)×ℂℙ𝑛 given by 𝑞(𝑝, 𝑤) =
([𝑝], [𝑤]). Since 𝑋 is the zero set of the continuous function 𝑓(𝑝, 𝑤) = 𝑝(𝑤),
it is closed. Moreover, every point ([𝑝], [𝑤]) ∈ 𝑋 has a representative (𝑝′, 𝑤′) =
(𝑝/|𝑝|, 𝑤/|𝑤|) in the compact set 𝐾 ×𝕊2𝑛+1 ⊆ 𝐻 ×ℂ𝑛+1, where 𝐾 is the unit sphere
in 𝐻 with respect to any choice of norm. Thus 𝑋 is the image of the compact set
𝑋 ∩ (𝐾 × 𝕊2𝑛+1), so it is compact, and therefore the restriction of 𝜋1 to 𝑋 is proper.
It follows that Π∶ 𝑋0 → 𝑊 is also proper because it is the restriction of 𝜋1|𝑋 to an
open subset 𝑋0 ⊆ 𝑋 that is saturated, meaning it is the full preimage of a subset
of ℙ(𝐻) (see [LeeTM, Prop. 4.93(f)]).
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Nowwe show that 𝑋0 is a codimension-1 complex submanifold of ℙ(𝐻)×ℂℙ𝑛.
Given any point 𝑥0 = ([𝑝0], [𝑤0]) ∈ 𝑋0, we can choose a neighborhood 𝑈 on
which we have affine coordinates (𝑞1, … , 𝑞𝑁 ) for ℙ(𝐻) (where 𝑁 = dimℙ(𝐻))
and affine coordinates (𝑧1, … , 𝑧𝑛) for ℂℙ𝑛, and then the set 𝑋0 ∩𝑈 is characterized
by a polynomial equation 𝑓(𝑞, 𝑧) = 0 which is the coordinate representation of
𝑝(𝑤) = 0. The fact that [𝑝0] ∈ 𝑊 guarantees that some 𝑧𝑗-derivative of 𝑓 does
not vanish at 𝑥0, so 𝑋0 ∩ 𝑈 is a regular level set of a single holomorphic function,
showing that 𝑋0 is a complex submanifold of dimension 𝑁 + 𝑛 − 1. Moreover, the
fact that some 𝑧𝑗-derivative of 𝑓 is nonzero means that the tangent space 𝑇𝑥0𝑋0
does not contain all of the direct summand 𝑇[𝑧0]ℂℙ𝑛 ⊆ 𝑇𝑥0(ℙ(𝐻) × ℂℙ𝑛); thus the
dimension of Ker 𝑑Π𝑥0 = 𝑇[𝑧0]ℂℙ𝑛 ∩ 𝑇𝑥0𝑋0 is less than 𝑛. It follows that the rank
of 𝑑Π𝑥0 is at least (𝑁 + 𝑛 − 1) − (𝑛 − 1) = 𝑁 , so Π is a submersion. Because 𝑊 is
connected, it follows from Lemma 2.41 that all of the fibers of Π are diffeomorphic
to each other. □

The Holomorphic Embedding Problem
One of the fundamental results in smooth manifold theory is the Whitney embed-
ding theorem, which says that every smooth manifold can be properly embedded in
some Euclidean space; see [LeeSM, Thm. 6.15] for a proof. (Properness of the em-
bedding is equivalent to the image being a closed subset; see [LeeSM, Prop. 5.5].)

In complex manifold theory, things are very different. In the first place, we
cannot hope to find holomorphic embeddings of compact complex manifolds of
positive dimension into ℂ𝑛 (see Example 2.25). It turns out that the appropriate
place to look for embeddings of compact complex manifolds is in ℂℙ𝑛, but not
every such manifold admits such an embedding even in that case. The question of
characterizing which compact manifolds admit embeddings into ℂℙ𝑛 will occupy
much of the rest of this book.

What about noncompact complex manifolds? Here again, the situation is not
straightforward. There are nontrivial necessary conditions for a noncompact com-
plex manifold 𝑀 to be embeddable in ℂ𝑛. For example, the preceding observation
implies that if 𝑀 contains a positive-dimensional compact complex submanifold,
then 𝑀 cannot be embedded in ℂ𝑛. It turns out that the class of complex manifolds
that can be properly embedded in ℂ𝑛 for some 𝑛 has a nice intrinsic characterization.
First, a few definitions.

Let 𝑀 be a complex manifold and 𝒪(𝑀) its ring of global holomorphic func-
tions. We say 𝒪(𝑀) separates points if for every pair of distinct points 𝑝, 𝑞 ∈ 𝑀 ,
there exists 𝑓 ∈ 𝒪(𝑀) that satisfies 𝑓(𝑝) = 0 and 𝑓(𝑞) ≠ 0. We say 𝒪(𝑀) sep-
arates directions if for every 𝑝 ∈ 𝑀 and every nonzero 𝑣 ∈ 𝑇 ′

𝑝 𝑀 , there exists
𝑓 ∈ 𝒪(𝑀) such that 𝑣𝑓 ≠ 0. The significance of the latter condition is explained
by the following lemma.
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Lemma 2.44. For a complex 𝑛-manifold 𝑀 , 𝒪(𝑀) separates directions if and only
if for each 𝑝 ∈ 𝑀 there exist global holomorphic functions 𝑧1, … , 𝑧𝑛 ∈ 𝒪(𝑀) that
restrict to local holomorphic coordinates in a neighborhood of 𝑝.

Proof. On the one hand, if there exist such functions 𝑧1, … , 𝑧𝑛, then for any
nonzero vector 𝑣 = 𝑣𝑗𝜕/𝜕𝑧𝑗|𝑝 ∈ 𝑇 ′

𝑝 𝑀 , one of the components 𝑣𝑗 must be nonzero,
and 𝑣(𝑧𝑗) = 𝑣𝑗 ≠ 0.

Conversely, suppose 𝒪(𝑀) separates directions, and let 𝑝 ∈ 𝑀 be arbi-
trary. We will show by induction on 𝑘 that for each 𝑘 = 1, … , 𝑛, there exist
𝑧1, … , 𝑧𝑘 ∈ 𝒪(𝑀) such that 𝑑𝑧1|𝑝, … , 𝑑𝑧𝑘|𝑝 are linearly independent. If this is
true for 𝑘 = 𝑛, the holomorphic inverse function theorem shows that (𝑧1, … , 𝑧𝑛)
restrict to holomorphic coordinates in a neighborhood of 𝑝.

For 𝑘 = 1, just choose any 𝑧1 ∈ 𝒪(𝑀) such that 𝑣(𝑧1) ≠ 0 for some nonzero
𝑣 ∈ 𝑇 ′

𝑝 𝑀 , which implies 𝑑𝑧1|𝑝 ≠ 0. Now suppose the claim is true for some 𝑘 < 𝑛.
The complex-linear map from 𝑇 ′

𝑝 𝑀 to ℂ𝑘 given by 𝑣 ↦ (𝑑𝑧1|𝑝(𝑣), … , 𝑑𝑧𝑘|𝑝(𝑣))
has rank 𝑘, so it has a kernel of dimension 𝑛 − 𝑘. Choose 𝑣 ≠ 0 in that kernel, and
let 𝑧𝑘+1 ∈ 𝒪(𝑀) be a function such that 𝑣(𝑧𝑘+1) ≠ 0. It follows that 𝑑𝑧𝑘+1|𝑝 is
linearly independent of 𝑑𝑧1|𝑝, … , 𝑑𝑧𝑘|𝑝, thus completing the induction. □

One last definition: for any subset 𝐾 ⊆ 𝑀 , define the holomorphic hull of 𝑲
as the set

𝐾 = {𝑧 ∈ 𝑀 ∶ |𝑓(𝑧)| ≤ sup
𝐾

|𝑓 | for all 𝑓 ∈ 𝒪(𝑀)}.

(The terminology is motivated by analogy with the convex hull of a subset 𝐾 ⊆ ℝ𝑛,
which is the intersection of all convex subsets of ℝ𝑛 containing 𝐾 . Problem 2-12
shows that the convex hull can be characterized in an analogous way using linear
functions instead of holomorphic ones.) We say 𝑀 is holomorphically convex if
whenever 𝐾 is a compact subset of 𝑀 , 𝐾 is also compact.

A complex manifold 𝑀 is called a Stein manifold if it satisfies the following
three conditions:

(i) 𝒪(𝑀) separates points.
(ii) 𝒪(𝑀) separates directions.
(iii) 𝑀 is holomorphically convex.

Proposition 2.45. Suppose 𝑀 ⊆ ℂ𝑛 is a properly embedded complex submanifold.
Then 𝑀 is Stein.

Proof. Clearly 𝒪(𝑀) separates points: given distinct points 𝑝, 𝑞 ∈ 𝑀 , some holo-
morphic coordinate function 𝑧𝑗 takes on different values at those two points, and
then the restriction to 𝑀 of 𝑓(𝑧) = 𝑧𝑗 − 𝑝𝑗 is zero at 𝑝 and nonzero at 𝑞.
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Similarly, 𝒪(𝑀) separates directions: given 𝑝 ∈ 𝑀 and 𝑣 ≠ 0 ∈ 𝑇 ′
𝑝 𝑀 , we can

consider 𝑣 as an element of 𝑇 ′
𝑝 ℂ𝑛 and write 𝑣 = 𝑣𝑗𝜕/𝜕𝑧𝑗|𝑝. Some component 𝑣𝑗 is

nonzero, from which it follows that 𝑣(𝑧𝑗) = 𝑣𝑗 ≠ 0.
To show that𝑀 is holomorphically convex, let𝐾 ⊆ 𝑀 be a compact subset and

let 𝐾 ⊆ 𝑀 be its holomorphic hull. First note that 𝐾 is closed in 𝑀 : if 𝑝 ∈ 𝑀 is a
boundary point of 𝐾 , there is a sequence of points 𝑝𝑗 in 𝐾 such that 𝑝𝑗 → 𝑝. Then
for any 𝑓 ∈ 𝒪(𝑀), since |𝑓 (𝑝𝑗)| ≤ sup𝐾 |𝑓 | for each 𝑗, it follows by continuity
that |𝑓 (𝑝)| ≤ sup𝐾 |𝑓 |, so 𝑝 ∈ 𝐾 . Since 𝑀 is closed in ℂ𝑛, it follows that 𝐾 is also
closed in ℂ𝑛.

Next we show 𝐾 is bounded. Because 𝐾 is compact, there is some 𝑟 > 0 such
that 𝐾 is contained in the closed ball 𝐵𝑟(0) ⊆ ℂ𝑛. Suppose 𝑤 ∈ 𝑀 ∖ 𝐵𝑟(0). Set
𝑅 = |𝑤| > 𝑟, and let 𝑓 ∶ 𝑀 → ℂ be the restriction of the holomorphic linear
function 𝑓(𝑧) = 𝑧 ⋅𝑤 = 𝑧1𝑤1 + ⋯ + 𝑧𝑛𝑤𝑛. Now 𝑓(𝑤) = |𝑤|2 = 𝑅2; but if 𝑧 ∈ 𝐾 ,
then the Cauchy–Schwartz inequality gives

|𝑓 (𝑧)| = |𝑧 ⋅ 𝑤| ≤ |𝑧| |𝑤| ≤ 𝑟𝑅 < 𝑅2 = |𝑓(𝑤)|.
This shows |𝑓 (𝑤)| > sup𝐾 |𝑓 |, so 𝑤 ∉ 𝐾 . The contrapositive of this statement is
𝐾 ⊆ 𝐵𝑟(0). Since 𝐾 is closed and bounded in ℂ𝑛, it is compact. □

The most important fact about Stein manifolds is the following converse to the
preceding proposition, proved in 1961 by Errett Bishop and Raghavan Narasimhan.
We will neither prove nor use it, but you can find a proof in [Hör90] or [GR09].
Theorem 2.46 (Stein Embedding Theorem). Every Stein manifold admits a
proper holomorphic embedding into ℂ𝑛 for some 𝑛.

It is easy to come up with examples of noncompact complex manifolds that are
not Stein.
Example 2.47 (Non-Stein Manifolds).

(a) Suppose 𝑀 is a complex manifold that contains a compact complex sub-
manifold 𝑆 ⊆ 𝑀 of positive dimension. Then every 𝑓 ∈ 𝒪(𝑀) restricts
to a constant function on each connected component of 𝑆, so 𝒪(𝑀) does
not separate points. Thus, for example, no compact complex manifold of
positive dimension is Stein, and no product of such a manifold with any
other complex manifold is Stein.

(b) Let 𝑈 be an arbitrary open subset of ℂ𝑛 with 𝑛 ≥ 2, 𝑝 ∈ 𝑈 , and 𝑀 = 𝑈 ∖
{𝑝}. We will show that 𝑀 is not holomorphically convex, and therefore
not Stein. Choose 𝜀 > 0 such that 𝐵𝜀(𝑝) ⊆ 𝑈 , and let 𝐾 = 𝜕𝐵𝜀(𝑝).
Suppose 𝑓 ∈ 𝒪(𝑀) is arbitrary. Then the Hartogs extension theorem
shows that 𝑓 has a holomorphic extension (still denoted by 𝑓 ) to all of
𝑈 . The restriction of |𝑓 | to the compact set 𝐵𝜀(𝑝) achieves a maximum,
and the maximum principle guarantees that this maximum occurs on 𝐾 .
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It follows that for every 𝑧 ∈ 𝐵𝜀(𝑝) ∩ 𝑀 , we have |𝑓 (𝑧)| ≤ sup𝐾 |𝑓 |, so
𝐵𝜀(𝑝) ∩ 𝑀 ⊆ 𝐾 . But any sequence in 𝐵𝜀(𝑝) ∩ 𝑀 that converges to 𝑝 has
no convergent subsequence in 𝐾 , so 𝐾 is not compact. //

On the other hand, some open submanifolds of ℂ𝑛 are Stein (in addition to
ℂ𝑛 itself). If 𝑈 ⊆ ℂ𝑛 is open, using the restrictions of the coordinate functions
𝑧1, … , 𝑧𝑛 to 𝑈 , we can show that 𝒪(𝑈) separates points and directions as in the
proof of Proposition 2.45, so an open submanifold of ℂ𝑛 is Stein if and only if it is
holomorphically convex. Here is a class of examples for which we can show that is
the case.

Example 2.48 (Convex Open Submanifolds Are Stein). Suppose 𝑈 ⊆ ℂ𝑛 is a
convex open subset. To see that 𝑈 is holomorphically convex, let 𝐾 ⊆ 𝑈 be an
arbitrary compact subset. We begin by showing that the holomorphic hull 𝐾 is
contained in the convex hull of 𝐾 (considered as a subset of ℝ2𝑛), which we denote
by ch(𝐾). Suppose 𝑝 ∈ 𝑈 ∖ ch(𝐾). It follows from Problem 2-12 that there exists
a real-linear function 𝑓 ∶ ℂ𝑛 → ℝ such that 𝑓(𝑝) > sup𝐾 𝑓 . Define 𝛼 ∶ ℂ𝑛 → ℂ
by 𝛼(𝑧) = 𝑓(𝑧) − 𝑖𝑓(𝑖𝑧); a simple computation shows that 𝛼(𝑖𝑧) = 𝑖𝛼(𝑧), so 𝛼
is a complex-linear functional whose real part is 𝑓 . Then 𝑧 ↦ 𝑒𝛼(𝑧) restricts to a
holomorphic function on 𝑈 , which satisfies

|𝑒𝛼(𝑝)| = 𝑒𝑓(𝑝) > sup
𝐾

𝑒𝑓 = sup
𝐾

|𝑒𝛼| ,

so 𝑝 ∉ 𝐾 .
Since 𝐾 is compact, it is easy to verify that ch(𝐾) is also compact, and since

𝑈 is convex, ch(𝐾) is contained in 𝑈 . Now 𝐾 is closed in 𝑈 by continuity, so it is
a closed subset of the compact set ch(𝐾) and thus compact. //

Convexity is an easy way to recognize some Stein manifolds among the open
submanifolds of ℂ𝑛. But convexity is not a necessary condition, for the simple
reason that it is not biholomorphically invariant, while the condition of being a Stein
manifold is. For example, consider ℂ2 with holomorphic coordinates (𝑧, 𝑤). The
open subset 𝑈 = {(𝑧, 𝑤) ∶ Re𝑤 > 0} is convex and thus is a Stein manifold. But
now consider the holomorphic map 𝜑∶ ℂ2 → ℂ2 given by 𝜑(𝑧, 𝑤) = (𝑧, 𝑤 + 𝑧2).
It is a biholomorphism with inverse 𝜑−1(𝑧, 𝑤) = (𝑧, 𝑤 − 𝑧2). Thus 𝜑(𝑈) is also
a Stein manifold. But 𝜑(𝑈) is the subset consisting of all (𝑧, 𝑤) such that Re𝑤 >
(Re 𝑧)2 − (Im 𝑧)2, which is not convex.

There is a biholomorphically invariant property called pseudoconvexity (which
is implied by convexity butmore general), and it can be shown that a connected open
subset of ℂ𝑛 is a Stein manifold if and only if it is pseudoconvex. Since the deep
properties of Stein manifolds and pseudoconvex domains belong more properly to
the theory of complex analysis in several variables, we will have no more to say
about them in this book; but you can find a discussion of these matters in [Kra01],
starting in Chapter 3.
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Problems
2-1. For each 𝑛 ≥ 1, let U(𝑛) ⊆ GL(𝑛, ℂ) be the 𝑛-dimensional unitary group,

that is, the subgroup of matrices 𝐴 ∈ GL(𝑛, ℂ) that satisfy 𝐴∗𝐴 = Id.
(Here 𝐴∗ denotes theHermitian adjoint of𝑨, that is, the transposed con-
jugate of 𝐴.) Show that U(𝑛) is not a complex submanifold of GL(𝑛, ℂ).

2-2. Prove Lemma 2.27 (a subset of ℂℙ𝑛 is a complex submanifold if and only
its preimage in ℂ𝑛+1 ∖ {0} is a complex submanifold.)

2-3. For positive integers 𝑚, 𝑛, let 𝑆 ∶ ℂℙ𝑚 × ℂℙ𝑛 → ℂℙ𝑚𝑛+𝑚+𝑛 be the map

𝑆([𝑤0, … , 𝑤𝑚], [𝑧0, … , 𝑧𝑛])
= [𝑤0𝑧0, 𝑤0𝑧1, … , 𝑤0𝑧𝑛, 𝑤1𝑧0, … , 𝑤1𝑧𝑛, … , 𝑤𝑚𝑧0, … , 𝑤𝑚𝑧𝑛],

where the products on the right-hand side are listed in lexicographic order.
Show that 𝑆 is a holomorphic embedding, called the Segre embedding.
Use this to conclude that every product of projective complex manifolds
is projective.

2-4. Prove that the following formulas determine a well-defined diffeomor-
phism 𝐹 ∶ 𝕊2 → ℂℙ1:

𝐹 (𝑥, 𝑦, 𝑧) =
{

[𝑥 + 𝑖𝑦, 1 − 𝑧], (𝑥, 𝑦, 𝑧) ≠ (0, 0, 1),
[1 + 𝑧, 𝑥 − 𝑖𝑦], (𝑥, 𝑦, 𝑧) ≠ (0, 0, −1).

2-5. Show that every nonsingular quadric in ℂℙ2 is biholomorphic to ℂℙ1.
[Hint: Start by thinking about how to parametrize the projective comple-
tion of the affine curve 𝑤 = 𝑧2.]

2-6. Show that every nonsingular quadric in ℂℙ3 is biholomorphic to ℂℙ1 ×
ℂℙ1. [Hint: Use Problem 2-3.]

2-7. For 𝑛 ≥ 3, let G+
2 (ℝ𝑛) be the Grassmannian of oriented 2-planes in ℝ𝒏,

that is, the set of 2-dimensional linear subspaces of ℝ𝑛 together with a
choice of orientation for each. The natural action of SO(𝑛) on ℝ𝑛 induces
a transitive action on G+

2 (ℝ𝑛) with a closed isotropy group, giving it a
smooth manifold structure as a homogeneous space by [LeeSM, Thm.
21.20]. (You do not need to prove this.) Prove that every nonsingu-
lar quadric in ℂℙ𝑛−1 is diffeomorphic to G+

2 (ℝ𝑛). [Hint: Consider the
quadric 𝑄 defined by (𝑤1)2 + ⋯ + (𝑤𝑛)2 = 0, and show that the map
𝑄 → G+

2 (ℝ𝑛) by [𝑤] ↦ span(Re𝑤, Im𝑤) is an SO(𝑛)-equivariant diffeo-
morphism.]

2-8. Prove that every Fermat hypersurface (Example 2.39) is nonsingular.
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2-9. (a) Show that every automorphism of ℂℙ1 is a projective transformation.
[Hint: First show that it suffices to assume 𝐹 ([1, 0]) = [1, 0] and
𝐹 ([0, 1] = [0, 1].]

(b) Show that every automorphism of ℂ is an affine function of the form
𝑓(𝑧) = 𝑎𝑧 + 𝑏 for some 𝑎, 𝑏 ∈ ℂ. [Hint: Begin by extending 𝑓
to a bijection 𝐹 ∶ ℂℙ1 → ℂℙ1, and show that 𝐹 has a removable
singularity at infinity.]

2-10. Show that every holomorphic map from ℂℙ1 to itself can be written in
the form 𝐹 ([𝑧, 𝑤]) = [𝑝(𝑧, 𝑤), 𝑞(𝑧, 𝑤)], where 𝑝 and 𝑞 are homogeneous
polynomials of the same degree with no common zeros except the origin.

2-11. Suppose 𝑀 is a disconnected compact complex manifold. Show that 𝑀
is projective if and only if each of its connected components is projective.

2-12. Suppose 𝐾 is an arbitrary subset of ℝ𝑛. The convex hull of𝑲 is the inter-
section of all convex subsets of ℝ𝑛 containing 𝐾 . Show that the convex
hull of 𝐾 is equal to the set

{𝑥 ∈ ℝ𝑛 ∶ 𝑓(𝑥) ≤ sup
𝐾

𝑓 for all linear functions 𝑓 ∶ ℝ𝑛 → ℝ}.

2-13. Let 𝑉 be a finite-dimensional complex vector space. Show that each
Grassmannian G𝑘(𝑉 ) is projective. [Hint: Let Λ𝑘𝑉 be the set of alternat-
ing contravariant 𝑘-tensors on 𝑉 , and define amap fromG𝑘(𝑉 ) to ℙ(Λ𝑘𝑉 )
by sending the span of (𝑣1, … , 𝑣𝑘) to [𝑣1 ∧ ⋯ ∧ 𝑣𝑘]. Show that this is a
holomorphic embedding, called a Plücker embedding.]

2-14. Let ℍ = {𝑤 ∈ ℂ ∶ Im𝑤 > 0} be the upper half-plane. Define an action
of ℤ2 on ℂ × ℍ by (𝑚, 𝑛) ⋅ (𝑧, 𝑤) = (𝑧 + 𝑚 + 𝑛𝑤, 𝑤).
(a) Show that this action is free, proper, and holomorphic, so 𝑀 = (ℂ ×

ℍ)/ℤ2 is a complex 2-manifold.
(b) Show that the projection 𝜋2 ∶ ℂ × ℍ → ℍ descends to a surjective

holomorphic submersion Π∶ 𝑀 → ℍ.
(c) Show that every 1-dimensional complex torus is biholomorphic to at

least one of the fibers of Π. [Hint: Use Problem 1-4.]





Chapter 3

Holomorphic Vector
Bundles

Recall that in Chapter 1we defined a holomorphic vector bundle as a complex vector
bundle 𝜋 ∶ 𝐸 → 𝑀 in which 𝐸 and 𝑀 are complex manifolds, 𝜋 is a holomorphic
map, and the local trivializations can be chosen to be biholomorphisms. In this
chapter we will delve much more deeply into the theory of holomorphic vector
bundles.

Holomorphic Bundle Tools
Most of the basic tools for working with smooth vector bundles have direct ana-
logues in the holomorphic category. Here we summarize the main ones.

Lemma 3.1 (Transition Functions of Holomorphic Bundles). Suppose 𝜋 ∶ 𝐸 →
𝑀 is a holomorphic vector bundle of rank 𝑘, and Φ𝛼 ∶ 𝜋−1(𝑈𝛼) → 𝑈𝛼 × ℂ𝑘 and
Φ𝛽 ∶ 𝜋−1(𝑈𝛽) → 𝑈𝛽 ×ℂ𝑘 are two holomorphic local trivializations with 𝑈𝛼 ∩𝑈𝛽 ≠
∅. Then for all (𝑝, 𝑣) ∈ (𝑈𝛼 ∩ 𝑈𝛽) × ℂ𝑘, we have

(3.1) Φ𝛼 ∘ Φ−1
𝛽 (𝑝, 𝑣) = (𝑝, 𝜏𝛼𝛽(𝑝)𝑣)

for some holomorphic map 𝜏𝛼𝛽 ∶ 𝑈𝛼 ∩ 𝑈𝛽 → GL(𝑘, ℂ) called the transition func-
tion from𝚽𝜷 to 𝚽𝜶 .

Proof. Exactly the same as the corresponding proof for smooth bundles, with
“holomorphic” substituted for “smooth”; see [LeeSM, Lemma 10.5]. □
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For a holomorphic vector bundle 𝐸 → 𝑀 , a local or global section is called a
holomorphic section if it is holomorphic as a map between complex manifolds. In
terms of any holomorphic local frame (𝑠1, … , 𝑠𝑘) over an open set 𝑈 ⊆ 𝑀 , we can
write a rough section 𝜎 locally as 𝜎(𝑝) = 𝜎𝑗(𝑝)𝑠𝑗(𝑝) = 𝜎1(𝑝)𝑠1(𝑝) + ⋯ + 𝜎𝑘(𝑝)𝑠𝑘(𝑝)
for some complex-valued functions 𝜎1, … , 𝜎𝑘 ∶ 𝑈 → ℂ, called the component
functions of 𝝈 with respect to the given frame. We let 𝒪(𝑈; 𝐸) denote the complex
vector space of local holomorphic sections of 𝐸 over 𝑈 , so that 𝒪(𝑀; 𝐸) is the
space of global holomorphic sections.
Lemma 3.2 (Local Frame Criterion for Holomorphicity). Let 𝐸 → 𝑀 be a
holomorphic vector bundle. Given a rough local section 𝜎 ∶ 𝑈 → 𝐸 and a holo-
morphic local frame for 𝐸 over 𝑈 , the section 𝜎 is holomorphic on 𝑈 if and only if
its component functions are holomorphic.

Proof. Just the same as the corresponding proof for smooth bundles [LeeSM,
Prop. 10.22]. □

Lemma3.3 (Holomorphic Local Frames andLocal Trivializations). For a holo-
morphic vector bundle 𝜋 ∶ 𝐸 → 𝑀 , there is a one-to-one correspondence be-
tween holomorphic local frames and holomorphic local trivializations. The lo-
cal frame (𝑠1, … , 𝑠𝑘) corresponding to a local trivialization (𝑈, Φ) is defined by
𝑠𝑗(𝑝) = Φ−1(𝑝, 𝑒𝑗), where 𝑒𝑗 is the 𝑗th standard basis vector for ℂ𝑘.

Proof. Again, just like its smooth counterpart [LeeSM, Prop. 10.19]. □

Lemma 3.4 (Holomorphic Vector Bundle Chart Lemma). Suppose 𝑀 is a com-
plex manifold, and for each 𝑝 ∈ 𝑀 we are given a 𝑘-dimensional complex vec-
tor space 𝐸𝑝. Let 𝐸 = ∐𝑝∈𝑀 𝐸𝑝 (the disjoint union of the spaces 𝐸𝑝), and let
𝜋 ∶ 𝐸 → 𝑀 be the obvious projection. Suppose further that we are given

(i) an indexed open cover {𝑈𝛼}𝛼∈𝐴 of 𝑀;
(ii) for each 𝛼 ∈ 𝐴, a bijection Φ𝛼 ∶ 𝜋−1(𝑈𝛼) → 𝑈𝛼 × ℂ𝑘 whose restriction

to each 𝐸𝑝 is a complex-linear isomorphism from 𝐸𝑝 to {𝑝} × ℂ𝑘;
(iii) for each 𝛼, 𝛽 ∈ 𝐴 with 𝑈𝛼 ∩ 𝑈𝛽 ≠ ∅, a holomorphic map 𝜏𝛼𝛽 ∶ 𝑈𝛼 ∩

𝑈𝛽 → GL(𝑘, ℂ) such that Φ𝛼 ∘ Φ−1
𝛽 (𝑝, 𝑣) = (𝑝, 𝜏𝛼𝛽(𝑝)𝑣) for all (𝑝, 𝑣) ∈

(𝑈𝛼 ∩ 𝑈𝛽) × ℂ𝑘.

Then 𝜋 ∶ 𝐸 → 𝑀 has a unique structure as a holomorphic vector bundle with
{(𝑈𝛼 , Φ𝛼)} as holomorphic local trivializations, and with 𝜏𝛼𝛽 as the transition func-
tion from Φ𝛽 to Φ𝛼 for each 𝛼 and 𝛽.

Proof. Just like its smooth analogue [LeeSM, Lemma 10.6]. □

In the vector bundle chart lemma, we construct a vector bundle from vector
spaces 𝐸𝑝 that are given in advance. The next important proposition gives a way
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to construct a holomorphic vector bundle out of thin air, given only its transition
functions. To motivate the hypothesis in the following proposition, observe that it
follows from equation (3.1) that whenever the domains of three local trivializations
Φ𝛼 , Φ𝛽 , Φ𝛾 overlap, the transition functions satisfy the equation

𝜏𝛼𝛽(𝑝)𝜏𝛽𝛾 (𝑝) = 𝜏𝛼𝛾 (𝑝)

for all 𝑝 in the common domain, where the juxtaposition on the left-hand side rep-
resents matrix multiplication. This equation is called the cocycle condition, for
reasons that will become clear in Chapter 6 (see Example 6.3).

Proposition 3.5 (Holomorphic Vector Bundle Construction Theorem). Let 𝑀
be a complex manifold and let 𝒰 = {𝑈𝛼}𝛼∈𝐴 be an indexed open cover of 𝑀 .
Suppose for each 𝛼, 𝛽 ∈ 𝐴 such that 𝑈𝛼 ∩𝑈𝛽 ≠ ∅ we are given a holomorphic map
𝜏𝛼𝛽 ∶ 𝑈𝛼 ∩ 𝑈𝛽 → GL(𝑘, ℂ) such that the following cocycle condition is satisfied for
all 𝛼, 𝛽, 𝛾 ∈ 𝐴:

(3.2) 𝜏𝛼𝛽(𝑝)𝜏𝛽𝛾 (𝑝) = 𝜏𝛼𝛾 (𝑝), 𝑝 ∈ 𝑈𝛼 ∩ 𝑈𝛽 ∩ 𝑈𝛾 .

Then there is a rank-𝑘 holomorphic vector bundle 𝐸 → 𝑀 that admits a holomor-
phic trivialization over each set 𝑈𝛼 , with transition functions given by 𝜏𝛼𝛽 .

Proof. Let 𝐸 be the disjoint union ∐𝛼∈𝐴(𝑈𝛼 × ℂ𝑘), with a point (𝑝, 𝑣) ∈ 𝑈𝛼 × ℂ𝑘

denoted in the disjoint union by (𝑝, 𝑣, 𝛼). Define a relation on 𝐸 by (𝑝, 𝑣, 𝛼) ∼
(𝑝′, 𝑣′, 𝛼′) if 𝑝 = 𝑝′ and 𝑣′ = 𝜏𝛼𝛼′(𝑝)𝑣. By taking two or three of the indices equal
to each other, we see that the relation (3.2) implies also that 𝜏𝛽𝛼(𝑝) = 𝜏𝛼𝛽(𝑝)−1 and
𝜏𝛼𝛼(𝑝) = Id, which shows that ∼ is an equivalence relation. Let 𝐸 denote the set
of equivalence classes, and define 𝜋 ∶ 𝐸 → 𝑀 by 𝜋[(𝑝, 𝑣, 𝛼)] = 𝑝; the definition
of the equivalence relation shows that this is well defined. For each 𝑝 ∈ 𝑀 , the
fiber 𝐸𝑝 = 𝜋−1(𝑝) is the set of all equivalence classes of the form [(𝑝, 𝑣, 𝛼)] for 𝑣
arbitrary and 𝛼 such that 𝑝 ∈ 𝑈𝛼 . We can define a complex vector space structure
on 𝐸𝑝 by choosing a fixed 𝑈𝛼 containing 𝑝 and setting 𝑐1[(𝑝, 𝑣1, 𝛼)]+𝑐2[(𝑝, 𝑣2, 𝛼)] =
[(𝑝, 𝑐1𝑣1 + 𝑐2𝑣2, 𝛼)] for 𝑐1, 𝑐2 ∈ ℂ; the fact that the maps 𝑣 ↦ 𝜏𝛼𝛽(𝑝)𝑣 are all linear
isomorphisms guarantees that this is independent of the choice of 𝛼.

Now for each 𝛼, define a map Φ𝛼 ∶ 𝜋−1(𝑈𝛼) → 𝑈𝛼 × ℂ𝑘 by Φ𝛼[(𝑝, 𝑣, 𝛼)] =
(𝑝, 𝑣). It is then straightforward to check that thesemaps satisfy all of the hypotheses
of the chart lemma and thus define a holomorphic vector bundle structure on 𝐸. □

► Exercise 3.6. Complete the proof of this proposition by verifying that the
chart lemma hypotheses are satisfied.

Just as the preceding proposition allows us to construct a bundle given only the
transition functions, the next one allows us to detect when two bundles are isomor-
phic from the same data.
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Proposition 3.7 (Holomorphic Vector Bundle Isomorphism Criterion). Sup-
pose 𝐸 → 𝑀 and 𝐸′ → 𝑀 are holomorphic rank-𝑘 vector bundles that both have
holomorphic local trivializations {(𝑈𝛼 , Φ𝛼)}𝛼∈𝐴 and {(𝑈𝛼 , Φ′

𝛼)}𝛼∈𝐴 over the same
trivializing cover, with transition functions 𝜏𝛼𝛽 and 𝜏′

𝛼𝛽 , respectively. Then 𝐸 and
𝐸′ are isomorphic over 𝑀 if and only if for each 𝛼 ∈ 𝐴 there exists a holomorphic
map 𝜓𝛼 ∶ 𝑈𝛼 → GL(𝑘, ℂ) such that for 𝛼, 𝛽 ∈ 𝐴 we have

(3.3) 𝜏𝛼𝛽(𝑝) = 𝜓𝛼(𝑝)−1𝜏′
𝛼𝛽(𝑝)𝜓𝛽(𝑝), 𝑝 ∈ 𝑈𝛼 ∩ 𝑈𝛽 .

Proof. First suppose there exist such maps 𝜓𝛼 . For each 𝛼, define a holomorphic
bundle homomorphism Ψ𝛼 ∶ 𝑈𝛼 × ℂ𝑘 → 𝑈𝛼 × ℂ𝑘 by

Ψ𝛼(𝑝, 𝑣) = (𝑝, 𝜓𝛼(𝑝)𝑣);

it has a holomorphic inverse given by replacing 𝜓𝛼(𝑝) with 𝜓𝛼(𝑝)−1. Then let
𝐹𝛼 ∶ 𝐸|𝑈𝛼 → 𝐸′|𝑈𝛼 be the holomorphic bundle isomorphism 𝐹𝛼 = Φ′

𝛼
−1 ∘Ψ𝛼 ∘Φ𝛼 .

To see what happens when two of these definitions overlap, recall that the tran-
sition functions satisfy Φ𝛼 ∘Φ−1

𝛽 (𝑝, 𝑣) = (𝑝, 𝜏𝛼𝛽(𝑝)𝑣) for 𝑝 ∈ 𝑈𝛼 ∩𝑈𝛽 , with a similar
formula for 𝜏′

𝛼𝛽 . Thus (3.3) implies the following formula on (𝑈𝛼 ∩ 𝑈𝛽) × ℂ𝑘:

Φ𝛼 ∘ Φ−1
𝛽 = Ψ−1

𝛼 ∘ Φ′
𝛼 ∘ Φ′

𝛽
−1 ∘ Ψ𝛽 .

It follows that 𝐹𝛼 and 𝐹𝛽 agree where both are defined, so they piece together to
create a holomorphic bundle homomorphism 𝐹 ∶ 𝐸 → 𝐸′. It is an isomorphism
because its inverse can be constructed in the same way using 𝜓𝛼(𝑝)−1 in place of
𝜓𝛼(𝑝).

Conversely, if 𝐹 ∶ 𝐸 → 𝐸′ is a bundle isomorphism, for each 𝛼 ∈ 𝐴 the
composite map Ψ𝛼 = Φ′

𝛼 ∘𝐹 ∘Φ−1
𝛼 is a bundle isomorphism from 𝑈𝛼 ×ℂ𝑘 to itself, so

it has the form Ψ𝛼(𝑝, 𝑣) = (𝑝, 𝜎𝛼(𝑝, 𝑣)) for some holomorphic map 𝜎𝛼 ∶ 𝑈𝛼 × ℂ𝑘 →
ℂ𝑘. Since 𝑣 ↦ 𝜎𝛼(𝑝, 𝑣) is a complex-linear isomorphism for each 𝑝, there is some
function 𝜓𝛼 ∶ 𝑈𝛼 → GL(𝑘, ℂ) such that 𝜎𝛼(𝑝, 𝑣) = 𝜓𝛼(𝑝)𝑣. If we let (𝑒𝑗) denote
the standard basis for ℂ𝑘 and (𝑒𝑗) the associated dual basis, the matrix entries of 𝜓𝛼
satisfy

(𝜓𝛼)𝑙
𝑗(𝑝) = 𝑒𝑙(𝜎𝛼(𝑝, 𝑒𝑗)),

so they are holomorphic by composition. To prove (3.3), we compute

(𝑝, 𝜏𝛼𝛽(𝑝)𝑣) = Φ𝛼 ∘ Φ𝛽
−1(𝑝, 𝑣)

= (Φ′
𝛼 ∘ 𝐹 ∘ Φ−1

𝛼 )
−1

∘ (Φ′
𝛼 ∘ Φ′

𝛽
−1

) ∘ (Φ′
𝛽 ∘ 𝐹 ∘ Φ−1

𝛽 )(𝑝, 𝑣)

= (𝑝, 𝜓𝛼(𝑝)−1𝜏′
𝛼𝛽(𝑝)𝜓𝛽(𝑝)𝑣). □

The next corollary shows that the bundle produced by the vector bundle con-
struction theorem is unique up to isomorphism.
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Corollary 3.8. Suppose 𝐸 → 𝑀 and 𝐸′ → 𝑀 are holomorphic vector bundles of
rank 𝑘 over the same base, and both admit local trivializations over the same open
cover with the same transition functions. Then 𝐸 ≅ 𝐸′.

Proof. Just apply Proposition 3.7 with 𝜓𝛼 ≡ Id for every 𝛼. □

Corollary 3.9. Suppose 𝐸 → 𝑀 is a holomorphic rank-𝑘 vector bundle, and 𝒰 =
{𝑈𝛼}𝛼∈𝐴 is a trivializing cover for 𝐸 with transition functions 𝜏𝛼𝛽 . Then 𝐸 is trivial
if and only if for each 𝛼 ∈ 𝐴 there is a holomorphic map 𝜓𝛼 ∶ 𝑈𝛼 → GL(𝑘, ℂ) such
that 𝜏𝛼𝛽 = 𝜓−1

𝛼 𝜓𝛽|𝑈𝛼∩𝑈𝛽 for each 𝛼 and 𝛽.

Proof. This is the special case of Proposition 3.7 when each transition function 𝜏′
𝛼𝛽

is the identity matrix. □

We need to introduce one more important tool for constructing holomorphic
vector bundles. Suppose 𝜋 ∶ 𝐸 → 𝑀 is a rank-𝑘 holomorphic vector bundle, 𝑁 is
a complex manifold, and 𝑓 ∶ 𝑁 → 𝑀 is a holomorphic map. We define a vector
bundle 𝑓 ∗𝐸 → 𝑁 , called the pullback of 𝑬 by 𝒇 , as follows. The total space of
𝑓 ∗𝐸 is the following subset of 𝑁 × 𝐸, called the fiber product of 𝑵 with 𝑬 over
𝑴 :

𝑓 ∗𝐸 = {(𝑝, 𝑣) ∈ 𝑁 × 𝐸 ∶ 𝜋(𝑣) = 𝑓(𝑝)}.
The projection 𝑓 ∗𝐸 → 𝑁 is just the restriction of the projection on the first factor:
(𝑝, 𝑣) ↦ 𝑝. The fiber of 𝑓 ∗𝐸 over a point 𝑝 ∈ 𝑁 is then {𝑝} × 𝐸𝑓(𝑝), which inherits
a complex vector space structure from that of 𝐸𝑓(𝑝). To make it into a holomorphic
vector bundle, we construct local frames and use the chart lemma.

Given 𝑝 ∈ 𝑁 , choose a holomorphic local frame (𝑏1, … , 𝑏𝑘) for 𝐸 on a neigh-
borhood of 𝑓(𝑝), and define a rough local frame ( ̃𝑏1, … , ̃𝑏𝑘) for 𝑓 ∗𝐸 on a neigh-
borhood of 𝑝 by

𝑏̃𝑗(𝑝) = (𝑝, 𝑏𝑗(𝑓 (𝑝))).
Where two such frames (𝑏𝑗) and (𝑏′

𝑗) overlap, there is a holomorphic GL(𝑘, ℂ)-
valued transition function 𝜏 such that 𝑏′

𝑗(𝑞) = 𝜏𝑘
𝑗 (𝑞)𝑏𝑘(𝑞), and therefore

𝑏̃′
𝑗(𝑝) = (𝑝, 𝜏𝑘

𝑗 (𝑓 (𝑝)) ̃𝑏𝑘(𝑝)).

In other words, the frames (𝑏̃𝑗) and (𝑏̃′
𝑗) overlap with the transition function 𝜏 ∘ 𝑓 ,

which is holomorphic by composition. It follows from the chart lemma that 𝑓 ∗𝐸
is a holomorphic vector bundle.

In the situation described above, there is a pullback operator on local or global
sections, defined as follows. For 𝜎 ∈ 𝒪(𝑈; 𝐸) over an open subset 𝑈 ⊆ 𝑀 , we
define 𝑓 ∗𝜎 ∈ 𝒪(𝑓 −1(𝑈); 𝑓 ∗𝐸) by

𝑓 ∗𝜎(𝑥) = (𝑥, 𝜎(𝑓(𝑥))).
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Proposition 3.10 (Properties of Pullbacks of Sections). Let 𝐸 → 𝑀 be a holo-
morphic vector bundle and 𝑓 ∶ 𝑁 → 𝑀 a holomorphic map.

(a) For each open set 𝑈 ⊆ 𝑁 , pullback defines a complex-linear map
𝑓 ∗ ∶ 𝒪(𝑈; 𝐸) → 𝒪(𝑓 −1(𝑈); 𝑓 ∗𝐸).

(b) If (𝑠1, … , 𝑠𝑘) is a holomorphic local frame for 𝐸 over 𝑈 ⊆ 𝑀 , then
(𝑓 ∗𝑠1, … , 𝑓 ∗𝑠𝑘) is a holomorphic local frame for 𝑓 ∗𝐸 over 𝑓 −1(𝑈).

(c) If 𝑓 is surjective, then 𝑓 ∗ ∶ 𝒪(𝑈; 𝐸) → 𝒪(𝑓 −1(𝑈); 𝑓 ∗𝐸) is injective for
each 𝑈 .

► Exercise 3.11. Prove the preceding proposition.

Given a holomorphic vector bundle 𝜋 ∶ 𝐸 → 𝑀 , a subset 𝐷 ⊆ 𝐸 is called
a holomorphic subbundle of 𝑬 if it is an embedded complex submanifold with
the property that each fiber 𝐷𝑝 = 𝐷 ∩ 𝐸𝑝 is a complex-linear subspace of some
fixed dimension 𝑚, and the restricted projection 𝜋|𝐷 ∶ 𝐷 → 𝑀 turns 𝐷 into a
holomorphic vector bundle over 𝑀 .
Lemma 3.12 (Local Frame Criterion for Subbundles). Let 𝜋 ∶ 𝐸 → 𝑀 be a
holomorphic vector bundle, and let 𝐷 ⊆ 𝐸 be a subset whose intersection with
each fiber of 𝐸 is an 𝑚-dimensional complex subspace. Then 𝐷 is a holomorphic
subbundle if and only if each 𝑝 ∈ 𝑀 has a neighborhood over which there are
holomorphic sections 𝜎1, … , 𝜎𝑚 of 𝐸 such that (𝜎1(𝑞), … , 𝜎𝑚(𝑞)) forms a basis for
𝐷𝑞 for each 𝑞 ∈ 𝑀 .

Proof. Just like the proof of its smooth counterpart [LeeSM, Lemma 10.32]. □

Recall that a Hermitian inner product on a complex vector space 𝑉 is a map
from 𝑉 ×𝑉 to ℂ, often denoted by (𝑣, 𝑤) ↦ ⟨𝑣, 𝑤⟩, that has the following properties
for all 𝑣, 𝑤 ∈ 𝑉 and 𝑎 ∈ ℂ:

• CONJUGATE SYMMETRY: ⟨𝑣, 𝑤⟩ = ⟨𝑤, 𝑣⟩,
• SESQUILINEARITY: ⟨𝑎𝑣, 𝑤⟩ = 𝑎⟨𝑣, 𝑤⟩ and ⟨𝑣, 𝑎𝑤⟩ = 𝑎⟨𝑣, 𝑤⟩,
• POSITIVE DEFINITENESS: ⟨𝑣, 𝑣⟩ > 0 unless 𝑣 = 0.

Suppose 𝑀 is a smooth manifold and 𝐸 → 𝑀 is a smooth complex vector
bundle of rank 𝑚. A Hermitian fiber metric ℎ on 𝐸 is a choice ℎ𝑝 of Hermitian
inner product on each fiber 𝐸𝑝 that is smoothly varying in the sense that for any pair
of smooth sections 𝜎, 𝜏 of 𝐸 over an open subset 𝑈 ⊆ 𝑀 , the value ℎ𝑝(𝜎(𝑝), 𝜏(𝑝))
depends smoothly on 𝑝 ∈ 𝑈 . When it will not cause confusion, wewill often denote
a Hermitian fiber metric by ⟨𝑣, 𝑤⟩ ∈ ℂ for 𝑣, 𝑤 ∈ 𝐸𝑝, or ⟨𝜎, 𝜏⟩ ∈ 𝐶∞(𝑀; ℂ)
for 𝜎, 𝜏 ∈ Γ(𝐸). Given a Hermitian fiber metric on 𝐸, we define the norm of a
vector 𝑣 ∈ 𝐸𝑝 as |𝑣| = ⟨𝑣, 𝑣⟩1/2. A smooth complex vector bundle endowed with a
Hermitian fiber metric is called a Hermitian vector bundle. An easy partition-of-
unity argument shows that every smooth complex vector bundle admits a Hermitian
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fiber metric. (Note that if 𝐸 is a holomorphic bundle, it does not make sense to ask
that a fiber metric be holomorphic, because of the conjugate linearity in the second
argument. Hermitian fiber metrics on holomorphic bundles are merely required to
be smooth.)

The Space of Holomorphic Sections

If 𝐸 → 𝑀 is a holomorphic vector bundle, recall that 𝒪(𝑀; 𝐸) denotes the
complex vector space of global holomorphic sections of 𝐸. The next theorem illus-
trates one of the most dramatic differences between smooth bundles and holomor-
phic ones.

Theorem 3.13. Suppose 𝑀 is a compact complex manifold and 𝐸 → 𝑀 is a
holomorphic vector bundle over 𝑀 . Then 𝒪(𝑀; 𝐸) is finite-dimensional.

We present here a proof using complex analysis. A different proof based on the
theory of partial differential equations will be presented in Chapter 9 (just following
Theorem 9.35).

This proof will be based on the following standard lemma, which is proved in
most functional analysis texts. For convenience, we include a proof here.

Lemma 3.14. In a real or complex normed linear space 𝒳 , the closed unit ball is
compact if and only if 𝒳 is finite-dimensional.

Proof. Because all norms on a finite-dimensional vector space are equivalent, if 𝒳
is finite-dimensional, compactness of the closed unit ball follows from the analo-
gous result for ℝ𝑛 or ℂ𝑛 with its standard norm.

Conversely, suppose 𝒳 is infinite-dimensional. We will construct by induction
an infinite sequence {𝑥𝑗}∞

𝑗=1 in 𝒳 with ‖𝑥𝑗‖ = 1 and ‖𝑥𝑗 − 𝑥𝑘‖ > 1
2 for all 𝑗 ≠ 𝑘;

because such a subsequence can have no convergent subsequence, it shows that the
closed unit ball in 𝒳 is not compact.

To begin the induction, just choose 𝑥1 ∈ 𝒳 arbitrarily with ‖𝑥1‖ = 1. As-
suming 𝑥1, … , 𝑥𝑛 have been chosen, let 𝒳𝑛 = span(𝑥1, … , 𝑥𝑛). Because 𝒳 is
infinite-dimensional, there is some 𝑦 ∈ 𝒳 ∖ 𝒳𝑛. Since every finite-dimensional
subspace of a normed linear space is a closed subset, there is some 𝜀 > 0 such that
the open ball 𝐵𝜀(𝑦) is contained in 𝒳 ∖ 𝒳𝑛. Let 𝜀1 be the supremum of such 𝜀’s.
This means ‖𝑦 − 𝑥‖ ≥ 𝜀1 for all 𝑥 ∈ 𝒳𝑛, and there is some 𝑥∗ ∈ 𝒳𝑛 such that
‖𝑦 − 𝑥∗‖ < 2𝜀1. Set 𝑥𝑛+1 = (𝑦 − 𝑥∗)/‖𝑦 − 𝑥∗‖, so that ‖𝑥𝑛+1‖ = 1 (see Fig. 3.1).

To show that 𝑥𝑛+1 satisfies the required conditions, suppose 𝑗 ∈ {1, … , 𝑛} and
compute

‖𝑥𝑛+1 − 𝑥𝑗‖ =
‖

𝑦 − 𝑥∗

‖𝑦 − 𝑥∗‖ −
‖𝑦 − 𝑥∗‖ 𝑥𝑗

‖𝑦 − 𝑥∗‖ ‖
= ‖𝑦 − (𝑥∗ + ‖𝑦 − 𝑥∗‖ 𝑥𝑗)‖

‖𝑦 − 𝑥∗‖ .
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𝒳 𝒳𝑛

𝑥∗

𝑦

0
𝑥𝑛+1

𝜀1

Figure 3.1. Proof of Lemma 3.14

In the last expression on the right, the numerator is greater than or equal to 𝜀1
because (𝑥∗ + ‖𝑦 − 𝑥∗‖ 𝑥𝑗) ∈ 𝒳𝑛; and the denominator is less than 2𝜀1 by our
choice of 𝑥∗. Therefore, ‖𝑥𝑛+1 − 𝑥𝑗‖ > 1

2 , thus completing the induction. □

Proof of Theorem 3.13. Choose a Hermitian fiber metric ⟨⋅, ⋅⟩ℎ on 𝐸, and use it
to define a global norm on 𝒪(𝑀; 𝐸) by

‖𝜎‖ = sup
𝑝∈𝑀

|𝜎(𝑝)|ℎ.

We will prove the theorem by showing that the closed unit ball with respect to this
norm is compact. Let {𝜎𝑘}∞

𝑘=1 be any sequence in 𝒪(𝑀; 𝐸) with ‖𝜎𝑘‖ ≤ 1.
For each 𝑝 ∈ 𝑀 , there is a neighborhood 𝑊𝑝 of 𝑝 on which 𝐸 admits a holo-

morphic local frame. For each 𝑝, choose open sets 𝑈𝑝, 𝑉𝑝 such that 𝑝 ∈ 𝑈𝑝 ⊆ 𝑈 𝑝 ⊆
𝑉𝑝 ⊆ 𝑉 𝑝 ⊆ 𝑊𝑝. The collection of all such 𝑈𝑝 is an open cover of 𝑀 , so we can
choose finitely many sets 𝑊1, … , 𝑊𝑚 such that the corresponding sets 𝑈1, … , 𝑈𝑚
cover 𝑀 .

Consider the first of these sets 𝑊1 with its holomorphic local frame (𝑠1, … , 𝑠𝑘).
On the restriction of 𝐸 to 𝑉 1 we have two fiber norms: the given one | ⋅ |ℎ, and the
“Euclidean” one determined by the local frame, namely

|𝜎(𝑝)|𝑒 = |𝜎𝑗(𝑝)𝑠𝑗(𝑝)|𝑒 = (|𝜎1(𝑝)|2 + ⋯ + |𝜎𝑘(𝑝)|2)
1/2.

Let 𝑆 be the compact set 𝑉 1 × 𝕊2𝑘−1 ⊆ 𝑉 1 × ℂ𝑘. The function

(𝑝, (𝑧1, … , 𝑧𝑘)) ↦ |𝑧𝑗𝑠𝑗(𝑝)|ℎ

determined by the given fiber metric is continuous and positive on this compact set,
and thus attains maximum and minimum positive values Λ and 𝜆 there.



Holomorphic Bundle Tools 79

For any 𝑝 ∈ 𝑉1, if 𝜎(𝑝) ≠ 0, then the components of 𝜎(𝑝)/|𝜎(𝑝)|𝑒 lie in 𝕊2𝑛−1,
so

|𝜎(𝑝)|ℎ = |𝜎(𝑝)|𝑒 |
𝜎(𝑝)

|𝜎(𝑝)|𝑒 |ℎ
≥ |𝜎(𝑝)|𝑒𝜆,

and a similar computation shows that |𝜎(𝑝)|ℎ ≤ Λ|𝜎(𝑝)|𝑒. Of course, the same
inequalities hold trivially when 𝜎(𝑝) = 0.

Returning to our sequence {𝜎𝑘} with ‖𝜎𝑘‖ ≤ 1, we conclude from the estimate
above that |𝜎𝑘(𝑝)|𝑒 ≤ (1/𝜆) for 𝑝 ∈ 𝑉1, and thus each component function of 𝜎𝑘
with respect to the given frame is uniformly bounded on 𝑉1. Montel’s theorem
(Prop. 1.35) then implies that a subsequence converges uniformly on the compact
set 𝑈 1 ⊆ 𝑉1 to a section that is holomorphic there.

Proceeding similarly, we can choose a sub-subsequence that also converges on
𝑈 2, and so on for 𝑈 3, … , 𝑈 𝑚. The final subsequence converges in the global ‖ ⋅ ‖ℎ
norm to a global holomorphic section, showing that the unit ball in 𝒪(𝑀; 𝐸) is
compact. □

Examples of Holomorphic Vector Bundles

Every complex manifold plays host to one important holomorphic vector bun-
dle, from which many others can be constructed.
Example 3.15 (The Holomorphic Tangent Bundle). Let 𝑀 be a complex 𝑛-
manifold and 𝑇 ′𝑀 be its holomorphic tangent bundle. Each local holomorphic
coordinate chart (𝑧𝑗) provides a local frame (𝜕/𝜕𝑧1, … , 𝜕/𝜕𝑧𝑛) for 𝑇 ′𝑀 . To see
how two such frames overlap, let (𝑤𝑗) be another local holomorphic coordinate
chart. The chain rule (Prop. 1.47) gives

𝜕
𝜕𝑤𝑘 = 𝜕𝑧𝑗

𝜕𝑤𝑘
𝜕

𝜕𝑧𝑗 + 𝜕𝑧𝑗

𝜕𝑤𝑘
𝜕

𝜕𝑧𝑗 .

Because each 𝑧𝑗 is holomorphic, the second term on the right is identically zero, so
the transition function from the frame (𝜕/𝜕𝑧𝑗) to the frame (𝜕/𝜕𝑤𝑘) is the matrix-
valued function (𝜕𝑧𝑗 /𝜕𝑤𝑘), which is holomorphic. Thus the chart lemma gives
𝑇 ′𝑀 the structure of a holomorphic vector bundle. //
Example 3.16 (Dual Bundles). Now suppose 𝐸 → 𝑀 is an arbitrary holomorphic
vector bundle. The dual bundle of 𝑬 is the bundle 𝐸∗ whose fiber at each point
𝑝 ∈ 𝑀 is the space 𝐸∗

𝑝 of complex-linear functionals 𝐸𝑝 → ℂ. Given a local
holomorphic frame (𝑠1, … , 𝑠𝑚) for 𝐸, we can form the dual frame (𝜀1, … , 𝜀𝑚) for
𝐸∗, satisfying 𝜀𝑗(𝑝)(𝑠𝑘(𝑝)) = 𝛿𝑗𝑘 for all 𝑝. If ( ̃𝑠1, … , ̃𝑠𝑚) is another holomorphic
local frame for 𝐸 with transition function 𝜏 satisfying

̃𝑠𝑗 = 𝜏𝑘
𝑗 𝑠𝑘,

then a little linear algebra shows that
̃𝜀𝑘 = (𝜏−1)𝑘

𝑙 𝜀𝑙,
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so the chart lemma shows that 𝐸∗ is a holomorphic vector bundle whose transition
functions are the transposed inverses (called the contragredients) of those of 𝐸. //
Example 3.17 (Bundles Over 0-Manifolds). If 𝑀 is a 0-manifold and 𝐸 → 𝑀 is
any complex vector bundle, for each 𝑝 ∈ 𝑀 we can choose a basis (𝑠1(𝑝), … , 𝑠𝑘(𝑝))
for the fiber 𝐸𝑝, and the maps 𝑝 ↦ 𝑠𝑗(𝑝) are vacuously holomorphic. Thus
(𝑠1, … , 𝑠𝑘) is a holomorphic global frame, so every bundle over 𝑀 is holomor-
phically trivial. //
Example 3.18 (Whitney Sums). If 𝐸 → 𝑀 and 𝐸′ → 𝑀 are holomorphic vector
bundles of ranks 𝑘 and 𝑘′, respectively, their Whitney sum is the bundle 𝐸 ⊕ 𝐸′

whose fiber at each 𝑝 ∈ 𝑀 is the direct sum 𝐸𝑝 ⊕ 𝐸′
𝑝. Given holomorphic local

frames (𝑠1, … , 𝑠𝑘) for 𝐸 and (𝑠′
1, … , 𝑠′

𝑘′) for 𝐸′, we get a local frame (𝑠1, … , 𝑠𝑘,
𝑠′

1, … , 𝑠′
𝑘′) for 𝐸 ⊕ 𝐸′. If 𝜏 and 𝜏′ are transition functions for overlapping local

frames for 𝐸 and 𝐸′, respectively, then the transition function for 𝐸 ⊕ 𝐸′ is the
GL(𝑘 + 𝑘′, ℂ)-valued matrix function ( 𝜏 0

0 𝜏′ ), which is holomorphic. Thus by the
chart lemma, 𝐸 ⊕ 𝐸′ is a holomorphic vector bundle of rank 𝑘 + 𝑘′. //
Example 3.19 (Tensor Product Bundles). With 𝐸, 𝐸′ as in the previous example,
we define the tensor product bundle 𝐸 ⊗ 𝐸′ similarly, as the bundle whose fiber
at 𝑝 is 𝐸𝑝 ⊗ 𝐸′

𝑝. Any section of 𝐸 ⊗ 𝐸′ can be written locally as a finite sum
∑𝑗 𝜎𝑗 ⊗ 𝜎′

𝑗 , where each 𝜎𝑗 is a local section of 𝐸 and each 𝜎′
𝑗 is a local section of

𝐸′. Local frames (𝑠𝑖) for 𝐸 and (𝑠′
𝑗) for 𝐸′ yield a local frame (𝑠𝑖 ⊗ 𝑠′

𝑗) for 𝐸 ⊗ 𝐸′,
with holomorphic transition functions, so 𝐸 ⊗ 𝐸′ is a holomorphic vector bundle
of rank 𝑘𝑘′. //

Example 3.20 (Determinant Bundles). Suppose 𝐸 → 𝑀 is a holomorphic vec-
tor bundle of rank 𝑘. The determinant bundle of 𝑬 is the complex line bundle
det𝐸 → 𝑀 whose fiber at a point 𝑝 ∈ 𝑀 is the 1-dimensional vector space Λ𝑘(𝐸𝑝)
of alternating 𝑘-vectors (i.e., contravariant alternating 𝑘-tensors) in 𝐸𝑝. Any holo-
morphic local frame (𝑠1, … , 𝑠𝑘) for 𝐸 yields a local frame 𝑠1 ∧ ⋯ ∧ 𝑠𝑘 for det𝐸. If
𝜏 is a transition function between two local trivializations of 𝐸, then det(𝜏) is the
corresponding transition function for det𝐸, so the determinant bundle is holomor-
phic. //

Example 3.21 (Restriction of a Bundle). If 𝜋 ∶ 𝐸 → 𝑀 is a holomorphic vec-
tor bundle and 𝑆 ⊆ 𝑀 is a complex submanifold, the set 𝐸|𝑆 = 𝜋−1(𝑆) together
with the projection inherited from 𝐸 is called the restriction of 𝑬 to 𝑺. Each holo-
moorphic local trivialization for 𝐸 restricts to a local trivialization for 𝐸|𝑆 , with
transition functions that are restrictions of those of 𝐸, so 𝐸|𝑆 is a holomorphic
vector bundle over 𝑆. //

Example 3.22 (Quotient Bundles). Suppose 𝐸 → 𝑀 is a holomorphic vector
bundle of rank 𝑛 and 𝐹 ⊆ 𝐸 is a holomorphic rank-𝑘 subbundle. The quotient
bundle 𝐸/𝐹 → 𝑀 is the bundle whose fiber at 𝑝 ∈ 𝑀 is the quotient space 𝐸𝑝/𝐹𝑝.
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Given a holomorphic local frame (𝑠1, … , 𝑠𝑘) for 𝐹 , we can complete it to a holo-
morphic local frame (𝑠1, … , 𝑠𝑛) for 𝐸 (perhaps after shrinking the domain), and
then consider (𝑠𝑘+1, … , 𝑠𝑛) (mod 𝐹 ) as a local frame for 𝐸/𝐹 . Where two such
frames (𝑠𝑖) and ( ̃𝑠𝑗) overlap, the holomorphic transition matrix has the form

𝜏 𝑖
𝑗 =

(
𝛼𝑖

𝑗 0
𝛽𝑖

𝑗 𝛾 𝑖
𝑗)

,

and we have ̃𝑠𝑗 = ∑𝑛
𝑖=𝑘+1 𝛾 𝑖

𝑗𝑠𝑖 (mod 𝐹 ) for 𝑗 = 𝑘 + 1, … , 𝑛, so 𝐸/𝐹 is a holomor-
phic bundle of rank 𝑛 − 𝑘 by the chart lemma. //

Example 3.23 (Normal Bundles). Suppose 𝑀 is a complex 𝑛-manifold and 𝑆 ⊆
𝑀 is 𝑘-dimensional complex submanifold. The holomorphic normal bundle of
𝑺 in 𝑴 is the bundle 𝑁𝑆 → 𝑆 defined by 𝑁𝑆 = (𝑇 ′𝑀|𝑆)/𝑇 ′𝑆. The result
of Example 3.22 shows that it is a holomorphic bundle of rank 𝑛 − 𝑘 on 𝑆. (It is
important to observe that the geometric normal bundle that can be defined as the
set of tangent vectors that are orthogonal to 𝑆 with respect to some Riemannian
metric on 𝑀 will not in general have holomorphic transition functions.) //

Example 3.24 (Homomorphism and Endomorphism Bundles). Again let 𝐸, 𝐸′

be holomorphic vector bundles over 𝑀 . We can form the bundle Hom(𝐸, 𝐸′)
whose fiber at a point 𝑝 ∈ 𝑀 is the space of complex-linear maps from 𝐸𝑝 to
𝐸′

𝑝. There is a canonical bijection from 𝐸′ ⊗ 𝐸∗ to Hom(𝐸, 𝐸′) which sends an
element 𝜎′

𝑗 ⊗𝜑𝑗 ∈ 𝐸′
𝑥 ⊗𝐸∗

𝑥 to the linear map from 𝐸𝑥 to 𝐸′
𝑥 given by 𝑒 ↦ 𝜑𝑗(𝑒)𝜎′

𝑗 .
Therefore, Hom(𝐸, 𝐸′) has local trivializations with the same transition functions
as 𝐸′ ⊗ 𝐸∗, and is thus a holomorphic vector bundle canonically isomorphic to
𝐸′ ⊗ 𝐸∗. In the special case 𝐸 = 𝐸′, the bundle Hom(𝐸, 𝐸) is denoted by End(𝐸)
and called the endomorphism bundle of 𝑬. //

Holomorphic Line Bundles
For the remainder of the chapter, we focus on holomorphic line bundles (i.e., holo-
morphic vector bundles of rank 1). Local trivializations of line bundles are most
easily expressed in terms of local frames, which in this case are just nonvanishing
local sections; and transition functions are GL(1, ℂ)-valued holomorphic functions,
which we can consider as nonvanishing holomorphic scalar-valued functions. The
next lemma shows how transition functions are related to local frames.

Lemma 3.25. Let 𝐿 → 𝑀 be a holomorphic line bundle. Suppose (𝑈𝛼 , Φ𝛼)
and (𝑈𝛽 , Φ𝛽) are holomorphic local trivializations of 𝐿, with transition function
𝜏𝛼𝛽 ∶ 𝑈𝛼 ∩ 𝑈𝛽 → GL(1, ℂ) from Φ𝛽 to Φ𝛼 . Then the holomorphic local frames 𝑠𝛼
and 𝑠𝛽 associated with these local trivializations are related on 𝑈𝛼 ∩ 𝑈𝛽 by

(3.4) 𝑠𝛽 = 𝜏𝛼𝛽𝑠𝛼 .
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Proof. By Lemma 3.3, for all 𝑝 ∈ 𝑈𝛼 ∩ 𝑈𝛽 we have

(3.5) 𝑠𝛼(𝑝) = Φ−1
𝛼 (𝑝, 𝑒1), 𝑠𝛽(𝑝) = Φ−1

𝛽 (𝑝, 𝑒1),
and by Lemma 3.1,

Φ𝛼 ∘ Φ−1
𝛽 (𝑝, 𝑒1) = (𝑝, 𝜏𝛼𝛽(𝑝)𝑒1).

Therefore,
Φ𝛼(𝑠𝛽(𝑝)) = Φ𝛼 ∘ Φ−1

𝛽 (𝑝, 𝑒1) = (𝑝, 𝜏𝛼𝛽(𝑝)𝑒1).
On the other hand, since Φ𝛼 is linear on fibers, (3.5) implies

Φ𝛼(𝜏𝛼𝛽(𝑝)𝑠𝛼(𝑝)) = 𝜏𝛼𝛽(𝑝)Φ𝛼(𝑠𝛼(𝑝)) = (𝑝, 𝜏𝛼𝛽(𝑝)𝑒1).
Comparing the last two equations and using the fact that Φ𝛼 is injective proves the
result. □

To help remember (3.4), observe that while the transition function 𝜏𝛼𝛽 expresses
the transition from the Φ𝛽 trivialization to the Φ𝛼 trivialization (see (3.1)), when
expressed in terms of frames, the same function goes the other way: it expresses
the transition from the 𝛼 frame to the 𝛽 frame.

As a consequence, the transition functions of some related bundles can be ex-
pressed easily in terms of those of the original bundles.
Lemma 3.26. Suppose 𝐿 and 𝐿′ are holomorphic line bundles over 𝑀 , and both
have local trivializations over the same trivializing cover with transition functions
𝜏𝛼𝛽 and 𝜏′

𝛼𝛽 , respectively.

(a) 𝐿∗ has transition functions 1/𝜏𝛼𝛽 .
(b) 𝐿 ⊗ 𝐿′ has transition functions 𝜏𝛼𝛽𝜏′

𝛼𝛽 .

(c) 𝐿𝑘 = 𝐿 ⊗ ⋯ ⊗ 𝐿 has transition functions (𝜏𝛼𝛽)𝑘.

► Exercise 3.27. Prove this lemma.

Next we note some important properties of the tensor product operation on
holomorphic line bundles.
Lemma 3.28. Let 𝑀 be a complex manifold, and let 𝐿, 𝐿′, 𝐿″ be holomorphic line
bundles over 𝑀 .

(a) (𝐿 ⊗ 𝐿′) ⊗ 𝐿″ ≅ 𝐿 ⊗ (𝐿′ ⊗ 𝐿″).
(b) 𝐿 ⊗ 𝐿′ ≅ 𝐿′ ⊗ 𝐿.
(c) If 𝐿1 and 𝐿′

1 are holomorphic line bundles isomorphic to 𝐿 and 𝐿′, re-
spectively, then 𝐿1 ⊗ 𝐿′

1 ≅ 𝐿 ⊗ 𝐿′.
(d) 𝐿 ⊗ 𝐿∗ is a trivial bundle.
(e) If 𝐿′ is trivial, then 𝐿 ⊗ 𝐿′ ≅ 𝐿.
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Proof. These all follow from the formulas given in Lemma 3.26 together with the
result of Corollary 3.8. □

Thanks to these results, we can make the following definition. Let 𝑀 be a
complex manifold, and let Pic(𝑀) denote the set of isomorphism classes of holo-
morphic line bundles over 𝑀 . (Although the class of all holomorphic line bundles
over 𝑀 is too big to be a set, the fact that isomorphism classes are determined by
their transition functions implies that the isomorphism classes do constitute a set.)
The next theorem shows that it is an abelian group in a natural way, called the Pi-
card group of 𝑴 after the French mathematician Charles Émile Picard, who first
defined it in the early twentieth century.

Theorem 3.29 (The Picard Group). If 𝑀 is a complex manifold, the product
operation defined by [𝐿1] ⋅ [𝐿2] = [𝐿1 ⊗ 𝐿2] turns the set Pic(𝑀) of isomorphism
classes of holomorphic line bundles over 𝑀 into an abelian group. The identity
element is the isomorphism class of any trivial bundle, and the inverse of [𝐿] is
[𝐿∗].

Proof. This follows easily from Lemma 3.28. □

The next lemma gives another way of understanding tensor power bundles.

Lemma 3.30. Let 𝐿 → 𝑀 be a holomorphic line bundle. For each positive integer
𝑑, the tensor power bundle (𝐿∗)𝑑 is naturally isomorphic to the bundle whose fiber
at a point 𝑝 ∈ 𝑀 is the space of functions 𝜑∶ 𝐿𝑝 → ℂ that are homogeneous of
degree 𝒅, meaning that 𝜑(𝜆𝑣) = 𝜆𝑑𝜑(𝑣) for all 𝜆 ∈ ℂ and 𝑣 ∈ 𝐿𝑝. If 𝑠∶ 𝑈 → 𝐿
is a holomorphic local frame for 𝐿, then a local section 𝜑 of (𝐿∗)𝑑 is holomorphic
on 𝑈 if and only if the function 𝑝 ↦ 𝜑(𝑠(𝑝)) is holomorphic.

Proof. Just as in smooth manifold theory, the fiber of (𝐿∗)𝑑 over 𝑝 is naturally
isomorphic to the space of 𝑑-linear maps from 𝐿𝑝 × ⋯ × 𝐿𝑝 to ℂ (see [LeeSM,
Prop. 12.10]). Since 𝐿𝑝 is 1-dimensional, each such map 𝜑 gives rise to a homo-
geneous map 𝜑̃∶ 𝐿𝑝 → ℂ of degree 𝑑 by 𝜑̃(𝑣) = 𝜑(𝑣, … , 𝑣); conversely, given
a homogeneous map 𝜑̃, we can recover 𝜑 by choosing a basis vector 𝑏 for 𝐿𝑝 and
defining 𝜑(𝑏, … , 𝑏) = 𝜑̃(𝑏), and noting that a multilinear map is determined by its
action on basis vectors.

If 𝑠 is a holomorphic local frame for 𝐿 and 𝜀 is the dual frame for 𝐿∗, then
𝜀𝑑 = 𝜀 ⊗ ⋯ ⊗ 𝜀 is a holomorphic local frame for (𝐿∗)𝑑 whose action on 𝑠 as
a homogeneous function is 𝜀𝑑(𝑠) = 1. Therefore an arbitrary section 𝜑 of (𝐿∗)𝑑

is a holomorphic multiple of this frame if and only if its action on 𝑠(𝑝) depends
holomorphically on 𝑝. □
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Line Bundles over Projective Space
There is one particularly important line bundle over ℂℙ𝑛. We define 𝑇 → ℂℙ𝑛 as
the following subbundle of the product bundle ℂℙ𝑛 × ℂ𝑛+1:

𝑇 = {(𝜉, 𝑧) ∈ ℂℙ𝑛 × ℂ𝑛+1 ∶ 𝑧 ∈ 𝜉}.
Proposition 3.31. 𝑇 → ℂℙ𝑛 is a holomorphic line bundle.

Proof. Wewill use the local frame criterion (Lemma 3.12). Because ℂℙ𝑛 ×ℂ𝑛+1 is
a product bundle, local sections of it are determined by functions from open subsets
of ℂℙ𝑛 to ℂ𝑛+1. On the open subset 𝑈𝛼 ⊆ ℂℙ𝑛 consisting of points [𝑤0, … , 𝑤𝑛]
with 𝑤𝛼 ≠ 0, we have a local section 𝑠𝛼 ∶ 𝑈𝛼 → 𝑇 defined by

(3.6) 𝑠𝛼([𝑤0, … , 𝑤𝑛]) = ([𝑤], 1
𝑤𝛼 (𝑤0, … , 𝑤𝑛)).

This local section is nowhere vanishing and spans the fiber of 𝑇 at each point of
𝑈𝛼 . In terms of affine coordinates (𝑧1, … , 𝑧𝑛) ↔ [𝑧1, … , 1, … , 𝑧𝑛], it has the local
representation (𝑧1, … , 𝑧𝑛) ↦ (𝑧1, … , 1, … , 𝑧𝑛), so it is holomorphic. The local
frame criterion shows that 𝑇 is a holomorphic line bundle. □

The bundle 𝑇 → ℂℙ𝑛 is called the tautological bundle because the fiber of 𝑇
over each 𝜉 ∈ ℂℙ𝑛 is exactly the line 𝜉 itself.

It will be useful to have explicit expressions for the transition functions for this
bundle and related ones.
Proposition 3.32 (Transition Functions onℂℙ𝒏). On each open subset𝑈𝛼 ⊆ ℂℙ𝑛

where 𝑤𝛼 ≠ 0, let 𝑠𝛼 ∶ 𝑈𝛼 → 𝑇 be the holomorphic section defined by (3.6). On
𝑈𝛼 ∩ 𝑈𝛽 , these sections satisfy 𝑠𝛽 = 𝜏𝛼𝛽𝑠𝛼 , where

(3.7) 𝜏𝛼𝛽([𝑤]) = 𝑤𝛼/𝑤𝛽 .
Thus 𝑇 ∗, 𝑇 𝑘 and (𝑇 ∗)𝑘 have trivializations over the same open sets, with transition
functions

𝜏𝛼𝛽([𝑤])𝑘 = (𝑤𝛼/𝑤𝛽)𝑘 for 𝑇 𝑘;(3.8)
𝜏𝛼𝛽([𝑤])−1 = 𝑤𝛽 /𝑤𝛼 for 𝑇 ∗;(3.9)
𝜏𝛼𝛽([𝑤])−𝑘 = (𝑤𝛽 /𝑤𝛼)𝑘 for (𝑇 ∗)𝑘.(3.10)

Proof. The formulas (3.8)–(3.10) follow from (3.7) and Lemma 3.26, so we need
only calculate the transition functions for 𝑇 . Let 𝑈𝛽 ⊆ ℂℙ𝑛 be the set where 𝑤𝛽 ≠ 0
and let 𝑠𝛽 ∶ 𝑈𝛽 → 𝑇 be the corresponding holomorphic section. Then (assuming
𝛼 < 𝛽 for simplicity), on 𝑈𝛼 ∩ 𝑈𝛽 we have

𝑠𝛽([𝑤]) = ([𝑤], (
𝑤0

𝑤𝛽 , … , 𝑤𝛼

𝑤𝛽 , … , 𝑤𝛽

𝑤𝛽 , … , 𝑤𝑛

𝑤𝛽 )) = 𝑤𝛼

𝑤𝛽 𝑠𝛼([𝑤]).

This proves (3.7). □
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Let us look more carefully at the structure of the tautological bundle. The first
thing to note is that because it is a holomorphic subbundle of the product bundle
ℂℙ𝑛 ×ℂ𝑛+1, it is an embedded complex submanifold of dimension 𝑛+1 (the dimen-
sion of the base plus the dimension of the fiber). To further understand its structure,
we use the fact that in addition to the bundle projection 𝑇 → ℂℙ𝑛, which is the re-
striction of the projection 𝜋1 ∶ ℂℙ𝑛 × ℂ𝑛+1 → ℂℙ𝑛, we have another projection
from 𝑇 to ℂ𝑛+1, namely the restriction of 𝜋2 ∶ ℂℙ𝑛 × ℂ𝑛+1 → ℂ𝑛+1.

Proposition 3.33. Let 𝑇0 ⊆ 𝑇 be the image of the zero section of 𝑇 , and let
Π∶ 𝑇 → ℂ𝑛+1 be the restriction of 𝜋2 ∶ ℂℙ𝑛 × ℂ𝑛+1 → ℂ𝑛+1. Then Π−1(0) = 𝑇0,
which is a complex submanifold of 𝑇 biholomorphic to ℂℙ𝑛, and Π restricts to a
biholomorphism from 𝑇 ∖ 𝑇0 to ℂ𝑛+1 ∖ {0}.

Proof. Directly from the definition of Π, it follows that Π−1(0) = {([𝑤], 0) ∶ [𝑤] ∈
ℂℙ𝑛}, which is exactly the image of the zero section 𝜁 ∶ ℂℙ𝑛 → 𝑇 . Because the
bundle projection 𝜋 ∶ 𝑇 → ℂℙ𝑛 is a holomorphic left inverse for 𝜁 , it follows that
𝜁 is a holomorphic embedding whose image is Π−1(0).

On the other hand, the restriction Π|𝑇 ∖𝑇0 ∶ 𝑇 ∖ 𝑇0 → ℂ𝑛+1 ∖ {0} has a holomor-
phic inverse given by 𝑣 ↦ ([𝑣], 𝑣), so it is a biholomorphism. □

Blowing Up

Proposition 3.33 shows that if 𝑇 is the tautological bundle over ℂℙ𝑛−1, we can
think of the total space of 𝑇 as a copy of ℂ𝑛 in which the origin has been replaced
by a copy of ℂℙ𝑛−1. This leads to a new way of constructing complex manifolds
out of other complex manifolds, by replacing a point in an 𝑛-manifold with a copy
of ℂℙ𝑛−1, modeled locally on the total space of 𝑇 .

Let 𝑀 be a complex 𝑛-manifold and 𝑝 ∈ 𝑀 . The blowup of 𝑴 at 𝒑 is a
complex manifold 𝑀̃ together with a surjective holomorphic map 𝜋 ∶ 𝑀̃ → 𝑀 ,
defined as follows. As a set, 𝑀̃ is the disjoint union of 𝑀 ∖ {𝑝} with ℙ(𝑇 ′

𝑝 𝑀)
(the projectivization of the holomorphic tangent space 𝑇 ′

𝑝 𝑀). Let 𝐸 = ℙ(𝑇 ′
𝑝 𝑀) ⊆

𝑀̃ (called the exceptional hypersurface of the blowup), and define 𝜋 ∶ 𝑀̃ → 𝑀
(called the blowdown map) by

𝜋(𝑧) =
{

𝑧, 𝑧 ∈ 𝑀̃ ∖ 𝐸,
𝑝, 𝑧 ∈ 𝐸.

Let 𝑇 be the tautological bundle over ℂℙ𝑛−1, and let Π∶ 𝑇 → ℂ𝑛 be the restriction
to 𝑇 of 𝜋2 ∶ ℂℙ𝑛−1 × ℂ𝑛 → ℂ𝑛, called the model blowdown map.
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Given a holomorphic coordinate chart (𝑈, 𝜑) for 𝑀 centered at 𝑝, with coordi-
nate functions (𝑧1, … , 𝑧𝑛), choose 𝜀 > 0 such that 𝐵𝜀(0) ⊆ 𝜑(𝑈). Let

𝑈(𝜀) = 𝜑−1(𝐵𝜀(0)) ⊆ 𝑀,(3.11)
𝑈(𝜀) = 𝜋−1(𝑈(𝜀)) ⊆ 𝑀̃,(3.12)
𝑇 (𝜀) = Π−1(𝐵𝜀(0)) ⊆ 𝑇 .(3.13)

Define a map Φ∶ 𝑇 (𝜀) → 𝑈(𝜀) by

(3.14) Φ([𝑤], 𝑧) =
⎧⎪
⎨
⎪⎩

𝜑−1(𝑧), 𝑧 ≠ 0,

[𝑤1 𝜕
𝜕𝑧1 |𝑝

+ ⋯ + 𝑤𝑛 𝜕
𝜕𝑧𝑛 |𝑝], 𝑧 = 0.

In the case when 𝑀 has complex dimension 1, ℙ(𝑇 ′
𝑝 𝑀) is a 0-dimensional

projective space, which is just a single point; in that case we just define 𝑀̃ = 𝑀
and 𝜋 to be the identity map.

Proposition 3.34 (Blowups Are Complex Manifolds). Let 𝑀 be a complex man-
ifold, 𝜋 ∶ 𝑀̃ → 𝑀 the blowup of 𝑀 at a point 𝑝 ∈ 𝑀 , and 𝐸 = 𝜋−1(𝑝). There is a
unique complex manifold structure on 𝑀̃ with the property that for each holomor-
phic coordinate chart for 𝑀 centered at 𝑝, the map Φ defined above is a biholo-
morphism onto a neighborhood of 𝐸. The blowdown map 𝜋 is holomorphic, and 𝐸
is an embedded compact complex hypersurface.

Proof. We will construct coordinate charts for 𝑀̃ and use the complex manifold
chart lemma to give it the structure of a complex manifold.

Since the blowdownmap 𝜋 restricts to a bijection from 𝑀̃∖𝐸 to 𝑀∖{𝑝}, we can
begin with all of the given holomorphic coordinate charts on 𝑀 ∖ {𝑝}, pulled back
to 𝑀̃ ∖𝐸 via 𝜋. To define holomorphic coordinates on a neighborhood of 𝐸, choose
a holomorphic coordinate chart (𝑈, 𝜑) for 𝑀 centered at 𝑝 and define Φ∶ 𝑇 (𝜀) →
𝑈(𝜀) as above. This is a bijection, so we can use holomorphic coordinates on 𝑇 (𝜀)
composedwith Φ−1 to define holomorphic coordinates on 𝑈(𝜀). These are certainly
all holomorphically compatible with each other, and because the restriction of Φ to
𝑇 (𝜀) ∖ 𝑇0 is a biholomorphism onto 𝑈(𝜀) ∖ 𝐸 ≈ 𝑈(𝜀) ∖ {𝑝}, these coordinates are
also holomorphically compatible with the given coordinates on 𝑀̃ ∖ 𝐸. The only
remaining thing to check is that the coordinates defined by any other holomorphic
chart (𝑈, 𝜑̃) centered at 𝑝 are compatible with these.

To that end, suppose (𝑈, 𝜑̃) is another chart centered at 𝑝, and let Φ̃ be the
corresponding map defined in the same way as Φ. Write the component functions
of 𝜑̃ ∘ 𝜑−1(𝑧) as ( ̃𝑧1(𝑧), … , ̃𝑧𝑛(𝑧)). The composite map Φ̃−1 ∘ Φ has the following
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form:

Φ̃−1 ∘ Φ([𝑤], 𝑧) =
⎧
⎪
⎨
⎪
⎩

([ ̃𝑧1(𝑧), … , ̃𝑧𝑛(𝑧)], ( ̃𝑧1(𝑧), … , ̃𝑧𝑛(𝑧))), 𝑧 ≠ 0,

([∑
𝑗

𝑤𝑗 𝜕 ̃𝑧1

𝜕𝑧𝑗 (0), … , ∑
𝑗

𝑤𝑗 𝜕 ̃𝑧𝑛

𝜕𝑧𝑗 (0)], 0), 𝑧 = 0.

To see that this is holomorphic, we will express it in another way. Using the Taylor
series for ̃𝑧𝑘 together with the fact that ̃𝑧𝑘(0) = 0, we can write

̃𝑧𝑘(𝑧) =
𝑛

∑
𝑗=1

𝑧𝑗𝑓 𝑘
𝑗 (𝑧)

for some holomorphic functions 𝑓 𝑘
𝑗 , with

𝑓 𝑘
𝑗 (0) = 𝜕 ̃𝑧𝑘

𝜕𝑧𝑗 (0).

Thus the composite map Φ̃−1 ∘ Φ is the restriction to 𝑇 (𝜀) of the holomorphic map
from ℂℙ𝑛−1 × ℂ𝑛 to itself given by

([𝑤], 𝑧) ↦ ([∑
𝑗

𝑤𝑗𝑓 1
𝑗 (𝑧), … , ∑

𝑗
𝑤𝑗𝑓 𝑛

𝑗 (𝑧)], ( ̃𝑧1(𝑧), … , ̃𝑧𝑛(𝑧))).

This shows that Φ̃−1 ∘ Φ is holomorphic, and the same argument applies to its in-
verse. Thus we have made 𝑀̃ into a complex manifold, and each of the maps Φ
defined above is a biholomorphism onto a neighborhood of 𝐸 as claimed. Since
any other such holomorphic structure must contain all of these charts, it must be
equal to this one.

To see that 𝜋 is holomorphic, just note that its restriction to 𝑀̃ ∖ 𝐸 is a biholo-
morphism onto its image, and its restriction to Φ(𝑇 (𝜀)) is equal to the holomorphic
composition 𝜑−1 ∘ Π ∘ Φ−1. Because 𝐸 is the image of the compact complex hy-
persurface 𝑇0 under the diffeomorphism Φ∶ 𝑇 (𝜀) → 𝑈(𝜀), it is itself an embedded
compact complex hypersurface. □

Similarly, we can define the blowup of 𝑀 at finitely many points 𝑝1, … , 𝑝𝑚 ∈
𝑀 by letting 𝑀̃ be the set

𝑀̃ = 𝑀 ∖ {𝑝1, … , 𝑝𝑚} ⨿ ℙ(𝑇 ′
𝑝1𝑀) ⨿ ⋯ ⨿ ℙ(𝑇 ′

𝑝𝑚𝑀),

with the obvious blowdown map 𝜋 ∶ 𝑀̃ → 𝑀 , and with the holomorphic struc-
ture on 𝑀̃ defined by applying the above construction in a neighborhood of each
exceptional hypersurface 𝜋−1(𝑝𝑖).

This blowup construction will play a major role in our proof of the Kodaira
embedding theorem in Chapter 10.
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Holomorphic Sections over Projective Space

We can describe explicitly the spaces of holomorphic sections of various line
bundles over ℂℙ𝑛. We begin with the tautological bundle.

Proposition 3.35. The tautological bundle 𝑇 → ℂℙ𝑛 has no nontrivial global
holomorphic sections.

Proof. Suppose 𝜎 ∶ ℂℙ𝑛 → 𝑇 is a holomorphic section. Composing with the
model blowdown map Π∶ 𝑇 → ℂ𝑛+1, we get a holomorphic map Π ∘ 𝜎 ∶ ℂℙ𝑛 →
ℂ𝑛+1. Because ℂℙ𝑛 is compact, each of the component functions of this map must
be constant. Thus there is some 𝑐 ∈ ℂ𝑛+1 such that Π ∘ 𝜎(ℂℙ𝑛) = {𝑐}.

For each 𝜉 ∈ ℂℙ𝑛, the value 𝜎(𝜉) lies in the fiber of 𝑇 over 𝜉, and thus the point
𝑐 = Π(𝜎(𝜉)) lies in the 1-dimensional subspace 𝜉 ⊆ ℂ𝑛+1. The only point in ℂ𝑛+1

that lies in every 1-dimensional subspace is the origin, and the preimage of 0 in 𝑇
contains only the zero point of each fiber, so 𝜎 is equal to the zero section. □

Next we look at the dual bundle of 𝑇 . Because it will turn out to be even more
important than 𝑇 itself, we use the symbol 𝐻 to denote the holomorphic line bundle
𝑇 ∗; the significance of this choice of notation will be explained in the next section.
Similarly, we use the notations

𝐻0 for the trivial bundle ℂℙ𝑛 × ℂ → ℂℙ𝑛,
𝐻𝑑 for the 𝑑-fold tensor power bundle 𝐻 ⊗ ⋯ ⊗ 𝐻 (𝑑 ≥ 1),

𝐻−1 for 𝑇 ≅ 𝐻∗,
𝐻−𝑑 for the 𝑑-fold tensor power bundle 𝑇 ⊗ ⋯ ⊗ 𝑇 (𝑑 ≥ 1).

The notation for negative powers of 𝐻 is motivated by the fact that 𝐻−𝑑 = 𝑇 𝑑 rep-
resents the inverse of 𝐻𝑑 in the Picard group. (In the algebraic geometry literature,
the notation 𝒪(𝑑) is often used to denote the line bundle 𝐻𝑑 ; see the discussion
following Exercise 5.15 for an explanation of the reason for this notation.)

We can construct some nontrivial sections of 𝐻 and its positive tensor powers
in the following way. By Lemma 3.30, for 𝑑 ≥ 1, the fiber of 𝐻𝑑 at 𝜉 ∈ ℂℙ𝑛 can
be identified with the set of functions from the line 𝜉 to ℂ that are homogeneous of
degree 𝑑. One way of constructing a section of 𝐻𝑑 is to start with a homogeneous
holomorphic degree-𝑑 polynomial 𝑓 ∶ ℂ𝑛+1 → ℂ and restrict it to each 1-dimen-
sional subspace of ℂ𝑛+1. This yields a rough section 𝜑𝑓 ∶ ℂℙ𝑛 → 𝐻𝑑 , given
explicitly by
(3.15) 𝜑𝑓 (𝜉) = 𝑓|𝜉 .

To see that this section is holomorphic, choose affine coordinates (𝑧1, … , 𝑧𝑛) ↔
[𝑧1, … , 1, … , 𝑧𝑛] on the open set 𝑈𝛼 ⊆ ℂℙ𝑛 where the 𝛼th homogeneous coordi-
nate is nonzero. Over 𝑈𝛼 , we have a local holomorphic frame 𝑠𝛼 ∶ 𝑈𝛼 → 𝑇 defined
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by (3.6). The section 𝜑𝑓 applied to 𝑠𝛼 gives

𝜑𝑓 (𝑠𝛼([𝑧1, … , 1, … , 𝑧𝑛])) = 𝑓(𝑧1, … , 1, … , 𝑧𝑛),

which is holomorphic, so it follows from Lemma 3.30 that 𝜑𝑓 is a holomorphic
section.

The next theorem shows that we have produced all of the nontrivial holomor-
phic sections of powers of 𝐻 .

Theorem 3.36 (Holomorphic Sections of Projective Line Bundles). Let 𝐻 →
ℂℙ𝑛 be the dual of the tautological bundle. The global holomorphic sections of
powers of 𝐻 are described as follows. Let 𝑑 be a positive integer.

𝒪(ℂℙ𝑛; 𝐻−𝑑) = {0}.
𝒪(ℂℙ𝑛; 𝐻0) = {constants}.
𝒪(ℂℙ𝑛; 𝐻𝑑) = {𝜑𝑓 ∶ 𝑓 a homogeneous holomorphic degree-𝑑 polynomial}.

Proof. Proposition 3.35 showed that the only global holomorphic section of 𝑇 =
𝐻−1 is the zero section. Assume for the sake of contradiction that 𝜎 is a nontrivial
holomorphic section of 𝐻−𝑑 for some 𝑑 ≥ 2. We showed above that 𝐻𝑑−1 has
a nontrivial holomorphic section 𝜑𝑓 . Then 𝜎 ⊗ 𝜑𝑓 is a nontrivial holomorphic
section of 𝐻−𝑑 ⊗ 𝐻𝑑−1 ≅ 𝐻−1, which is a contradiction.

Because a holomorphic section of the trivial bundle 𝐻0 is just a scalar-valued
holomorphic function, it follows from Corollary 1.33 that the only global holomor-
phic sections of 𝐻0 are constants.

Now consider 𝐻𝑑 for 𝑑 > 0. We observed above that every homogeneous
holomorphic degree-𝑑 polynomial 𝑓 gives rise to a holomorphic section 𝜑𝑓 , so
we just need to show that every holomorphic section is of this form. Let 𝜎 ∈
𝒪(ℂℙ𝑛; 𝐻𝑑) be arbitrary. We can define a holomorphic function 𝑓 ∶ ℂ𝑛+1 ∖ {0}
→ ℂ by

𝑓(𝑧) = 𝜎([𝑧])(𝑧),
where we are viewing 𝜎([𝑧]) ∈ (𝐻[𝑧])𝑑 as a homogeneous function from the line
[𝑧] to ℂ. By Hartogs’s extension theorem, 𝑓 extends to a holomorphic function on
all of ℂ𝑛+1. It satisfies 𝑓(𝜆𝑧) = 𝜆𝑑𝑓(𝑧) for all 𝜆 ∈ ℂ and 𝑧 ∈ ℂ𝑛+1 ∖ {0}, and thus
also for 𝑧 = 0 by continuity; in other words, it is homogeneous of degree 𝑑.

We will show that 𝑓 is actually a polynomial. For nonzero 𝑧 ∈ ℂ𝑛+1, homo-
geneity implies

|𝑓 (𝑧)| = |𝑧|𝑑
|𝑓(

𝑧
|𝑧|)| ≤ 𝐶|𝑧|𝑑 ,

where 𝐶 is the supremum of |𝑓 | on the unit sphere. This implies that the Taylor
series of 𝑓 at the origin has no terms of order less than 𝑑. Let 𝑝 be the polynomial
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function obtained by considering only the terms of degree 𝑑 in the Taylor series for
𝑓 at the origin:

𝑝(𝑧) = ∑
𝑘1+⋯+𝑘𝑛=𝑑

𝑎𝑘1…𝑘𝑛(𝑧1)𝑘1 ⋯ (𝑧𝑛)𝑘𝑛 ,

and let 𝑟(𝑧) = 𝑓(𝑧)−𝑝(𝑧). Then 𝑟 is homogeneous of degree 𝑑 because 𝑓 and 𝑝 are.
Since the Taylor series of 𝑟 starts with terms of order 𝑑 + 1, there is some constant
𝐶′ such that |𝑟(𝑧)| ≤ 𝐶′|𝑧|𝑑+1 for all 𝑧 in the closed unit ball. For any 𝑧 ∈ ℂ𝑛+1

and 𝜀 > 0 small enough that |𝜀𝑧| ≤ 1, we have
|𝑟(𝑧)| = 𝜀−𝑑|𝑟(𝜀𝑧)| ≤ 𝜀−𝑑𝐶′|𝜀𝑧|𝑑+1 = 𝜀𝐶′|𝑧|.

Taking the limit as 𝜀 → 0, we find that 𝑟(𝑧) ≡ 0. Thus 𝑓 is equal to the polynomial
𝑝, and 𝜎 = 𝜑𝑝. □

We will see later that every holomorphic line bundle on ℂℙ𝑛 is isomorphic to
𝐻𝑑 for some integer 𝑑 (see Proposition 9.51).

Applications of Holomorphic Line Bundles
We end the chapter by describing two significant applications of holomorphic line
bundles.

Line Bundles and Hypersurfaces

In ℂ𝑛, many complex hypersurfaces can be written as regular level sets of glob-
ally defined holomorphic functions. But in a compact complex manifold, this is
never possible, because all global holomorphic functions are constants. Instead,
we can use sections of line bundles.

Suppose 𝑀 is a complex manifold, 𝐿 → 𝑀 is a holomorphic line bundle, and
𝜎 ∈ 𝒪(𝑀; 𝐿). The variety determined by 𝝈 is the set 𝑉𝜎 = {𝑝 ∈ 𝑀 ∶ 𝜎(𝑝) = 0}.
We say the section 𝜎 vanishes simply if whenever 𝑠 is a local holomorphic frame
for 𝐿, we can write 𝜎 = 𝑓𝑠 where 𝑑𝑓𝑝 ≠ 0 whenever 𝑓(𝑝) = 0. It is easy to
check that this condition is independent of the choice of local frame, and if 𝜎 is a
holomorphic section that vanishes simply, then 𝑉𝜎 is a closed complex hypersurface
(i.e., a codimension-1 complex submanifold that is a closed subset of 𝑀).
Example 3.37. Suppose 𝑓 ∶ ℂ𝑛+1 → ℂ is a homogeneous holomorphic polyno-
mial of degree 𝑑, and 𝑉 ⊆ ℂℙ𝑛 is the algebraic variety determined by 𝑓 . The
polynomial 𝑓 also defines a holomorphic section 𝜑𝑓 ∶ ℂℙ𝑛 → 𝐻𝑑 as in (3.15),
and 𝑉 is exactly the variety determined by this section.

In particular, in the case 𝑑 = 1, holomorphic sections of 𝐻 are of the form
𝜑𝑓 where 𝑓 is a complex-linear functional on ℂ𝑛+1, and the varieties determined
by such sections are exactly the projective hyperplanes in ℂℙ𝑛. For this reason,
the bundle 𝐻 is called the hyperplane bundle (which explains our choice of the
notation 𝐻). //
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It turns out that every closed complex hypersurface is cut out by a holomorphic
section of a line bundle in this way. If 𝑀 is a complex manifold and 𝑆 ⊆ 𝑀 is a
closed complex hypersurface, let us say an open cover {𝑈𝛼}𝛼∈𝐴 of 𝑀 together with
holomorphic functions 𝑓𝛼 ∶ 𝑈𝛼 → ℂ is a system of local defining functions for 𝑺
if each function 𝑓𝛼 vanishes simply on 𝑈𝛼 ∩ 𝑆 and nowhere else. Every closed
complex hypersurface has such a system: Corollary 2.13 shows that there is a local
defining function in a neighborhood of each point of 𝑆, and because 𝑆 is closed we
can obtain an open cover of 𝑀 by adding in the open set 𝑈0 = 𝑀 ∖ 𝑆 with 𝑓0 ≡ 1.

The next lemma provides a weak sort of uniqueness for local defining functions.
Lemma 3.38. Suppose 𝑀 is a complex manifold and 𝑆 ⊆ 𝑀 is a complex hyper-
surface. If 𝑈 ⊆ 𝑀 is open and 𝑓1, 𝑓2 ∶ 𝑈 → ℂ are holomorphic functions that
vanish simply on 𝑈 ∩𝑆 and nowhere else, then there is a nonvanishing holomorphic
function ℎ∶ 𝑈 → ℂ such that 𝑓2 = ℎ𝑓1.

Proof. Given 𝑓1, 𝑓2 as in the statement of the lemma, for each point 𝑝 ∈ 𝑈 ∩ 𝑆
(if there are any), we can choose local holomorphic slice coordinates (𝑧1, … , 𝑧𝑛)
on a neighborhood 𝑊 of 𝑝 such that 𝑆 ∩ 𝑊 is the set where 𝑧𝑛 = 0. Since
𝑓1(𝑧1, … , 𝑧𝑛−1, 0) ≡ 0, the Taylor series of 𝑓1 centered at any point of 𝑊 ∩ 𝑆
has no terms that are of order zero in the variable 𝑧𝑛, and we can factor out 𝑧𝑛 to
write 𝑓1(𝑧) = 𝑧𝑛𝑔1(𝑧) for some holomorphic function 𝑔1. The fact that 𝑓1 vanishes
simply on 𝑈 ∩ 𝑆 implies that 𝑑𝑓1 is nonvanishing at points where 𝑧𝑛 = 0, so we
must have 𝑔1 ≠ 0 on on 𝑊 ∩ 𝑆. Similarly, 𝑓2(𝑧) = 𝑧𝑛𝑔2(𝑧) with 𝑔2 nonzero on
𝑊 ∩ 𝑆. It follows that everywhere in 𝑊 ∖ 𝑆,

𝑓2(𝑧)
𝑓1(𝑧) = 𝑔2(𝑧)

𝑔1(𝑧) ,

which extends to a nonvanishing holomorphic function on all of 𝑊 . Since the
complement of 𝑆 is dense in 𝑈 , the extension is unique by continuity. Thus 𝑓2/𝑓1
extends uniquely to a nonvanishing holomorphic function in a neighborhood of
each point of 𝑈 , and by uniqueness the extensions all fit together to determine a
nowhere-vanishing holomorphic function ℎ∶ 𝑈 → ℂ satisfying 𝑓2 = ℎ𝑓1. □

Theorem 3.39 (Line Bundle Associated with a Hypersurface). Suppose 𝑀 is a
complex manifold and 𝑆 ⊆ 𝑀 is a closed complex hypersurface. Then there exist
a holomorphic line bundle 𝐿𝑆 → 𝑀 , called the associated line bundle for 𝑺, and
a holomorphic section 𝜎 ∈ 𝒪(𝑀; 𝐿𝑆) that vanishes simply on 𝑆 and nowhere else.
Any two line bundles that admit holomorphic sections vanishing simply only on 𝑆
are isomorphic.

Proof. Let {(𝑈𝛼 , 𝑓𝛼)}𝛼∈𝐴 be a system of local defining functions for 𝑆. Whenever
𝑈𝛼 ∩ 𝑈𝛽 ≠ ∅, Lemma 3.38 shows that that there is a nowhere-vanishing holomor-
phic function 𝜏𝛼𝛽 ∶ 𝑈𝛼 ∩ 𝑈𝛽 → GL(1, ℂ) such that 𝜏𝛼𝛽 = 𝑓𝛼/𝑓𝛽 on the complement
of 𝑆.
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When 𝑈𝛼 ∩ 𝑈𝛽 ∩ 𝑈𝛾 ≠ ∅, on the complement of 𝑆 we have

𝜏𝛼𝛽𝜏𝛽𝛾 = 𝑓𝛼
𝑓𝛽

𝑓𝛽
𝑓𝛾

= 𝜏𝛼𝛾 ,

and the same holds by continuity on all of 𝑈𝛼 ∩ 𝑈𝛽 ∩ 𝑈𝛾 . Thus we have the data
to apply the bundle construction theorem and obtain a holomorphic line bundle
𝐿𝑆 → 𝑀 , with a trivialization over each set 𝑈𝛼 and transition functions 𝜏𝛼𝛽 . The
associated local frames 𝑠𝛼 ∶ 𝑈𝛼 → 𝐿𝑆 satisfy (3.4).

We define a holomorphic section 𝜎 ∶ 𝑀 → 𝐿𝑆 by setting

𝜎(𝑝) = 𝑓𝛼(𝑝)𝑠𝛼(𝑝) for 𝑝 ∈ 𝑈𝛼 .

Equation (3.4) guarantees that these definitions agree where they overlap, and it
follows immediately that 𝑆 is the variety determined by 𝜎, and 𝜎 vanishes simply
on 𝑆.

To show that any two such bundles are isomorphic, suppose 𝐿′ → 𝑀 is another
holomorphic line bundle and 𝜎′ ∶ 𝑀 → 𝐿′ is a holomorphic section that vanishes
simply on 𝑆 and nowhere else. We can choose an open cover {𝑈𝛼}𝛼∈𝐴 that is
a trivializing cover for both bundles. Let 𝑠𝛼 ∶ 𝑈𝛼 → 𝐿𝑆 and 𝑠′

𝛼 ∶ 𝑈𝛼 → 𝐿′ be
holomorphic local frames, and let 𝜏𝛼𝛽 and 𝜏′

𝛼𝛽 be the associated transition functions
so that

(3.16) 𝑠𝛽 = 𝜏𝛼𝛽𝑠𝛼 , 𝑠′
𝛽 = 𝜏′

𝛼𝛽𝑠′
𝛼 .

In each open set 𝑈𝛼 , we can write 𝜎 = 𝑓𝛼𝑠𝛼 and 𝜎′ = 𝑓 ′
𝛼𝑠′

𝛼 for some holomor-
phic functions 𝑓𝛼 , 𝑓 ′

𝛼 that vanish simply on 𝑆. Lemma 3.38 shows that 𝜓𝛼 = 𝑓 ′
𝛼/𝑓𝛼

extends to a nonvanishing holomorphic function on all of 𝑈𝛼 .
On 𝑈𝛼 ∩ 𝑈𝛽 , we have

𝑓𝛼𝑠𝛼 = 𝜎 = 𝑓𝛽𝑠𝛽 = 𝑓𝛽𝜏𝛼𝛽𝑠𝛼 ,

which implies 𝑓𝛼 = 𝑓𝛽𝜏𝛼𝛽 , and similarly 𝑓 ′
𝛼 = 𝑓 ′

𝛽𝜏′
𝛼𝛽 . Therefore, on (𝑈𝛼 ∩ 𝑈𝛽) ∖ 𝑆,

we have

𝜏𝛼𝛽 =
(𝑓 ′

𝛼)(𝑓𝛽𝜏𝛼𝛽)
𝑓 ′

𝛼𝑓𝛽
=

(𝑓 ′
𝛽𝜏′

𝛼𝛽)(𝑓𝛼)
𝑓 ′

𝛼𝑓𝛽
= 𝜓−1

𝛼 𝜏′
𝛼𝛽𝜓𝛽 ,

and the same formula holds on all of 𝑈𝛼 ∩ 𝑈𝛽 by continuity. Thus 𝐿′ ≅ 𝐿𝑆 by the
isomorphism criterion (Prop. 3.7). □

Example 3.40 (Line Bundles Associated with Algebraic Hypersurfaces). Sup-
pose 𝑆 ⊆ ℂℙ𝑛 is a nonsingular projective algebraic hypersurface defined by a sin-
gle homogeneous polynomial of degree 𝑑. Example 3.37 showed there is a global
holomorphic section of 𝐻𝑑 that vanishes simply on 𝑆 and nowhere else; thus by
uniqueness, 𝐿𝑆 ≅ 𝐻𝑑 . //
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Line Bundles and Divisors on Riemann Surfaces

The association between line bundles and hypersurfaces is particularly impor-
tant for Riemann surfaces (complex 1-manifolds). If 𝑀 is a compact Riemann
surface, a closed hypersurface in 𝑀 is just a finite collection of points. A bundle
𝐿{𝑝} associated with a single point is called a point bundle.

As we have seen, some holomorphic line bundles on Riemann surfaces (such
as the tautological bundle on ℂℙ1) have no nontrivial holomorphic sections at all.
But we can get more information about the relationship between line bundles and
hypersurfaces in this case by by expanding the type of sections we consider.

Let 𝑀 be a Riemann surface. Ameromorphic function on 𝑀 is a holomorphic
function 𝑓 ∶ 𝑀 ∖ 𝑃 → ℂ, where 𝑃 is a closed discrete subset of 𝑀 , such that for
each 𝑝 ∈ 𝑃 , the function 1/𝑓 extends to a holomorphic function on a neighborhood
of 𝑝 that vanishes at 𝑝. Each 𝑝 ∈ 𝑃 is called a pole of 𝒇 , and the order of the zero
of 1/𝑓 at 𝑝 is called the order of the pole. To put it another way, for each 𝑝 ∈ 𝑀 , if
𝑧 is a holomorphic coordinate centered at 𝑝, we can write 𝑓 in a punctured neigh-
borhood of 𝑝 in the form 𝑓(𝑧) = 𝑧𝑘ℎ(𝑧) for some integer 𝑘 and some nonvanishing
holomorphic function ℎ defined on a neighborhood of 𝑝; if 𝑘 > 0, then 𝑝 is a zero
of order 𝑘, and if 𝑘 < 0, then 𝑝 is a pole of order |𝑘|.

Similarly, if 𝐿 → 𝑀 is a holomorphic line bundle, a meromorphic section of
𝑳 is a holomorphic section defined on the complement of a closed discrete subset
𝑃 ⊆ 𝑀 such that for each 𝑝 ∈ 𝑃 , if 𝑠 is a holomorphic local frame for 𝐿 on a
neighborhood of 𝑝, then 𝜎(𝑧) = 𝑓(𝑧)𝑠(𝑧) for some function 𝑓 that has a pole at 𝑝.
It is an easy exercise to check that in both cases, the order of a pole is independent
of the choice of coordinates or local frame.

We will be primarily concerned with the case in which 𝑀 is compact. In that
case, the set of poles of a meromorphic function or section is finite, as is the set of
zeros.

There is a simple algebraic construction that can be used to keep track of the
locations and orders of zeros and poles of meromorphic functions or sections. For a
compact Riemann surface 𝑀 , a divisor on 𝑀 is a finite formal linear combination
of points of 𝑀 with integer coefficients (that is, an element of the free abelian group
on the set of points of 𝑀 ; see [LeeTM, p. 244]). A divisor 𝐷 = ∑𝑗 𝑛𝑗𝑝𝑗 is said
to be effective if each of the integers 𝑛𝑗 is nonnegative. The set of divisors on 𝑀
forms an abelian group under addition, the free abelian group on the points of 𝑀 .
It is denoted by Div(𝑀).

If 𝑓 is a meromorphic function on 𝑀 , we define the divisor of 𝒇 , denoted by
(𝑓 ), to be the sum

(𝑓 ) =
𝑘

∑
𝑖=1

𝑛𝑖𝑝𝑖 −
𝑙

∑
𝑗=1

𝑚𝑗𝑞𝑗 ,
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where 𝑝1, … , 𝑝𝑘 are the zeros of 𝑓 , 𝑞1, … , 𝑞𝑙 are its poles, and the integers 𝑛𝑖 and 𝑚𝑗
are their respective orders. A divisor of the form 𝐷 = (𝑓) for some meromorphic
function 𝑓 is called a principal divisor. The divisor of a product of meromorphic
functions is the sum of the divisors of the factors: (𝑓𝑔) = (𝑓) + (𝑔), with the
understanding that a product like (𝑧 − 𝑎)𝑘(𝑧 − 𝑎)𝑙 results in a removable singularity
at 𝑧 = 𝑎 if 𝑘 + 𝑙 ≥ 0. Therefore, the set of principal divisors forms a subgroup
of Div(𝑀). Two divisors are said to be linearly equivalent if their difference is a
principal divisor. The quotient of the group of divisors modulo principal divisors
is called the divisor class group of 𝑴 , and denoted by Cl(𝑀).

The divisor of a meromorphic section 𝜎 of a holomorphic line bundle is de-
fined similarly and denoted by (𝜎). Such a divisor is effective if and only if 𝜎 is a
holomorphic section.

Here is a generalization of Theorem 3.39.

Theorem3.41 (LineBundleAssociatedwith aDivisor). Suppose𝑀 is a compact
Riemann surface. For each divisor 𝐷 ∈ Div(𝑀), there exist a holomorphic line
bundle 𝐿𝐷 → 𝑀 , called the associated line bundle for 𝑫, and a meromorphic
section of 𝐿𝐷, unique up to a constant multiple, whose divisor is equal to 𝐷. The
bundle is unique in the sense that any other holomorphic line bundle that admits
a meromorphic section with divisor equal to 𝐷 is isomorphic to 𝐿𝐷. The map
sending 𝐷 to the isomorphism class of 𝐿𝐷 is a homomorphism from Div(𝑀) to
Pic(𝑀), whose kernel is the group of principal divisors; thus it descends to an
injective homomorphism from Cl(𝑀) to Pic(𝑀).

Proof. Given 𝐷 ∈ Div(𝑀), write 𝐷 = ∑𝑘
𝛼=1 𝑛𝛼𝑝𝛼 . For each 𝛼 such that 𝑛𝛼 ≠ 0,

choose a neighborhood 𝑈𝛼 of 𝑝𝛼 and a meromorphic function 𝑓𝛼 on 𝑈𝛼 that is
holomorphic and nonvanishing on 𝑈𝛼 ∖ {𝑝𝛼} and has a zero of order 𝑛𝛼 if 𝑛𝛼 > 0
and a pole of order |𝑛𝛼| if 𝑛𝛼 < 0. Let 𝑈0 = 𝑀 ∖ {𝑝1, … , 𝑝𝑘}, and 𝑓0 ≡ 1.
Whenever 𝑈𝛼 ∩ 𝑈𝛽 ≠ ∅, there is a nowhere-vanishing holomorphic function
𝜏𝛼𝛽 ∶ 𝑈𝛼 ∩ 𝑈𝛽 → GL(1, ℂ) such that 𝜏𝛼𝛽 = 𝑓𝛼/𝑓𝛽 on the complement of {𝑝𝛼 , 𝑝𝛽}.
As in the proof of Theorem 3.39, when 𝑈𝛼 ∩ 𝑈𝛽 ∩ 𝑈𝛾 ≠ ∅, we have 𝜏𝛼𝛽𝜏𝛽𝛾 = 𝜏𝛼𝛾 .
The bundle construction theorem yields a holomorphic line bundle 𝐿𝐷 → 𝑀 , with
a holomorphic local frame 𝑠𝛼 on each set 𝑈𝛼 and transition functions 𝜏𝛼𝛽 . The
meromorphic section 𝜎 is defined as before by setting 𝜎 = 𝑓𝛼𝑠𝛼 on 𝑈𝛼 , and noting
that these sections agree on overlaps. It follows immediately from the definition
that (𝜎) = 𝐷. If 𝜏 is another meromorphic section with the same divisor, then the
ratio 𝜎/𝜏 has only removable singularities; thus it can be considered as a globally
defined holomorphic function, and is therefore constant.

If 𝐿′ → 𝑀 is another holomorphic line bundle that admits a meromorphic
section with the same divisor, the same argument as in the proof of Theorem 3.41
shows that 𝐿′ ≅ 𝐿𝐷.
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To see that the map 𝐷 ↦ [𝐿𝐷] is a homomorphism, suppose 𝐷 and 𝐷′ are di-
visors. Then there are meromorphic sections 𝜎 of 𝐿𝐷 and 𝜎′ of 𝐿𝐷′ whose divisors
are 𝐷 and 𝐷′, respectively. Then 𝜎 ⊗ 𝜎′ is a section of 𝐿𝐷 ⊗ 𝐿𝐷′ whose divisor
is 𝐷 + 𝐷′, so the uniqueness argument above shows that 𝐿𝐷 ⊗ 𝐿𝐷′ ≅ 𝐿𝐷+𝐷′ .

To verify the statement about the kernel of this homorphism, first suppose that
𝐷 is in the kernel. That means 𝐿𝐷 is a trivial bundle, and it has a meromorphic
section 𝜎 whose divisor is 𝐷. Since a meromorphic section of the trivial bundle
is just a meromorphic function, this shows that 𝐷 is principal. Conversely, if 𝐷 is
principal, there is a global meromorphic function 𝑓 such that 𝐷 = (𝑓). Since a
meromorphic function is the same as a meromorphic section of the trivial bundle,
the uniqueness statement in the first part of the proof shows that 𝐿𝐷 is isomorphic
to the trivial bundle. □

Wewill show in Chapter 9 (see Thm. 9.61) that in fact the homomorphism from
Div(𝑀) to Pic(𝑀) is surjective, so it induces an isomorphism between the divisor
class group Cl(𝑀) and Pic(𝑀).

We should note that there is also a theory of divisors on higher-dimensional
complex manifolds; but because zeros and poles of meromorphic functions are no
longer isolated in that case, the theory is somewhat more complicated technically,
and we will not pursue it.

Line Bundles and Projective Embeddings

Our next major application of holomorphic line bundles will be as a tool for
constructing embeddings into projective spaces.

Suppose 𝑀 is a compact complex manifold and 𝐿 → 𝑀 is a holomorphic
line bundle. As Theorem 3.13 showed, the space 𝒪(𝑀; 𝐿) of global holomorphic
sections of 𝐿 is finite-dimensional. A point 𝑝 ∈ 𝑀 is called a base point for 𝑳
if every global holomorphic section of 𝐿 vanishes at 𝑝. The set of base points is
denoted by 𝐵(𝐿) and called the base locus of 𝑳.

If 𝐿 has at least one nontrivial holomorphic section, by choosing a basis
(𝑠0, … , 𝑠𝑚) for 𝒪(𝑀; 𝐿) we can define a map from 𝑀 ∖ 𝐵(𝐿) to ℂℙ𝑚 as follows.
Given 𝑝0 ∈ 𝑀 ∖ 𝐵(𝐿), choose a local frame 𝑠 for 𝐿 in a neighborhood 𝑈 of 𝑝0, ex-
press each section 𝑠𝑗 locally as 𝑠𝑗 = 𝑓𝑗𝑠 for some holomorphic function 𝑓𝑗 ∈ 𝒪(𝑈),
and map each 𝑝 ∈ 𝑈 to the point [𝑓0(𝑝), … , 𝑓𝑚(𝑝)] ∈ ℂℙ𝑛. To see that this does
not depend on the choice of local frame, let ̃𝑠 be any other local frame for 𝐿, so
there is a nonvanishing transition function 𝜏 satisfying ̃𝑠 = 𝜏𝑠 in a neighborhood
of 𝑝0. If we write 𝑠𝑗 = 𝑓𝑗 ̃𝑠, then 𝑓𝑗𝜏 = 𝑓𝑗 , and therefore [𝑓0(𝑝), … , 𝑓𝑚(𝑝)] =
[𝜏(𝑝)𝑓0(𝑝), … , 𝜏(𝑝)𝑓𝑚(𝑝)] = [𝑓0(𝑝), … , 𝑓𝑚(𝑝)]. Thus it makes sense to introduce
the notation [𝑠0(𝑝), … , 𝑠𝑚(𝑝)] to denote the point [𝑓0(𝑝), … , 𝑓𝑚(𝑝)] with respect
to any local frame, and define a holomorphic map 𝐹 ∶ 𝑀 ∖ 𝐵(𝐿) → ℂℙ𝑚 by
𝐹 (𝑝) = [𝑠0(𝑝), … , 𝑠𝑚(𝑝)]. Any two bases for 𝒪(𝑀; 𝐿) differ by a complex-linear
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isomorphism, and therefore the corresponding maps differ by a projective transfor-
mation. Any one of these maps is called an associated map for 𝐿.

There are simple criteria for deciding when a map associated to a line bundle
𝐿 → 𝑀 is a global embedding, based on the following lemma.

Lemma 3.42. Suppose 𝑀 is a compact complex manifold and 𝐿 → 𝑀 is a holo-
morphic line bundle that admits at least one nontrivial global holomorphic section.
Let 𝐹 ∶ 𝑀 ∖ 𝐵(𝐿) → ℂℙ𝑚 be an associated map.

(a) Given distinct points 𝑝, 𝑞 ∈ 𝑀 ∖ 𝐵(𝐿), 𝐹 (𝑝) ≠ 𝐹 (𝑞) if and only if there
exists a holomorphic section 𝜎 of 𝐿 such that 𝜎(𝑝) = 0 and 𝜎(𝑞) ≠ 0.

(b) Given 𝑝 ∈ 𝑀 ∖ 𝐵(𝐿) and 𝑣 ∈ 𝑇 ′
𝑝 𝑀 , 𝐷′𝐹 (𝑝)𝑣 ≠ 0 if and only if there is

a holomorphic section 𝜎 of 𝐿 such that 𝜎(𝑝) = 0 and 𝑣𝜎(𝑝) ≠ 0, where
𝜎 is the component function of 𝜎 with respect to some holomorphic local
frame.

Proof. If 𝑀 is a one-point space, then both claims are vacuously true, so assume
henceforth that 𝑀 contains at least two points. Choose a basis (𝑠0, … , 𝑠𝑚) for
𝒪(𝑀; 𝐿) and write the associated map as 𝐹 (𝑝) = [𝑠0(𝑝), … , 𝑠𝑚(𝑝)].

To prove (a), let 𝑝, 𝑞 ∈ 𝑀 ∖ 𝐵(𝐿) be arbitrary distinct points, and suppose first
that there exists a section 𝜎 = ∑𝑚

𝑗=0 𝑎𝑗𝑠𝑗 ∈ 𝒪(𝑀; 𝐿) with 𝜎(𝑝) = 0 and 𝜎(𝑞) ≠ 0.
It follows that 𝐹 (𝑝) lies in the projective hyperplane defined by the linear function
𝑓(𝑤) = ∑𝑚

𝑗=0 𝑎𝑗𝑤𝑗 but 𝐹 (𝑞) does not, so 𝐹 (𝑝) ≠ 𝐹 (𝑞).
Conversely, suppose there is no section 𝜎 satisfying 𝜎(𝑝) = 0 and 𝜎(𝑞) ≠ 0.

Since 𝑝 is not a base point, there is some 𝑗 such that 𝑠𝑗(𝑝) ≠ 0; after rearranging
the basis (which just changes 𝐹 by a projective transformation), we may assume
𝑠0(𝑝) ≠ 0. For each 𝑘, let 𝜎𝑘 = 𝑠𝑘 − (𝑠𝑘(𝑝)/𝑠0(𝑝))𝑠0, where the notation 𝑠𝑘(𝑝)/𝑠0(𝑝)
means the complex number 𝑏𝑘 such that 𝑠𝑘(𝑝) = 𝑏𝑘𝑠0(𝑝). Then 𝜎𝑘(𝑝) = 0 for each
𝑘, and our hypothesis implies that 𝜎𝑘(𝑞) = 0 as well. This means

𝑠𝑘(𝑞) = (
𝑠𝑘(𝑝)
𝑠0(𝑝) ) 𝑠0(𝑞) = 𝜆𝑠𝑘(𝑝) for each 𝑘, where 𝜆 = 𝑠0(𝑞)

𝑠0(𝑝) .

Thus [𝑠0(𝑞), … , 𝑠𝑚(𝑞)] = [𝜆𝑠0(𝑝), … , 𝜆𝑠𝑚(𝑝)] = [𝑠0(𝑝), … , 𝑠𝑚(𝑝)], which means
𝐹 (𝑞) = 𝐹 (𝑝).

To prove (b), let 𝑝 ∈ 𝑀 ∖ 𝐵(𝐿) and 𝑣 ∈ 𝑇 ′
𝑝 𝑀 be arbitrary. As above, we can

arrange that 𝑠0(𝑝) ≠ 0. We use 𝑠0 as a local frame for 𝐿 in a neighborhood of 𝑝, and
in that neighborhood write 𝑠𝑗 = 𝑓𝑗𝑠0 for some holomorphic functions 𝑓0, … , 𝑓𝑚
with 𝑓0 ≡ 1. Choose any holomorphic coordinates (𝑢𝑘) for 𝑀 on a neighborhood
of 𝑝, and use affine coordinates (𝑧1, … , 𝑧𝑚) ↔ [1, 𝑧1, … , 𝑧𝑚] on a neighborhood of
𝐹 (𝑝). Then 𝐹 has the coordinate representation 𝐹 (𝑢) = (𝑓1(𝑢), … , 𝑓𝑛(𝑢)), and for
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any 𝑣 = ∑𝑘 𝑣𝑘𝜕/𝜕𝑢𝑘 ∈ 𝑇 ′
𝑝 𝑀 we have

(3.17) 𝐷′𝐹 (𝑝)𝑣 = ∑
𝑗,𝑘

𝜕𝑓𝑗
𝜕𝑢𝑘 (𝑝)𝑣𝑘 𝜕

𝜕𝑧𝑗 |𝐹 (𝑝)
= ∑

𝑗
𝑣(𝑓𝑗) 𝜕

𝜕𝑧𝑗 |𝐹 (𝑝)
.

Suppose there is a section 𝜎 = ∑𝑚
𝑗=0 𝑎𝑗𝑠𝑗 such that 𝜎(𝑝) = 0 and 𝑣(𝜎) ≠ 0.

Note that our choice of 𝑠0 as a local frame implies

𝜎 =
𝑚

∑
𝑗=0

𝑎𝑗𝑠𝑗 = (
𝑚

∑
𝑗=0

𝑎𝑗𝑓𝑗)𝑠0,

so the component function of 𝜎 is 𝜎 = ∑𝑚
𝑗=0 𝑎𝑗𝑓𝑗 . The fact that 𝑣(𝜎) ≠ 0 implies

that 𝑣(𝑓𝑗) ≠ 0 for some 𝑗 ≥ 1, and therefore (3.17) shows that 𝐷′𝐹 (𝑝)𝑣 ≠ 0.
Conversely, assume 𝐷′𝐹 (𝑝)𝑣 ≠ 0. Then (3.17) implies that

𝑣(𝑓𝑗) = 𝑣𝑘 𝜕𝑓 𝑗

𝜕𝑢𝑘 (𝑝) ≠ 0 for some 𝑗,

which proves that the condition of (b) is satisfied with 𝜎 = 𝑠𝑗 . □

Given a holomorphic line bundle 𝐿 over a complex manifold 𝑀 , we say
𝒪(𝑀; 𝐿) separates points if for every pair of distinct points 𝑝, 𝑞 ∈ 𝑀 , there exists
a global holomorphic section 𝜎 of 𝐿 such that 𝜎(𝑝) = 0 and 𝜎(𝑞) ≠ 0; and it sepa-
rates directions if for every 𝑝 ∈ 𝑀 and every nonzero 𝑣 ∈ 𝑇 ′

𝑝 𝑀 , there is a global
holomorphic section 𝜎 such that 𝜎(𝑝) = 0 and 𝑣𝜎(𝑝) ≠ 0, where 𝜎 is the compo-
nent function of 𝜎 with respect to some holomorphic local frame. (The reason for
insisting that 𝜎(𝑝) = 0 is because that guarantees the condition 𝑣𝜎(𝑝) = 0 will be
independent of the choice of local frame, as you can check.)

A holomorphic line bundle 𝐿 over a compact complex manifold 𝑀 is said to
be very ample if

(i) 𝒪(𝑀; 𝐿) separates points, and
(ii) 𝒪(𝑀; 𝐿) separates directions.

(You will notice the strong resemblance to the definition of a Stein manifold. There
is no requirement analogous to holomorphic convexity in this case, though, because
it would be vacuous on a compact manifold. Compactness takes its place.)
Theorem 3.43. Suppose 𝑀 is a compact complex manifold and 𝐿 → 𝑀 is a
holomorphic line bundle. Each associated map for 𝐿 is a global embedding of 𝑀
into a projective space if and only 𝐿 is very ample.

Proof. First assume 𝑀 has dimension 0. Then 𝐿 is trivial, and we can write
𝑀 = {𝑝0, … , 𝑝𝑘}. For each 𝑘 there is a section 𝑠𝑘 that is nonzero at 𝑝𝑘 and zero
at the other points, and is vacuously holomorphic. Thus 𝐿 separates points, and it
vacuously separates directions because there are no nonzero tangent vectors. There-
fore, every line bundle is very ample, and every associated map is an embedding.
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Assume henceforth that 𝑀 has positive dimension. Suppose 𝐿 → 𝑀 is a
very ample holomorphic line bundle. First we note that 𝐿 has no base points. Let
𝑞 ∈ 𝑀 be arbitrary. Then for any other point 𝑝 ≠ 𝑞, there is a holomorphic section
𝜎 ∶ 𝑀 → 𝐿 such that 𝜎(𝑝) = 0 and 𝜎(𝑞) ≠ 0, so not all sections vanish at 𝑞. Thus
the associated map 𝐹 is defined on all of 𝑀 . It follows from the definition of very
ample and Lemma 3.42 that 𝐹 is an injective holomorphic immersion into ℂℙ𝑛,
and the closed map lemma [LeeTM, Lemma 4.50] shows that 𝐹 is an embedding.

Conversely, suppose the associated map is a global holomorphic embedding
𝐹 ∶ 𝑀 → ℂℙ𝑛. The fact that 𝐹 is globally defined means that 𝐿 has no base
points. Because 𝐹 is an injective holomorphic immersion, Lemma 3.42 shows that
𝒪(𝑀; 𝐿) separates points and directions, so 𝐿 is very ample. □

Somewhat more generally, a holomorphic line bundle 𝐿 is said to be ample
if for some positive integer 𝑘, the tensor power 𝐿𝑘 is very ample. The reason for
this seemingly trivial distinction is that, as we will see in Chapter 10, there is a
relatively simple criterion for determining whether a particular bundle is ample,
whereas determining if it is very ample is not so straightforward.

Corollary 3.44. A compact complex manifold is projective if and only if it admits
an ample holomorphic line bundle.

Proof. A compact 0-dimensional manifold certainly admits an embedding into pro-
jective space, and the only holomorphic line bundle on it is the trivial one, which is
very ample by the argument in the proof of Theorem 3.43. So assume henceforth
that 𝑀 is a compact complex manifold of positive dimension.

If 𝑀 admits an ample line bundle 𝐿, then Theorem 3.43 shows that the asso-
ciated map for some positive power of 𝐿 is a holomorphic embedding.

Conversely, suppose 𝑀 is projective, so it is biholomorphic to a complex sub-
manifold of ℂℙ𝑛 for some 𝑛; we may as well assume 𝑀 is itself a compact complex
submanifold of ℂℙ𝑛. Let [𝑤0, … , 𝑤𝑛] denote homogeneous coordinates on ℂℙ𝑛,
and let 𝐿 → 𝑀 be the restriction to 𝑀 of the hyperplane bundle 𝐻 → ℂℙ𝑛. We
will show that 𝐿 is very ample.

To show that 𝒪(𝑀; 𝐿) separates points, suppose 𝑝, 𝑞 are distinct points in 𝑀 ,
represented in homogeneous coordinates by [𝑝0, … , 𝑝𝑛] and [𝑞0, … , 𝑞𝑛], respec-
tively. Because the vectors 𝑃 = (𝑝0, … , 𝑝𝑛) and 𝑄 = (𝑞0, … , 𝑞𝑛) are linearly
independent in ℂ𝑛+1, there is a linear function 𝑓 ∶ ℂ𝑛+1 → ℂ such that 𝑓(𝑃 ) = 0
and 𝑓(𝑄) ≠ 0. Let 𝜎 = 𝜑𝑓 |𝑀 (using the notation of (3.15)); this is a holomorphic
section of 𝐿 that satisfies 𝜎(𝑝) = 0 and 𝜎(𝑞) ≠ 0.

To show that 𝒪(𝑀; 𝐿) separates directions, let 𝑝 ∈ 𝑀 and 𝑣 ∈ 𝑇 ′
𝑝 𝑀 with

𝑣 ≠ 0. There is some affine coordinate chart containing 𝑝; after renumbering the
coordinates if necessary, we may assume it is the chart 𝑈0 defined by 𝑤0 ≠ 0,
and write 𝑝 = [1, 𝑝1, … , 𝑝𝑛]. In affine coordinates (𝑧1, … , 𝑧𝑛) ↔ [1, 𝑧1, … , 𝑧𝑛],
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we can write 𝑣 = 𝑣𝑗𝜕/𝜕𝑧𝑗|𝑝, and since 𝑣 ≠ 0, there is some component 𝑣𝑘 that is
nonzero. Let 𝑓 ∶ ℂ𝑛+1 → ℂ be the linear function 𝑓(𝑤0, … , 𝑤𝑛) = 𝑤𝑘 − 𝑝𝑘𝑤0, let
𝜑𝑓 ∶ ℂℙ𝑛 → 𝐻 be the corresponding section, and let 𝜎 = 𝜑𝑓 |𝑀 . Then 𝜎(𝑝) = 0.
The section 𝜑𝑤0 ∶ ℂℙ𝑛 → 𝐻 is nonvanishing on 𝑈0, so it gives a local frame for
𝐻 there, and it restricts to a local frame for 𝐿. The component function of 𝜎 with
respect to this frame is

𝜎([𝑤]) = 𝑤𝑘 − 𝑝𝑘𝑤0

𝑤0 ,

which has the coordinate representation

𝜎(𝑧1, … , 𝑧𝑛) = 𝑧𝑘 − 𝑝𝑘,

so 𝑣𝜎 = 𝑣𝑘 ≠ 0. □

The next proposition describes an important property of very ample line bun-
dles.

Proposition 3.45. Suppose 𝑀 is a compact complex manifold, 𝐿 → 𝑀 is a very
ample holomorphic line bundle, and 𝐹 ∶ 𝑀 → ℂℙ𝑛 is its associated map. Then
𝐿 ≅ 𝐹 ∗𝐻 , where 𝐻 → ℂℙ𝑛 is the hyperplane bundle.

Proof. Problem 3-13. □

Problems
3-1. Let 𝐻 → ℂℙ𝑛 be the hyperplane bundle. For any distinct integers 𝑘, 𝑙,

show that the tensor powers 𝐻𝑘 and 𝐻 𝑙 are not isomorphic to each other.
3-2. Let 𝑚 > 𝑛 and let 𝐹 ∶ ℂℙ𝑛 → ℂℙ𝑚 be the holomorphic embedding

𝐹 ([𝑤0, … , 𝑤𝑛]) = [𝑤0, … , 𝑤𝑛, 0, … , 0].

Let 𝐻 → ℂℙ𝑚 denote the hyperplane bundle of ℂℙ𝑚. Show that 𝐹 ∗𝐻 is
isomorphic to the hyperplane bundle of ℂℙ𝑛.

3-3. Let 𝐻 → ℂℙ1 be the hyperplane bundle. Show that 𝐻2 ≅ 𝑇 ′ℂℙ1.
3-4. Let 𝑀 be a complex manifold. A holomorphic vector field on 𝑀 is a

holomorphic section of 𝑇 ′𝑀 . Let 𝑍 be a smooth section of 𝑇 ′𝑀 and let
𝜃𝑡 denote the flow of Re𝑍. Show that 𝑍 is holomorphic if and only if 𝜃𝑡
is a holomorphic map (where it is defined) for each 𝑡.

3-5. For 𝑛 ≥ 1, let 𝑈0 ⊆ ℂℙ𝑛 be the image of the standard affine embedding
(𝑧1, … , 𝑧𝑛) ↦ [1, 𝑧1, … , 𝑧𝑛]. Show that there are global holomorphic
vector fields 𝑍1, … , 𝑍𝑛 on ℂℙ𝑛 whose coordinate representations in 𝑈0
are 𝑍𝑗 = 𝜕/𝜕𝑧𝑗 .
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3-6. Suppose 𝑀 is a complex manifold. Let 𝜋 ∶ 𝑀̃ → 𝑀 be the blowup
of 𝑀 at a point 𝑝 ∈ 𝑀 , and let 𝐸 = 𝜋−1(𝑝) ⊆ 𝑀̃ be the exceptional
hypersurface.
(a) Show that if 𝑁 is another complex manifold and 𝐹 ∶ 𝑀̃ → 𝑁 is a

holomorphic map that is constant on 𝐸, then there is a unique holo-
morphic map 𝑓 ∶ 𝑀 → 𝑁 such that 𝑓 ∘ 𝜋 = 𝐹 .

(b) Show that the pullback 𝜋∗ ∶ 𝒪(𝑀) → 𝒪(𝑀̃) is an isomorphism.

3-7. Suppose 𝑀 and 𝑁 are complex manifolds and 𝐹 ∶ 𝑀 → 𝑁 is a holomor-
phic map. Show that the global holomorphic Jacobian map 𝐷′ ∶ 𝑇 ′𝑀 →
𝑇 ′𝑁 is holomorphic.

3-8. Suppose 𝐺 is a connected, compact, complex Lie group. Prove that 𝐺 is
abelian, as follows. Let 𝔤 be the Lie algebra of left-invariant vector fields
on 𝐺, and let 𝑒 ∈ 𝐺 be the identity.
(a) Let 𝐶 ∶ 𝐺 × 𝐺 → 𝐺 be the holomorphic map 𝐶(𝑔, ℎ) = 𝑔ℎ𝑔−1. For

each 𝑔 ∈ 𝐺, the map 𝐶𝑔 ∶ 𝐺 → 𝐺 defined by 𝐶𝑔(ℎ) = 𝐶(𝑔, ℎ) is
called conjugation by 𝒈. Show that 𝐷(𝐶𝑔)(𝑒)𝑣 = 𝐷𝐶(𝑔, 𝑒)(0, 𝑣) for
each 𝑣 ∈ 𝑇 ′𝐺.

(b) Show that the map from 𝐺 to GL(𝑇 ′
𝑒 𝐺) given by 𝑔 ↦ 𝐷′(𝐶𝑔)(𝑒) is

holomorphic, and conclude that 𝐷′(𝐶𝑔)(𝑒) = Id for all 𝑔.
(c) The adjoint representation of 𝑮 is the map Ad∶ 𝐺 → GL(𝔤) given

byAd(𝑔) = (𝐶𝑔)∗ (the Lie algebra isomorphism induced by the group
isomorphism 𝐶𝑔). Show that Ad(𝑔) = Id for all 𝑔 ∈ 𝐺.

(d) The adjoint representation of 𝖌 is the map ad∶ 𝔤 → End(𝔤) given
by ad(𝑋)(𝑌 ) = [𝑋, 𝑌 ]. Using the fact that Ad∗ = ad [LeeSM, Thm.
20.27], show that 𝔤 is abelian and therefore 𝐺 is abelian.

3-9. Let 𝑇 → ℂℙ𝑛 be the tautological bundle. Show that the total space 𝑇 is
diffeomorphic to ℂℙ𝑛+1 minus a point, by considering the smooth map
𝐹 ∶ 𝑇 → ℂℙ𝑛+1 given by

𝐹 ([𝑤], 𝑣) = [𝑤0, … , 𝑤𝑛, 𝑤 ⋅ 𝑣],

where 𝑤 ⋅ 𝑣 = ∑𝑛
𝑗=0 𝑤𝑗𝑣𝑗 .

3-10. If 𝑀 and 𝑁 are connected smooth oriented 𝑛-manifolds, their oriented
connected sum is a manifold 𝑀 # 𝑁 obtained as follows. Choose a posi-
tively oriented smooth coordinate chart (𝑈, 𝜑) for 𝑀 and a negatively ori-
ented one (𝑉 , 𝜓) for 𝑁 , and choose 𝜀 > 0 such that both 𝜑(𝑈) and 𝜓(𝑉 )
contain 𝐵2𝜀(0). Let 𝑀′ = 𝑀 ∖𝜑−1(𝐵𝜀/2(0)), 𝑁′ = 𝑁 ∖𝜓−1(𝐵𝜀/2(0)), and
let 𝑀 #𝑁 be the quotient space obtained from the disjoint union 𝑀′ ⨿𝑁′

by identifying 𝜑−1(𝑥) with 𝜓−1(𝜀2𝑥/|𝑥|2) for all 𝑥 ∈ 𝐵2𝜀(0) ∖ 𝐵𝜀/2(0).
Then 𝑀 # 𝑁 is a connected 𝑛-manifold with a unique smooth structure
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determined by the requirement that the quotient map restricts to smooth
embeddings of 𝑀′ and 𝑁′ into 𝑀 #𝑁 , and an orientation consistent with
those of 𝑀′ and 𝑁′ (you do not need to prove this).
Suppose 𝑀 is a connected complex 𝑛-manifold and 𝑀̃ is the blowup of
𝑀 at a point. Use the result of Problem 3-9 to show that 𝑀̃ is diffeo-
morphic to the oriented connected sum 𝑀 # ℂℙ𝑛, where ℂℙ𝑛 denotes the
smooth manifold ℂℙ𝑛 with the opposite orientation.

3-11. Let 𝑀 be a complex manifold. Suppose 𝑆1, … , 𝑆𝑚 ⊆ 𝑀 are disjoint
closed complex hypersurfaces and 𝑆 = 𝑆1 ∪ ⋯ ∪ 𝑆𝑚. Show that the line
bundle 𝐿𝑆 associated with 𝑆 is isomorphic to 𝐿𝑆1 ⊗ ⋯ ⊗ 𝐿𝑆𝑚 .

3-12. Suppose 𝑀̃ and 𝑀 are complex manifolds, 𝑆 ⊆ 𝑀 is a closed complex
hypersurface, and 𝑓 ∶ 𝑀̃ → 𝑀 is a holomorphic map that is transverse
to 𝑆, so that 𝑆 = 𝑓 −1(𝑆) is a closed complex hypersurface in 𝑀̃ (see
Example 2.23). Show that 𝑓 ∗𝐿𝑆 ≅ 𝐿𝑆 . [Hint: Consider a holomorphic
section of 𝐿𝑆 that vanishes simply on 𝑆.]

3-13. Prove Proposition 3.45 (a very ample line bundle is isomorphic to the
pullback of the hyperplane bundle).

3-14. Show that the action of ℤ/2 on ℂ𝑛 generated by 𝑧 ↦ −𝑧 lifts to a free,
proper, and holomorphic action on the blowup of ℂ𝑛 at the origin.





Chapter 4

The Dolbeault Complex

For a complex manifold 𝑀 , the decomposition of 𝑇ℂ𝑀 into 𝑇 ′𝑀 ⊕ 𝑇 ″𝑀 leads
to a related decomposition of all complex-valued differential forms, from which we
can build new biholomorphic invariants called the Dolbeault cohomology groups.

Decomposing Differential Forms by Type
Suppose 𝑀 is a complex 𝑛-manifold. For 0 ≤ 𝑘 ≤ 𝑛, we define the bundle of
complex 𝒌-forms, denoted by Λ𝑘

ℂ𝑀 , to be the complexification of Λ𝑘𝑀 . We can
view the fiber of Λ𝑘

ℂ𝑀 at a point 𝑎 ∈ 𝑀 as the space of alternating complex-
multilinear maps from (𝑇𝑎𝑀)ℂ to ℂ. Just as for any complexified bundle, every
smooth section of Λ𝑘

ℂ𝑀 can be written uniquely as a sum 𝜔+𝑖𝜂, where 𝜔 and 𝜂 are
ordinary smooth real 𝑘-forms, and Λ𝑘

ℂ𝑀 has a natural conjugation operator given
by 𝜔 + 𝑖𝜂 = 𝜔 − 𝑖𝜂. A complex differential form 𝜔 is said to be real if 𝜔 = 𝜔. The
exterior derivative operator 𝑑 extends immediately by complex linearity to complex
differential forms, and it still satisfies the antiderivation rule 𝑑(𝛼 ∧ 𝛽) = 𝑑𝛼 ∧ 𝛽 +
(−1)𝑘𝛼 ∧ 𝑑𝛽 when 𝛼 is a complex 𝑘-form and 𝛽 is a complex 𝑙-form. The integral
of a complex 𝑘-form over a 𝑘-dimensional (real) manifold is defined by integrating
the real and imaginary parts separately, provided either the manifold or the support
of the 𝑘-form is compact, and Stokes’s theorem holds for such forms.

The complex structure on 𝑇 𝑀 yields another way to decompose complex
forms, which is more useful than real and imaginary parts. In the domain of
any holomorphic local coordinates (𝑧1, … , 𝑧𝑛), the 1-forms (𝑑𝑧1, … , 𝑑𝑧𝑛, 𝑑𝑧1, … ,
𝑑𝑧𝑛) provide a local frame for the complexified cotangent bundle. Thus the follow-
ing collection of forms constitutes a smooth local frame for Λ𝑘

ℂ𝑀 :

{𝑑𝑧𝑗1 ∧ ⋯ ∧ 𝑑𝑧𝑗𝑝 ∧ 𝑑𝑧𝑙1 ∧ ⋯ ∧ 𝑑𝑧𝑙𝑞 ∶
𝑝 + 𝑞 = 𝑘, 𝑗1 < ⋯ < 𝑗𝑝, and 𝑙1 < ⋯ < 𝑙𝑞}.
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We wish to separate out the complex differential forms with the property that
each term has exactly 𝑝 of the 𝑑𝑧𝑗 factors and 𝑞 of the 𝑑𝑧𝑙 factors when it is ex-
pressed in terms of holomorphic local coordinates. But to make this definition
meaningful, we need to verify that it is independent of coordinates. That follows
from the next lemma.
Lemma 4.1. Suppose 𝛼 is a complex 𝑘-form on a complex manifold, and 𝑝+𝑞 = 𝑘.
Then the following are equivalent:

(a) In every local holomorphic coordinate chart (𝑧1, … , 𝑧𝑛), 𝛼 can be ex-
pressed as a sum of terms, each of which has exactly 𝑝 of the 𝑑𝑧𝑗 factors
and 𝑞 of the 𝑑𝑧𝑙 factors.

(b) If 𝑉1, … , 𝑉𝑘 are complex vector fields on an open subset of 𝑀 , then
𝛼(𝑉1, … , 𝑉𝑘) = 0 if more than 𝑝 of the vector fields are sections of 𝑇 ′𝑀 ,
or more than 𝑞 of them are sections of 𝑇 ″𝑀 .

► Exercise 4.2. Prove this lemma.

Thus for 𝑝 + 𝑞 = 𝑘, we say a complex 𝑘-form is of type (𝒑, 𝒒) or bidegree
(𝒑, 𝒒), or is a (𝒑, 𝒒)-form for short, if it satisfies either of the equivalent conditions
in the preceding lemma. Let Λ𝑝,𝑞𝑀 ⊆ Λ𝑘

ℂ𝑀 be the subset consisting of forms of
type (𝑝, 𝑞). Lemma 4.1 shows that Λ𝑝,𝑞𝑀 is locally spanned by smooth sections of
Λ𝑘

ℂ𝑀 , so it is a smooth subbundle. Moreover, because every complex 𝑘-form is a
sum of forms of type (𝑝, 𝑞) for 𝑝 + 𝑞 = 𝑘, and Λ𝑝,𝑞𝑀 ∩ Λ𝑝′,𝑞′𝑀 contains only the
zero form unless 𝑝 = 𝑝′ and 𝑞 = 𝑞′, we have a Whitney sum decomposition

Λ𝑘
ℂ𝑀 = ⨁

𝑝+𝑞=𝑘
Λ𝑝,𝑞𝑀.

Thus for each (𝑝, 𝑞) there is a coordinate-independent projection operator
𝜋𝑝,𝑞 ∶ Λ𝑘

ℂ𝑀 → Λ𝑝,𝑞𝑀.
We use the notation ℰ𝑘(𝑀) to denote the space of smooth sections of Λ𝑘

ℂ𝑀 , and
ℰ𝑝,𝑞(𝑀) for the space of smooth sections of Λ𝑝,𝑞𝑀 . By convention, ℰ𝑝,𝑞(𝑀) = 0
on a complex 𝑛-manifold except for 0 ≤ 𝑝, 𝑞 ≤ 𝑛, and similarly ℰ𝑘(𝑀) = 0 except
for 0 ≤ 𝑘 ≤ 2𝑛.
Proposition 4.3. Let 𝑀 be a complex manifold, 𝛼 ∈ ℰ𝑝,𝑞(𝑀), and 𝛽 ∈ ℰ𝑝′,𝑞′(𝑀).

(a) 𝛼 ∈ ℰ 𝑞,𝑝(𝑀).
(b) 𝛼 ∧ 𝛽 ∈ ℰ𝑝+𝑝′,𝑞+𝑞′(𝑀).

► Exercise 4.4. Prove this proposition.

The real usefulness of the decomposition of forms by types is based on the
following proposition.
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Proposition 4.5. If 𝑀 is a complex manifold, then

𝑑(ℰ𝑝,𝑞(𝑀)) ⊆ ℰ𝑝+1,𝑞(𝑀) ⊕ ℰ𝑝,𝑞+1(𝑀).

Proof. Suppose 𝛼 ∈ ℰ𝑝,𝑞(𝑀). This is a local question, so we may choose holo-
morphic local coordinates (𝑧1, … , 𝑧𝑛) and write

𝛼 = ∑
′

𝐽 ,𝐿
𝛼𝐽𝐿 𝑑𝑧𝑗1 ∧ ⋯ ∧ 𝑑𝑧𝑗𝑝 ∧ 𝑑𝑧𝑙1 ∧ ⋯ ∧ 𝑑𝑧𝑙𝑞 ,

where 𝐽 = (𝑗1, … , 𝑗𝑝) and 𝐿 = (𝑙1, … , 𝑙𝑞) are multi-indices, and the primed sum-
mation sign denotes a sum over only increasing multi-indices, that is, those that
satisfy 𝑗1 < ⋯ < 𝑗𝑝 and 𝑙1 < ⋯ < 𝑙𝑞 . It follows that

𝑑𝛼 = ∑
′

𝐽 ,𝐿
∑𝑟

(
𝜕𝛼𝐽𝐿
𝜕𝑧𝑟 𝑑𝑧𝑟 + 𝜕𝛼𝐽𝐿

𝜕𝑧𝑟 𝑑𝑧𝑟
) ∧ 𝑑𝑧𝑗1 ∧ ⋯ ∧ 𝑑𝑧𝑗𝑝 ∧ 𝑑𝑧𝑙1 ∧ ⋯ ∧ 𝑑𝑧𝑙𝑞 ,

which expands to a sum of (𝑝 + 1, 𝑞)-forms and (𝑝, 𝑞 + 1)-forms. □

Thanks to this proposition, we can make the following definitions. We continue
to let 𝑀 be a complex 𝑛-manifold. For each 𝑝, 𝑞 ∈ {0, … , 𝑛}, define the Dolbeault
operator 𝜕 ∶ ℰ𝑝,𝑞(𝑀) → ℰ𝑝,𝑞+1(𝑀) and its conjugate 𝜕 ∶ ℰ𝑝,𝑞(𝑀) → ℰ𝑝+1,𝑞(𝑀)
by

𝜕 = 𝜋𝑝,𝑞+1 ∘ 𝑑, 𝜕 = 𝜋𝑝+1,𝑞 ∘ 𝑑.
More generally, if 𝛼 is any complex differential form, we define 𝜕𝛼 and 𝜕𝛼 by de-
composing 𝛼 into terms of type (𝑝, 𝑞) and applying the formulas above to each term
separately. These operators, first introduced by the English mathematician William
V. D. Hodge [Hod41], were later named after Pierre Dolbeault in recognition of his
use of them in proving the theorem now known as theDolbeault theorem (Thm. 6.19
below).

Example 4.6 (Dolbeault Operators in Coordinates). If 𝑢 is a smooth complex-
valued function (a (0, 0)-form), we have the following formulas in holomorphic
coordinates (using the summation convention):

(4.1) 𝜕𝑢 = 𝜕𝑢
𝜕𝑧𝑗 𝑑𝑧𝑗 , 𝜕𝑢 = 𝜕𝑢

𝜕𝑧𝑗 𝑑𝑧𝑗 .

And for a (1, 0)-form 𝛼 = 𝛼𝑗𝑑𝑧𝑗 ,

𝜕𝛼 =
𝜕𝛼𝑗
𝜕𝑧𝑙 𝑑𝑧𝑙 ∧ 𝑑𝑧𝑗 , 𝜕𝛼 =

𝜕𝛼𝑗
𝜕𝑧𝑙 𝑑𝑧𝑙 ∧ 𝑑𝑧𝑗 .

More generally, if

𝛼 = ∑
′

𝐽 ,𝐿
𝛼𝐽𝐿 𝑑𝑧𝑗1 ∧ ⋯ ∧ 𝑑𝑧𝑗𝑝 ∧ 𝑑𝑧𝑙1 ∧ ⋯ ∧ 𝑑𝑧𝑙𝑞 ,
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then

𝜕𝛼 = ∑
′

𝐽 ,𝐿
∑𝑟

𝜕𝛼𝐽𝐿
𝜕𝑧𝑟 𝑑𝑧𝑟 ∧ 𝑑𝑧𝑗1 ∧ ⋯ ∧ 𝑑𝑧𝑗𝑝 ∧ 𝑑𝑧𝑙1 ∧ ⋯ ∧ 𝑑𝑧𝑙𝑞 , and(4.2)

𝜕𝛼 = ∑
′

𝐽 ,𝐿
∑𝑟

𝜕𝛼𝐽𝐿
𝜕𝑧𝑟 𝑑𝑧𝑟 ∧ 𝑑𝑧𝑗1 ∧ ⋯ ∧ 𝑑𝑧𝑗𝑝 ∧ 𝑑𝑧𝑙1 ∧ ⋯ ∧ 𝑑𝑧𝑙𝑞 ,(4.3)

as you can check. //
The operator 𝜕 is also sometimes called theCauchy–Riemann operator, in part

because of the following result.

Proposition 4.7. On a complex manifold, a smooth function 𝑓 is holomorphic if
and only if 𝜕𝑓 ≡ 0.

Proof. This follows immediately from (4.1) and Proposition 1.42(a). □

Proposition 4.8. On a complex manifold 𝑀 , if 𝛼 ∈ ℰ𝑘(𝑀) and 𝛽 ∈ ℰ 𝑙(𝑀), then
𝜕(𝛼 ∧ 𝛽) = 𝜕𝛼 ∧ 𝛽 + (−1)𝑘𝛼 ∧ 𝜕𝛽, 𝜕(𝛼 ∧ 𝛽) = 𝜕𝛼 ∧ 𝛽 + (−1)𝑘𝛼 ∧ 𝜕𝛽.

Proof. This follows from Propositions 4.5 and 4.3. □

Proposition 4.9. Let 𝑀 be a complex manifold. For every complex differential
form 𝛼 on 𝑀 , the following identities hold:

𝑑𝛼 = 𝜕𝛼 + 𝜕𝛼,(4.4)
𝜕𝛼 = 𝜕(𝛼),(4.5)

𝜕𝜕𝛼 = 𝜕𝜕𝛼 = 0,(4.6)
𝜕𝜕𝛼 = −𝜕𝜕𝛼.(4.7)

Proof. By decomposing 𝛼 into types and working with each type separately, we see
that it suffices to prove these identities under the assumption that 𝛼 is a (𝑝, 𝑞)-form.
Equation (4.4) follows directly from Proposition 4.5 and the definition of 𝜕 and 𝜕,
and (4.5) follows from the coordinate formulas (4.2) and (4.3) because 𝑑𝑧𝑗 and 𝑑𝑧𝑗

are conjugates of each other.
For (4.6) and (4.7), note that

0 = 𝑑(𝑑𝛼) = (𝜕 + 𝜕)(𝜕 + 𝜕)𝛼 = 𝜕𝜕𝛼 + (𝜕𝜕𝛼 + 𝜕𝜕𝛼) + 𝜕𝜕𝛼.
On the right-hand side, the first term is in ℰ𝑝+2,𝑞(𝑀), the term in parentheses is in
ℰ𝑝+1,𝑞+1(𝑀), and the last term is in ℰ𝑝,𝑞+2(𝑀). Since these spaces intersect only
in the zero form, each of those three terms must be zero. □

The importance of the Dolbeault operators stems from the fact that they are
preserved by holomorphic maps.
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Proposition 4.10. Suppose 𝑀 and 𝑁 are complex manifolds and 𝐹 ∶ 𝑀 → 𝑁 is
a holomorphic map. Then for all 𝑝 and 𝑞 and all 𝛼 ∈ ℰ𝑝,𝑞(𝑁),

𝐹 ∗(ℰ𝑝,𝑞(𝑁)) ⊆ ℰ𝑝,𝑞(𝑀),(4.8)
𝐹 ∗(𝜕𝛼) = 𝜕(𝐹 ∗𝛼),(4.9)
𝐹 ∗(𝜕𝛼) = 𝜕(𝐹 ∗𝛼).(4.10)

Proof. Again, these are local assertions, so for each 𝑝 ∈ 𝑀 we may choose holo-
morphic coordinates (𝑧1, … , 𝑧𝑚) on a neighborhood of 𝑝 and (𝑤1, … , 𝑤𝑛) on a
neighborhood of 𝐹 (𝑝), and compute

𝐹 ∗𝑑𝑤𝑗 = 𝜕𝐹 𝑗

𝜕𝑧𝑙 𝑑𝑧𝑙, 𝐹 ∗𝑑𝑤𝑗 = 𝜕𝐹 𝑗

𝜕𝑧𝑙 𝑑𝑧𝑙.

Inserting these into the coordinate formula for 𝐹 ∗𝛼 when 𝛼 is a (𝑝, 𝑞)-form shows
that the number of 𝑑𝑧𝑗 and 𝑑𝑧𝑗 factors in each term of 𝐹 ∗𝛼 is exactly the same as the
number of 𝑑𝑤𝑗 and 𝑑𝑤𝑗 factors, respectively, in the expression for 𝛼, so 𝐹 ∗𝛼 is also
a (𝑝, 𝑞)-form. This proves (4.8). It follows from this that 𝐹 ∗ ∘ 𝜋𝑝,𝑞 = 𝜋𝑝,𝑞 ∘ 𝐹 ∗, and
then (4.9) and (4.10) follow because 𝐹 ∗ commutes with 𝑑 and with the projections
𝜋𝑝+1,𝑞 and 𝜋𝑝,𝑞+1. □

This allows us to define a new set of biholomorphic invariants. First, here are a
few definitions that may be familiar from algebraic topology. A cochain complex
is a sequence of abelian groups (or real or complex vector spaces) indexed by the
integers, {𝐴𝑞 ∶ 𝑞 ∈ ℤ}, together with homomorphisms 𝑑𝑞 ∶ 𝐴𝑞 → 𝐴𝑞+1 for each
𝑞, such that the composition of any two successive homomorphisms is zero. (Fre-
quently in practice, the groups are defined only for values of 𝑞 in a certain range,
in which case we just take 𝐴𝑞 = 0 for other values of 𝑞.) We often denote such a
complex by 𝐴∗, with the homomorphisms understood from the context. The 𝒒th
cohomology group of 𝐴∗, denoted by 𝐻𝑞(𝐴∗), is the quotient of the kernel of the
𝑞th homomorphism by the image of the previous one:

𝐻𝑞(𝐴∗) =
Ker (𝑑𝑞 ∶ 𝐴𝑞 → 𝐴𝑞+1)
Im (𝑑𝑞−1 ∶ 𝐴𝑞−1 → 𝐴𝑞)

.

If 𝐴∗ is a cochain complex of vector spaces, then the homology groups are objects in
the same category. If 𝐴∗ and 𝐵∗ are cochain complexes, a cochain map 𝜑∶ 𝐴∗ →
𝐵∗ is a collection of homomorphisms 𝜑𝑞 ∶ 𝐴𝑞 → 𝐵𝑞 that satisfy 𝜑𝑞+1 ∘ 𝑑𝑞 =
𝑑𝑞 ∘ 𝜑𝑞 for all 𝑞; any such map descends to a homomorphism 𝜑∗ ∶ 𝐻𝑞(𝐴∗) →
𝐻𝑞(𝐵∗), called the induced cohomology homomorphism. (For completeness, we
remark that a chain complex is a sequence of abelian groups (or real or complex
vector spaces) 𝐴∗ = {𝐴𝑞 ∶ 𝑞 ∈ ℤ}, with homomorphisms 𝜕𝑞 ∶ 𝐴𝑞 → 𝐴𝑞−1
going in the direction of decreasing indices and satisfying 𝜕𝑞−1 ∘ 𝜕𝑞 = 0. The
corresponding quotient groups in that case are called the homology groups of the
chain complex, denoted by 𝐻𝑞(𝐴∗). A chain map between chain complexes 𝐴∗ and
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𝐵∗ is a collection of homomorphisms 𝜑𝑞 ∶ 𝐴𝑞 → 𝐵𝑞 satisfying 𝜑𝑞−1 ∘ 𝜕𝑞 = 𝜕𝑞 ∘ 𝜑𝑞 ,
which descend to homomorphisms 𝜑∗ ∶ 𝐻𝑞(𝐴∗) → 𝐻𝑞(𝐵∗).)

Now let 𝑀 be a complex 𝑛-manifold. Because 𝜕 ∘ 𝜕 ≡ 0, for each 𝑝 we obtain
a cochain complex called the 𝒑th Dolbeault complex:

0 → ℰ𝑝,0(𝑀) 𝜕−→ ℰ𝑝,1(𝑀) 𝜕−→ ⋯ 𝜕−→ ℰ𝑝,𝑛(𝑀) → 0.

Then we define the Dolbeault cohomology groups 𝐻𝑝,𝑞(𝑀) as the cohomology
groups of this complex, which are the following complex vector spaces:

𝐻𝑝,𝑞(𝑀) =
Ker (𝜕 ∶ ℰ𝑝,𝑞(𝑀) → ℰ𝑝,𝑞+1(𝑀))
Im (𝜕 ∶ ℰ𝑝,𝑞−1(𝑀) → ℰ𝑝,𝑞(𝑀))

.

They are zero outside of the range 0 ≤ 𝑝, 𝑞 ≤ 𝑛. (In principle, these spaces could
have been defined using 𝜕 instead of 𝜕, but 𝜕 is preferred because it characterizes
holomorphic functions.)

Theorem 4.11 (Functoriality of Dolbeault Cohomology). If 𝐹 ∶ 𝑀 → 𝑁 is a
holomorphic map, then for each 𝑝 and 𝑞, the pullback 𝐹 ∗ ∶ ℰ𝑝,𝑞(𝑁) → ℰ𝑝,𝑞(𝑀)
descends to a linearmap, also denoted by𝐹 ∗, from𝐻𝑝,𝑞(𝑁) to𝐻𝑝,𝑞(𝑀). It satisfies

(Id𝑀 )∗ = Id∶ 𝐻𝑝,𝑞(𝑀) → 𝐻𝑝,𝑞(𝑀),(4.11)
(𝐺 ∘ 𝐹 )∗ = 𝐹 ∗ ∘ 𝐺∗ if 𝐹 ∶ 𝑀 → 𝑁 and 𝐺 ∶ 𝑁 → 𝑃 are holomorphic.(4.12)

Proof. The pullback satisfies 𝐹 ∗ ∘ 𝜕 = 𝜕 ∘ 𝐹 ∗, so it defines a cochain map and
therefore descends to cohomology. Then (4.11) and (4.12) hold on cohomology
because they already hold when applied to (𝑝, 𝑞)-forms. □

Corollary 4.12 (Biholomorphism Invariance of Dolbeault Cohomology). The
Dolbeault cohomology groups are biholomorphism invariants: If 𝐹 ∶ 𝑀 → 𝑁
is a biholomorphism, then for all 𝑝 and 𝑞, 𝐹 ∗ descends to an isomorphism from
𝐻𝑝,𝑞(𝑁) to 𝐻𝑝,𝑞(𝑀).

Proof. This follows from the fact that (𝐹 −1)∗ is an inverse for 𝐹 ∗. □

If 𝑀 is a complex manifold whose Dolbeault cohomology groups are finite-
dimensional (as we will see they always are when 𝑀 is compact), we define the
Hodge numbers of 𝑴 to be ℎ𝑝,𝑞(𝑀) = dim𝐻𝑝,𝑞(𝑀). These are similar to the
Betti numbers of a smooth manifold, 𝑏𝑘(𝑀) = dim𝐻𝑘

dR(𝑀), where 𝐻𝑘
dR(𝑀) de-

notes the 𝑘th de Rham cohomology group. But unlike the Betti numbers, which are
topological invariants, the Hodge numbers in general depend on the holomorphic
structure of the manifold.
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A Poincaré Lemma for the Dolbeault Operator
TheDolbeault cohomology groups provide answers to the question “which 𝜕-closed
forms are 𝜕-exact,” just as the deRham cohomology groups answer “which 𝑑-closed
forms are 𝑑-exact.” An important feature of the de Rham groups is that 𝑑-closed
forms on smooth manifolds are always locally exact. (This is a direct consequence
of the Poincaré lemma [LeeSM, Thm. 17.14], which says that every 𝑑-closed form
on a star-shaped open subset of ℝ𝑁 is exact.) Thus the de Rham groups really
are reflecting global properties of the manifold. The next theorem shows that an
analogous fact is also true for 𝜕-closed forms.
Theorem 4.13 (The 𝝏-Poincaré Lemma). Suppose 𝑀 is a complex manifold and
𝜔 is a smooth (𝑝, 𝑞)-form on 𝑀 that satisfies 𝜕𝜔 = 0, with 𝑞 ≥ 1. Then in a
neighborhood of each point there is a smooth (𝑝, 𝑞 − 1)-form 𝜂 with 𝜕𝜂 = 𝜔.

Before beginning the proof, we need to establish the following analytic lemma.
Lemma 4.14 (The Inhomogeneous Cauchy–Riemann Equations). Suppose 𝑈
is an open subset of ℂ𝑛 and 𝑓 ∶ 𝑈 → ℂ is smooth. For each point 𝑎 ∈ 𝑈 and each
𝑘 ∈ {1, … , 𝑛}, there is a neighborhood of 𝑎 on which there exists a smooth solution
𝑔 to the equation

(4.13) 𝜕𝑔
𝜕𝑧𝑘 = 𝑓.

If 𝑓 is holomorphic with respect to one of the variables 𝑧𝑗 for 𝑗 ≠ 𝑘, then so is 𝑔.

Proof. To simplify the notation a bit, we will carry out the proof in the case 𝑘 = 1.
Given 𝑎 = (𝑎1, … , 𝑎𝑛) ∈ 𝑈 , choose 𝑟 > 0 such that the closed polydisk 𝐷𝑛

𝑟 (𝑎) is
contained in 𝑈 . We wish to define 𝑔 ∶ 𝐷𝑛

𝑟 (𝑎) → ℂ by

(4.14) 𝑔(𝑧1, … , 𝑧𝑛) = 1
2𝜋𝑖 ∫𝐷𝑟(𝑎1)

𝑓(𝑤, 𝑧2, … , 𝑧𝑛)
𝑤 − 𝑧1 𝑑𝑤 ∧ 𝑑𝑤.

Because the integrand is not continuous on the domain of integration, we must first
make sure that the integral makes sense. Note that 𝑑𝑤∧𝑑𝑤 is a constant multiple of
𝑑𝑢∧𝑑𝑣 (where we write 𝑤 = 𝑢+𝑖𝑣), and |𝑓 (𝑤, 𝑧2, … , 𝑧𝑛)|/|𝑤 − 𝑧1| ≤ 𝐶/|𝑤−𝑧1|
for some constant 𝐶 . The function 𝑤 ↦ 𝐶/|𝑤 − 𝑧1| is an integrable function of 𝑤
on any compact subset of the plane (whether interpreted as a Lebesgue integral or
as an improper Riemann integral), as can be verified by expressing the integral in
polar coordinates centered at 𝑧1. Thus the integral makes sense for each 𝑧, and 𝑔 is
a well-defined function.

Now we show that 𝑔 is smooth in all variables, is holomorphic in 𝑧𝑗 if 𝑓 is,
and satisfies (4.13). Given a complex number 𝑏1 ∈ 𝐷𝑟(𝑎1), choose 𝜀 > 0 such that
𝐷𝜀(𝑏1) ⊆ 𝐷𝑟(𝑎1), and let 𝜑∶ ℂ → ℝ be a smooth bump function such that 𝜑 ≡ 1 on
𝐷𝜀/2(𝑏1) and supp𝜑 ⊆ 𝐷𝜀(𝑏1). Let 𝑓1(𝑧) = (1−𝜑(𝑧1))𝑓 (𝑧) and 𝑓2(𝑧) = 𝜑(𝑧1)𝑓 (𝑧),
so 𝑓 = 𝑓1 + 𝑓2 with 𝑓1 identically zero whenever 𝑧1 ∈ 𝐷𝜀/2(𝑏1), and the function
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𝑤 ↦ 𝑓2(𝑤, 𝑧2, … , 𝑧𝑛) is supported in 𝐷𝜀(𝑏1) for each (𝑧2, … , 𝑧𝑛). Note also that
if 𝑓 is holomorphic with respect to one of the variables 𝑧𝑗 for 𝑗 ≥ 2, then so are 𝑓1
and 𝑓2 because 𝜑 depends only on 𝑧1. Correspondingly, let 𝑔 = 𝑔1 + 𝑔2, where 𝑔𝑖
is defined as in (4.14) but with 𝑓𝑖 in place of 𝑓 .

For 𝑔1, the integrand is smooth in all variables and the domain of integration is
compact, so 𝑔1 is smooth in all variables. In particular, as long as |𝑧1 − 𝑏1| < 𝜀/2,
we can differentiate under the integral sign to conclude

𝜕𝑔1
𝜕𝑧1 (𝑧) = 0 = 𝑓1(𝑧).

Moreover, if 𝑓1 is holomorphic with respect to 𝑧𝑗 for some 𝑗 ≥ 2, then differentating
under the integral sign shows that 𝑔1 satisfies the Cauchy–Riemann equations with
respect to that variable and thus is also holomorphic.

Now consider 𝑔2. Choose 𝑅 large enough that 𝐷𝑅(𝑧1) ⊇ 𝐷𝜀(𝑏1) for every
𝑧1 ∈ 𝐷𝜀(𝑏1). Because the function 𝑤 ↦ 𝑓2(𝑤, 𝑧2, … , 𝑧𝑛) is smooth and compactly
supported in 𝐷𝜀(𝑏1) for each (𝑧2, … , 𝑧𝑛), for any given 𝑧1 ∈ 𝐷𝜀(𝑏1) we might
as well compute 𝑔2 by integrating over the entire disk 𝐷𝑅(𝑧1). Given such a 𝑧1,
we make the change of variables 𝑤 = 𝑧1 + 𝑟𝑒𝑖𝜃 , 𝑑𝑤 = 𝑒𝑖𝜃(𝑑𝑟 + 𝑖𝑟 𝑑𝜃), 𝑑𝑤 =
𝑒−𝑖𝜃(𝑑𝑟 − 𝑖𝑟 𝑑𝜃) to conclude

𝑔2(𝑧1, … , 𝑧𝑛) = 1
2𝜋𝑖 ∫𝐷𝑅(𝑧1)

𝑓2(𝑤, 𝑧2, … , 𝑧𝑛)
𝑤 − 𝑧1 𝑑𝑤 ∧ 𝑑𝑤

= 1
2𝜋𝑖 ∫𝐷𝑅(0)

𝑓2(𝑧1 + 𝑟𝑒𝑖𝜃 , 𝑧2, … , 𝑧𝑛)
𝑟𝑒𝑖𝜃 (−2𝑖𝑟) 𝑑𝑟 ∧ 𝑑𝜃

= −1
𝜋 ∫

2𝜋

0 ∫
𝑅

0
𝑓2(𝑧1 + 𝑟𝑒𝑖𝜃 , 𝑧2, … , 𝑧𝑛)𝑒−𝑖𝜃 𝑑𝑟 𝑑𝜃.

This holds for all 𝑧 ∈ 𝐷𝑛
𝑅(𝑎) such that |𝑧1 − 𝑏1| < 𝜀. This integrand is smooth in

all variables and the domain of integration is compact, so once again we conclude
that 𝑔2 is smooth, and if 𝑓2 is holomorphic with respect to 𝑧𝑗 , 𝑗 ≥ 2, then so is 𝑔2.

To compute 𝜕𝑔2/𝜕𝑧1, we differentiate under the integral sign:

𝜕𝑔2
𝜕𝑧1 (𝑧1, … , 𝑧𝑛) = −1

𝜋 ∫
2𝜋

0 ∫
𝑅

0

𝜕𝑓2
𝜕𝑧1 (𝑧1 + 𝑟𝑒𝑖𝜃 , 𝑧2, … , 𝑧𝑛)𝑒−𝑖𝜃 𝑑𝑟 𝑑𝜃.

Now change variables back to 𝑤 = 𝑧1 + 𝑟𝑒𝑖𝜃:
𝜕𝑔2
𝜕𝑧1 (𝑧1, … , 𝑧𝑛) = 1

2𝜋𝑖 ∫𝐷𝑅(𝑧1)

𝜕𝑓2
𝜕𝑧1 (𝑤, 𝑧2, … , 𝑧𝑛)𝑑𝑤 ∧ 𝑑𝑤

𝑤 − 𝑧1 .

Choose 𝛿 > 0 smaller than 𝑅. For 𝑤 in the compact annulus 𝐴𝑅,𝛿 = 𝐷𝑅(𝑧1) ∖
𝐷𝛿(𝑧1) and (𝑧2, … , 𝑧𝑛) arbitrary, the integrand is smooth in 𝑤 and equal to 𝑑𝜂,
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where

𝜂 = −𝑓2(𝑤, 𝑧2, … , 𝑧𝑛) 𝑑𝑤
𝑤 − 𝑧1 .

By Stokes’s theorem, therefore,
1

2𝜋𝑖 ∫𝐴𝑅,𝛿

𝜕𝑓2
𝜕𝑧1 (𝑤, 𝑧2, … , 𝑧𝑛)𝑑𝑤 ∧ 𝑑𝑤

𝑤 − 𝑧1 = 1
2𝜋𝑖 ∫𝐴𝑅,𝛿

𝑑𝜂

= 1
2𝜋𝑖 ∫𝜕𝐷𝑅(𝑧1)

𝜂 − 1
2𝜋𝑖 ∫𝜕𝐷𝛿(𝑧1)

𝜂

= − 1
2𝜋𝑖 ∫𝜕𝐷𝛿(𝑧1)

𝜂,

where the negative sign in the next-to-last equality results from the Stokes orien-
tation on the inner circle, and the last equality follows because we chose 𝑅 large
enough that 𝜂 is identically zero on the outer circle. To compute this last integral,
parametrize 𝜕𝐷𝛿(𝑧1) by 𝑤 = 𝑧1 + 𝛿𝑒𝑖𝜃 for 𝜃 ∈ [0, 2𝜋], so the pullback of 𝜂 to the
parameter domain [0, 2𝜋] is −𝑓2(𝑧1 + 𝛿𝑒𝑖𝜃 , 𝑧2, … , 𝑧𝑛)𝑖 𝑑𝜃. Therefore,

− 1
2𝜋𝑖 ∫𝜕𝐷𝛿(𝑧1)

𝜂 = 1
2𝜋 ∫

2𝜋

0
𝑓2(𝑧1 + 𝛿𝑒𝑖𝜃 , 𝑧2, … , 𝑧𝑛) 𝑑𝜃.

As 𝛿 → 0, the integrand converges uniformly to 𝑓2(𝑧1, … , 𝑧𝑛), so the limit of the
integral is equal to 1

2𝜋 ∫2𝜋
0 𝑓2(𝑧) 𝑑𝜃 = 𝑓2(𝑧). Putting this all together, we conclude

that
𝜕𝑔2
𝜕𝑧1 (𝑧) = 1

2𝜋𝑖 ∫𝐷𝑟(𝑎1)
𝑑𝜂

= lim
𝛿→0

1
2𝜋𝑖 ∫𝐴𝑅,𝛿

𝑑𝜂 = − lim
𝛿→0

1
2𝜋𝑖 ∫𝜕𝐷𝛿(𝑧)

𝜂 = 𝑓2(𝑧).

Combining this with the computation for 𝑓1, we find that for 𝑧 ∈ 𝐷𝑛
𝑟 (𝑎) such that

|𝑧1 − 𝑏1| < 𝜀,
𝜕𝑓
𝜕𝑧 (𝑧) = 𝜕𝑓1

𝜕𝑧 (𝑧) + 𝜕𝑓2
𝜕𝑧 (𝑧) = 𝑔1(𝑧) + 𝑔2(𝑧) = 𝑔(𝑧).

Since 𝑏1 was arbitrary, the same formula holds on the entire polydisk 𝐷𝑛
𝑟 (𝑎), thus

completing the proof. □

Proof of the 𝝏-Poincaré lemma. Let 𝑛 = dim𝑀 . This is purely a local question,
so for each point 𝑎 ∈ 𝑀 , we can choose holomorphic coordinates (𝑧1, … , 𝑧𝑛) cen-
tered at 𝑎 and use the coordinate map to consider 𝜔 as a 𝜕-closed (𝑝, 𝑞)-form on a
neighborhood 𝑈 of 0 in ℂ𝑛. We make this assumption henceforth.

We begin with the special case 𝑝 = 0. When 𝑛 = 1, only the (0, 1) case is
nontrivial. Thus suppose 𝜔 = 𝑓 𝑑𝑧 is a smooth (0, 1)-form on a neighborhood
of 0 in ℂ. It is automatically 𝜕-closed because there are no nonzero (0, 2)-forms.
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Lemma 4.14 shows that there is a smooth function 𝑔 on a neighborhood of 0 such
that 𝜕𝑔/𝜕𝑧 = 𝑓 , which is equivalent to 𝜕𝑔 = 𝜔.

Now let 𝑛 > 1. Suppose 𝜔 is a smooth 𝜕-closed (0, 𝑞)-form on a neighborhood
𝑈 of 0 in ℂ𝑛. For each 𝑘 ∈ {0, … , 𝑞}, let Λ0,𝑞

𝑘 (𝑈) denote the smooth subbundle
of Λ0,𝑞(𝑈) spanned by 𝑞-fold wedge products involving only 𝑑𝑧1, … , 𝑑𝑧𝑘; and let
ℰ0,𝑞

𝑘 (𝑈) denote the space of smooth sections of Λ0,𝑞
𝑘 (𝑈). Wewill prove by induction

on 𝑘 that whenever 𝜔 ∈ ℰ0,𝑞
𝑘 (𝑈) and 𝜕𝜔 = 0, there exists 𝜂 ∈ ℰ0,𝑞−1(𝑈) such that

𝜕𝜂 = 𝜔. When 𝑘 = 𝑛, this is the desired conclusion.
For 𝑘 = 0, ℰ0,𝑞

𝑘 (𝑀) contains only 𝜔 = 0, so there is nothing to prove. Sup-
pose 𝑘 ≥ 1 and the claim is true for ℰ0,𝑞

𝑘−1(𝑈), and let 𝜔 be an element of ℰ0,𝑞
𝑘 (𝑈)

satisfying 𝜕𝜔 = 0. By separating out the terms in 𝜔 that contain 𝑑𝑧𝑘, we can write
𝜔 = 𝛼 + 𝑑𝑧𝑘 ∧ 𝛽, where 𝛼 ∈ ℰ0,𝑞

𝑘−1(𝑈) and 𝛽 ∈ ℰ0,𝑞−1
𝑘−1 (𝑈). Write

𝛼 = ∑
′

𝐼
𝛼𝐼 𝑑𝑧𝑖1 ∧ ⋯ ∧ 𝑑𝑧𝑖𝑞 , 𝛽 = ∑

′

𝐽
𝛽𝐽 𝑑𝑧𝑗1 ∧ ⋯ ∧ 𝑑𝑧𝑗𝑞−1 ,

where the only multi-indices 𝐼 and 𝐽 that occur have all indices less than 𝑘. Our
assumption is

0 = 𝜕𝜔 = 𝜕𝛼 − 𝑑𝑧𝑘 ∧ 𝜕𝛽

= ∑
′

𝐼

𝑛

∑
𝑟=1

𝜕𝛼𝐼
𝜕𝑧𝑟 𝑑𝑧𝑟 ∧ 𝑑𝑧𝑖1 ∧ ⋯ ∧ 𝑑𝑧𝑖𝑞

− 𝑑𝑧𝑘 ∧ ∑
′

𝐽

𝑛

∑
𝑠=1

𝜕𝛽𝐽
𝜕𝑧𝑠 𝑑𝑧𝑠 ∧ 𝑑𝑧𝑗1 ∧ ⋯ ∧ 𝑑𝑧𝑗𝑞−1 .

Let 𝐽 = (𝑗1, … , 𝑗𝑞−1) be any increasing multi-index of length 𝑞 − 1 with all indices
less than 𝑘, and let 𝑠 > 𝑘. When we evaluate the right-hand side of the above
expression on the basis vectors (𝜕/𝜕𝑧𝑘, 𝜕/𝜕𝑧𝑠, 𝜕/𝜕𝑧𝑗1 , … , 𝜕/𝜕𝑧𝑗𝑞−1), only one term
produces a nonzero result, and that result is −𝜕𝛽𝐽 /𝜕𝑧𝑠. Thus each coefficient 𝛽𝐽 is
holomorphic in the variables 𝑧𝑘+1, … , 𝑧𝑛. Lemma 4.14 shows that for each such 𝐽 ,
in some neighborhood 𝑈0 of 0 there is a smooth function 𝛾𝐽 satisfying 𝜕𝛾𝐽 /𝜕𝑧𝑘 =
𝛽𝐽 , and 𝜕𝛾𝐽 /𝜕𝑧𝑠 = 0 for 𝑠 ≥ 𝑘 + 1. Let 𝛾 be the (0, 𝑞 − 1)-form

𝛾 = ∑
′

𝐽
𝛾𝐽 𝑑𝑧𝑗1 ∧ ⋯ ∧ 𝑑𝑧𝑗𝑞−1 ,

so that

𝜕𝛾 = ∑
′

𝐽

𝑘

∑
𝑠=1

𝜕𝛾𝐽
𝜕𝑧𝑠 𝑑𝑧𝑠 ∧ 𝑑𝑧𝑗1 ∧ ⋯ ∧ 𝑑𝑧𝑗𝑞−1

= 𝑑𝑧𝑘 ∧ 𝛽 mod ℰ0,𝑞
𝑘−1(𝑈0).
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Therefore, 𝜔 − 𝜕𝛾 ∈ ℰ0,𝑞
𝑘−1(𝑈0). Since 𝜔 − 𝜕𝛾 is 𝜕-closed, the inductive hypothesis

guarantees that there is a smooth (0, 𝑞 − 1)-form 𝜎 such that 𝜕𝜎 = 𝜔 − 𝜕𝛾 , so we
have 𝜕(𝜎 + 𝛾) = 𝜔. This completes the inductive step and thus proves the lemma
in the 𝑝 = 0 case.

Finally, let 𝑝 be arbitrary, and suppose 𝜔 is a 𝜕-closed (𝑝, 𝑞)-form. We can write

𝜔 = ∑
′

𝐼,𝐽
𝜔𝐼𝐽 𝑑𝑧𝑖1 ∧ ⋯ ∧ 𝑑𝑧𝑖𝑝 ∧ 𝑑𝑧𝑗1 ∧ ⋯ ∧ 𝑑𝑧𝑗𝑞 = ∑

′

𝐼
𝛼𝐼 ∧ 𝛽𝐼 ,

where

𝛼𝐼 = 𝑑𝑧𝑖1 ∧ ⋯ ∧ 𝑑𝑧𝑖𝑝 ,
𝛽𝐼 = ∑

′

𝐽
𝜔𝐼𝐽 𝑑𝑧𝑗1 ∧ ⋯ ∧ 𝑑𝑧𝑗𝑞 .

Note that 𝜕𝛼𝐼 = 0 because 𝑑𝛼𝐼 = 0, so

0 = 𝜕𝜔 = (−1)𝑝
∑

′

𝐼
𝛼𝐼 ∧ 𝜕𝛽𝐼 .

Choose a particular multi-index 𝐼 = (𝑖1, … , 𝑖𝑝), and take the interior product of
both sides of this equation with the vector fields 𝜕/𝜕𝑧𝑖1 , … , 𝜕/𝜕𝑧𝑖𝑝 in turn, using
the fact that interior multiplication is an antiderivation (meaning that 𝑣 ⅃ (𝜔 ∧ 𝜂) =
(𝑣⅃𝜔)∧𝜂+(−1)𝑘𝜔 ∧ (𝑣 ⅃ 𝜂) when 𝜔 and 𝜂 are forms of degrees 𝑘 and 𝑙, respectively
[LeeSM, Lemma 14.13]). This yields

0 = 𝜕
𝜕𝑧𝑖𝑝

⅃ ⋯ ⅃
𝜕

𝜕𝑧𝑖1
⅃ 𝜕𝜔 = (−1)𝑝𝜕𝛽𝐼 ,

so 𝜕𝛽𝐼 = 0 for each 𝐼 . Therefore, by the 𝑝 = 0 case proved above, for each 𝐼 there
is a (0, 𝑞 − 1)-form 𝜎𝐼 on a neighborhood of 0 such that 𝜕𝜎𝐼 = 𝛽𝐼 , and it follows
that 𝜕( ∑′

𝐼 𝛼𝐼 ∧ 𝜎𝐼 ) = 𝜔. □

Corollary 4.15 (Local 𝝏𝝏-Lemma). Suppose 𝜃 is a smooth, closed (𝑝, 𝑞)-form on
a complex manifold 𝑀 , with 𝑝 and 𝑞 both positive. In a neighborhood of each point
of 𝑀 , there exists a smooth (𝑝 − 1, 𝑞 − 1)-form 𝛼 such that 𝜃 = 𝑖𝜕𝜕𝛼. If 𝜃 is a real
(𝑝, 𝑝)-form, then 𝛼 can be chosen to be real.

Proof. Because 𝜃 is a closed (𝑝 + 𝑞)-form, in a neighborhood of each point there
is a complex (𝑝 + 𝑞 − 1)-form 𝜂 such that 𝑑𝜂 = 𝜃 by the ordinary Poincaré lemma.
(The Poincaré lemma applies to complex-valued forms by applying it separately to
the real and imaginary parts.) Since the only parts of 𝜂 that can contribute to the
(𝑝, 𝑞)-part of 𝑑𝜂 are the (𝑝, 𝑞 − 1) and (𝑝 − 1, 𝑞) parts, we may as well assume that
𝜂 decomposes as 𝜂 = 𝜂(𝑝,𝑞−1) + 𝜂(𝑝−1,𝑞).
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Using the fact that 𝑑 = 𝜕 + 𝜕, we can decompose the equation 𝑑𝜂 = 𝜃 as
follows:

𝜕𝜂(𝑝−1,𝑞) = 0 ((𝑝 − 1, 𝑞 + 1) part),
𝜕𝜂(𝑝,𝑞−1) + 𝜕𝜂(𝑝−1,𝑞) = 𝜃 ((𝑝, 𝑞) part),

𝜕𝜂(𝑝,𝑞−1) = 0 ((𝑝 + 1, 𝑞 − 1) part).
Now apply the 𝜕-Poincaré lemma to conclude that (after shrinking the neighborhood
if necessary) there exists a (𝑝 − 1, 𝑞 − 1)-form 𝛽 such that 𝜕𝛽 = 𝜂(𝑝−1,𝑞). Similarly,
since 𝜂(𝑝,𝑞−1) is 𝜕-closed, there exists a (𝑞 − 1, 𝑝 − 1)-form 𝛾 such that 𝜕𝛾 = 𝜂(𝑝,𝑞−1).

Set 𝛼 = 𝑖𝛾 − 𝑖𝛽, which is a (𝑝 − 1, 𝑞 − 1)-form. Using the fact that 𝜕𝜕 = −𝜕𝜕,
we compute

𝑖𝜕𝜕𝛼 = 𝑖𝜕𝜕(𝑖𝛾) − 𝑖𝜕𝜕(𝑖𝛽)
= 𝜕(𝜕𝛾) + 𝜕(𝜕𝛽)
= 𝜕𝜂(𝑝,𝑞−1) + 𝜕𝜂(𝑝−1,𝑞)

= 𝜃.

In case 𝜃 is a real (𝑝, 𝑝)-form, we can choose 𝜂 to be real, which means 𝜂(𝑝,𝑝−1) =
𝜂(𝑝−1,𝑝); and then we can choose 𝛾 = 𝛽, so that 𝛼 = 𝑖𝛽 − 𝑖𝛽 is real. □

Bundle-Valued Forms
For holomorphic vector bundles, there is a generalized Dolbeault complex built out
of “bundle-valued differential forms.” Here is how that works.

We begin with a smooth manifold 𝑀 and a smooth complex vector bundle
𝐸 → 𝑀 . Let End(𝐸) → 𝑀 be its endomorphism bundle, which is canonically
isomorphic to 𝐸 ⊗ 𝐸∗. (See Example 3.24 for the holomorphic case; the argument
is exactly the same for smooth bundles.) For each nonnegative integer 𝑞, we define
the bundle of 𝑬-valued 𝒒-forms as the tensor product bundle Λ𝑞

ℂ𝑀 ⊗ 𝐸. We will
use the notation ℰ 𝑞(𝑀; 𝐸) to denote the space of smooth sections of Λ𝑞

ℂ𝑀 ⊗ 𝐸,
so ℰ0(𝑀; 𝐸) is just the space of smooth sections of 𝐸 itself. Similarly, Λ𝑞

ℂ𝑀 ⊗
End(𝐸) is the bundle of endomorphism-valued 𝒒-forms, and ℰ 𝑞(𝑀;End(𝐸)) is its
space of smooth sections.

There are several natural wedge product operations on bundle-valued and endo-
morphism-valued forms. Suppose 𝐸 → 𝑀 is a smooth complex vector bundle. The
simplest case is the wedge product between ordinary (scalar-valued) differential
forms and 𝐸-valued differential forms. For 𝛼 ∈ ℰ 𝑞(𝑀) and 𝛽 ⊗ 𝜎 ∈ ℰ 𝑞′(𝑀; 𝐸),
we define

𝛼 ∧ (𝛽 ⊗ 𝜎) = (𝛼 ∧ 𝛽) ⊗ 𝜎 ∈ ℰ 𝑞+𝑞′(𝑀; 𝐸),
and then extend linearly to sums of such tensor products. Because this expression
depends bilinearly on 𝛽 and 𝜎, it follows from the characteristic property of tensor
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product spaces [LeeSM, Prop. 12.7] (which holds equally well for tensor products
over ℂ or ℝ) that this is well defined. In terms of a local frame (𝑠𝑗) for 𝐸, we can
write 𝛽 = 𝛽𝑗 ⊗ 𝑠𝑗 for some scalar-valued forms 𝛽𝑗 (using the summation conven-
tion), and then
(4.15) 𝛼 ∧ (𝛽𝑗 ⊗ 𝑠𝑗) = (𝛼 ∧ 𝛽𝑗) ⊗ 𝑠𝑗 .
In particular, if 𝛽 is an 𝐸-valued 0-form (i.e., a smooth section of 𝐸), then 𝛼 ∧ 𝛽 is
just the same as 𝛼⊗𝛽; and if 𝛼 is a 0-form (i.e., a smooth function), then 𝛼∧𝛽 = 𝛼𝛽.

There is also a wedge product operation between 𝐸-valued forms and 𝐸∗-
valued forms, which produces scalar forms. We define a wedge operation

∧ ∶ ℰ 𝑞(𝑀; 𝐸∗) × ℰ 𝑞′(𝑀; 𝐸) → ℰ 𝑞+𝑞′(𝑀)
by setting

(4.16) (𝛾 ⊗ 𝜑) ∧ (𝛽 ⊗ 𝜎) = 𝜑(𝜎)(𝛾 ∧ 𝛽) ∈ ℰ 𝑞+𝑞′(𝑀)
for 𝛾 ⊗ 𝜑 ∈ ℰ 𝑞′(𝑀; 𝐸∗) and 𝛽 ⊗ 𝜎 ∈ ℰ 𝑞(𝑀; 𝐸), and extending bilinearly. This
yields the following expression in terms of a local frame (𝑠𝑗) for 𝐸 and its dual
frame (𝜀𝑘) for 𝐸∗:
(4.17) (𝛾𝑘 ⊗ 𝜀𝑘) ∧ (𝛽𝑗 ⊗ 𝑠𝑗) = 𝛾𝑗 ∧ 𝛽𝑗 .

Especially important are wedge products with endomorphism-valued forms.
For 𝛼 ⊗𝐴 ∈ ℰ 𝑞(𝑀;End(𝐸)), 𝛽 ⊗𝐵 ∈ ℰ 𝑞′(𝑀;End(𝐸)), and 𝛾 ⊗𝜎 ∈ ℰ 𝑞″(𝑀; 𝐸),
we define

(𝛼 ⊗ 𝐴) ∧ (𝛽 ⊗ 𝐵) = (𝛼 ∧ 𝛽) ⊗ (𝐴 ∘ 𝐵) ∈ ℰ 𝑞+𝑞′(𝑀;End(𝐸)),
(𝛼 ⊗ 𝐴) ∧ (𝛾 ⊗ 𝜎) = (𝛼 ∧ 𝛾) ⊗ 𝐴𝜎 ∈ ℰ 𝑞+𝑞′(𝑀; 𝐸),

and extend bilinearly. To see how to compute these locally, let (𝑠𝑗) be a local
frame for 𝐸 and (𝜀𝑘) the dual frame for 𝐸∗. Because of the canonical isomor-
phism End(𝐸) ≅ 𝐸 ⊗ 𝐸∗, each section 𝜔 ∈ ℰ 𝑞(End(𝐸)) can be expressed locally
in the form

𝜔 = 𝜔𝑗
𝑘 ⊗ 𝑠𝑗 ⊗ 𝜀𝑘,

for a uniquely determined matrix (𝜔𝑗
𝑘) of ordinary 𝑞-forms. The tensor product

𝑠𝑗 ⊗ 𝜀𝑘 represents the endomorphism of 𝐸 whose action on a basis element 𝑠𝑖 is
(𝑠𝑗 ⊗ 𝜀𝑘)(𝑠𝑖) = 𝛿𝑘

𝑖 𝑠𝑗 , so the wedge product defined above satisfies

(4.18)
𝜔 ∧ 𝜂 = (𝜔𝑗

𝑘 ⊗ 𝑠𝑗 ⊗ 𝜀𝑘) ∧ (𝜂𝑙
𝑚 ⊗ 𝑠𝑙 ⊗ 𝜀𝑚)

= (𝜔𝑗
𝑘 ∧ 𝜂𝑙

𝑚) ⊗ (𝛿𝑘
𝑙 𝑠𝑗 ⊗ 𝜀𝑚)

= (𝜔𝑗
𝑘 ∧ 𝜂𝑘

𝑚) ⊗ (𝑠𝑗 ⊗ 𝜀𝑚).
In other words, the matrix of forms representing 𝜔 ∧ 𝜂 is the matrix product of the
ones representing 𝜔 and 𝜂, with individual entries combined via the wedge product.
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(In an expression like 𝜔𝑗
𝑘, we always interpret the upper index as the row number

and the lower index as the column number.) Similarly, if 𝛾 = 𝛾𝑚 ⊗ 𝑠𝑚 is the local
expression for an element of ℰ 𝑞″(𝑀; 𝐸), then

(4.19) 𝜔 ∧ 𝛾 = (𝜔𝑗
𝑘 ∧ 𝛾𝑘) ⊗ 𝑠𝑗 .

Now suppose 𝑀 is a complex manifold. For each 𝑝, 𝑞, we define the bundle of
𝑬-valued (𝒑, 𝒒)-forms as the tensor product bundle Λ𝑝,𝑞𝑀 ⊗ 𝐸, and ℰ𝑝,𝑞(𝑀; 𝐸)
denotes the space of smooth sections of Λ𝑝,𝑞𝑀 ⊗ 𝐸.

When the bundle 𝐸 is holomorphic, something special happens.

Proposition 4.16 (Cauchy–Riemann Operator on Bundle-Valued Forms). Sup-
pose 𝑀 is a complex manifold and 𝐸 → 𝑀 is a holomorphic vector bundle. There
are operators 𝜕𝐸 ∶ ℰ𝑝,𝑞(𝑀; 𝐸) → ℰ𝑝,𝑞+1(𝑀; 𝐸) satisfying the following proper-
ties:

(i) For 𝜎 ∈ ℰ0,0(𝑀; 𝐸) = Γ(𝐸), 𝜕𝐸𝜎 = 0 if and only if 𝜎 is a holomorphic
section.

(ii) For 𝛼 ∈ ℰ𝑝,𝑞(𝑀) and 𝛽 ∈ ℰ𝑝′,𝑞′(𝑀; 𝐸),

𝜕𝐸(𝛼 ∧ 𝛽) = 𝜕𝛼 ∧ 𝛽 + (−1)𝑝+𝑞𝛼 ∧ 𝜕𝐸𝛽.

(iii) For 𝛾 ∈ ℰ𝑝,𝑞(𝑀; 𝐸∗) and 𝛽 ∈ ℰ𝑝′,𝑞′(𝑀; 𝐸),

𝜕(𝛾 ∧ 𝛽) = 𝜕𝐸∗𝛾 ∧ 𝛽 + (−1)𝑝+𝑞𝛾 ∧ 𝜕𝐸𝛽.

(iv) 𝜕𝐸 ∘ 𝜕𝐸 = 0.
(v) If 𝛼 ∈ ℰ𝑝,𝑞(𝑀; 𝐸) satisfies 𝜕𝐸𝛼 = 0, then in a neighborhood of each

point there exists 𝛽 ∈ ℰ𝑝,𝑞−1(𝑀; 𝐸) such that 𝜕𝐸𝛽 = 𝛼.

Proof. Suppose 𝜎 ∈ ℰ𝑝,𝑞(𝑀; 𝐸). In any open set 𝑈 ⊆ 𝑀 over which there is a
holomorphic local frame (𝑠𝑗) for 𝐸, we can write 𝜎|𝑈 = 𝜎𝑗 ⊗ 𝑠𝑗 for scalar-valued
forms 𝜎𝑗 . We wish to define 𝜕𝐸𝜎 by setting

(4.20) 𝜕𝐸𝜎|𝑈 = (𝜕𝜎𝑗) ⊗ 𝑠𝑗 .

To ensure this makes sense globally, we need to check that it is independent of the
choice of holomorphic local frame. If ( ̃𝑠𝑘) is another holomorphic local frame, then
where the domains overlap we can write ̃𝑠𝑘 = 𝜏𝑗

𝑘𝑠𝑗 for some holomorphic functions
𝜏𝑗

𝑘. Then 𝜎 = 𝜎𝑘 ̃𝑠𝑘 with 𝜏𝑗
𝑘𝜎𝑘 = 𝜎𝑗 . Because 𝜕𝜏𝑗

𝑘 ≡ 0, we have

(𝜕𝜎𝑗) ⊗ 𝑠𝑗 = 𝜕(𝜏𝑗
𝑘𝜎𝑘) ⊗ 𝑠𝑗 = (𝜕𝜎𝑘) ⊗ (𝜏𝑗

𝑘𝑠𝑗) = (𝜕𝜎𝑘) ⊗ ̃𝑠𝑘.

This proves that 𝜕𝐸 is well defined.
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To prove (i), suppose 𝜎 is a smooth section of 𝐸. In terms of any local holo-
morphic frame (𝑠𝑗), we can write 𝜎 = 𝑓 𝑗𝑠𝑗 for some complex-valued functions 𝑓 𝑗 .
If 𝜎 is holomorphic, then each 𝑓 𝑗 is holomorphic, and (4.20) shows that 𝜕𝐸𝜎 = 0.
Conversely, if 𝜕𝐸𝜎 = 0, then 0 = (𝜕𝑓 𝑗) ⊗ 𝑠𝑗 ; since the sections 𝑠𝑗 are linearly
independent at each point, this shows that 𝜕𝑓 𝑗 = 0 for each 𝑗, so 𝜎 is holomorphic.

Now (ii) follows by writing 𝛽 ∈ ℰ𝑝′,𝑞′(𝑀; 𝐸) locally as 𝛽𝑗 ⊗ 𝑠𝑗 , so that

𝜕𝐸(𝛼 ∧ 𝛽) = 𝜕𝐸((𝛼 ∧ 𝛽𝑗) ⊗ 𝑠𝑗)
= (𝜕𝛼 ∧ 𝛽𝑗 + (−1)𝑝+𝑞𝛼 ∧ 𝜕𝛽𝑗) ⊗ 𝑠𝑗
= 𝜕𝛼 ∧ 𝛽 + (−1)𝑝+𝑞𝛼 ∧ 𝜕𝐸𝛽.

To prove (iii), write 𝛽 locally as above, and write 𝛾 = 𝛾𝑘 ⊗ 𝜀𝑘, where (𝜀𝑘)
denotes the local holomorphic frame for 𝐸∗ dual to (𝑠𝑗), so that 𝛾 ∧ 𝛽 = 𝛾𝑗 ∧ 𝛽𝑗 .
We compute

𝜕𝐸∗𝛾 ∧ 𝛽 + (−1)𝑝+𝑞𝛾 ∧ 𝜕𝐸𝛽
= (𝜕𝛾𝑘 ⊗ 𝜀𝑘) ∧ (𝛽𝑗 ⊗ 𝑠𝑗) + (−1)𝑝+𝑞(𝛾𝑘 ⊗ 𝜀𝑘) ∧ (𝜕𝛽𝑗 ⊗ 𝑠𝑗)
= 𝜕𝛾𝑗 ∧ 𝛽𝑗 + (−1)𝑝+𝑞𝛾𝑗 ∧ 𝜕𝛽𝑗

= 𝜕(𝛾𝑗 ∧ 𝛽𝑗) = 𝜕(𝛾 ∧ 𝛽).

To prove (iv), let 𝜎 ∈ ℰ𝑝,𝑞(𝑀; 𝐸), and let (𝑠𝑗) be a holomorphic local frame
for 𝐸 on 𝑈 ⊆ 𝑀 . Writing 𝜎 = 𝜎𝑗 ⊗ 𝑠𝑗 on 𝑈 , we conclude from (4.20) that

𝜕𝐸(𝜕𝐸𝜎) = 𝜕𝐸((𝜕𝜎𝑗) ⊗ 𝑠𝑗) = (𝜕𝜕𝜎𝑗) ⊗ 𝑠𝑗 = 0.

Finally, to prove (v), suppose 𝛼 satisfies 𝜕𝐸𝛼 = 0. In terms of a holomorphic
local frame, we can write 𝛼 = 𝛼𝑗 ⊗ 𝑠𝑗 for some scalar-valued (𝑝, 𝑞)-forms 𝛼𝑗 sat-
isfying (𝜕𝛼𝑗) ⊗ 𝑠𝑗 = 0. As above, the pointwise linear independence of the 𝑠𝑗’s
implies 𝜕𝛼𝑗 = 0 for each 𝑗, and then the 𝜕-Poincaré lemma yields (𝑝, 𝑞−1)-forms 𝛽𝑗

in a neighborhood of each point such that 𝜕𝛽𝑗 = 𝛼𝑗 and thus 𝜕𝐸(𝛽𝑗 ⊗ 𝑠𝑗) = 𝛼. □

Note that in general, there is no natural 𝜕 operator on holomorphic vector bun-
dles. What makes it possible to define 𝜕𝐸 is the fact that the transition functions
relating different holomorphic frames are holomorphic and thus killed by the scalar
𝜕 operator.

Thanks to part (iv) of the preceding proposition, we can define the Dolbeault
cohomology groups with coefficients in 𝑬 as the vector spaces

(4.21) 𝐻𝑝,𝑞(𝑀; 𝐸) =
Ker (𝜕𝐸 ∶ ℰ𝑝,𝑞(𝑀; 𝐸) → ℰ𝑝,𝑞+1(𝑀; 𝐸))
Im (𝜕𝐸 ∶ ℰ𝑝,𝑞−1(𝑀; 𝐸) → ℰ𝑝,𝑞(𝑀; 𝐸))

.
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A particularly important special case of this construction applies to the bundles
Λ𝑝,0𝑀 . If (𝑧𝑗) and ( ̃𝑧𝑗) are overlapping holomorphic coordinate charts for 𝑀 , then
the local coordinate frames for Λ𝑝,0𝑀 are related by

𝑑 ̃𝑧𝑗1 ∧ ⋯ ∧ 𝑑 ̃𝑧𝑗𝑝 =
𝑛

∑
𝑖1,…,𝑖𝑝=1

𝜕 ̃𝑧𝑗1

𝜕𝑧𝑖1
⋯ 𝜕 ̃𝑧𝑗𝑝

𝜕𝑧𝑖𝑝
𝑑𝑧𝑖1 ∧ ⋯ ∧ 𝑑𝑧𝑖𝑝 ,

so the transition functions between the two frames are holomorphic. Thus Λ𝑝,0𝑀
has the structure of a holomorphic vector bundle, and Problem 4-2 shows that the
bundle-valued 𝜕-operator can be identified with the ordinary 𝜕 in this case. (Note
that the bundles Λ𝑝,𝑞𝑀 for 𝑞 ≠ 0 do not have natural holomorphic structures, how-
ever; they are just smooth bundles.) A section 𝛼 of Λ𝑝,0𝑀 is holomorphic if and
only if 𝜕𝛼 = 0.

We denote the space of holomorphic (i.e., 𝜕-closed) sections of Λ𝑝,0𝑀 by
Ω𝑝(𝑀); these sections are called holomorphic 𝒑-forms. One particular case that
will be of special importance is the case 𝑝 = 𝑛, where 𝑛 = dim𝑀 . In that case
Λ𝑛,0𝑀 is a holomorphic line bundle, called the canonical bundle of𝑴 . It is typi-
cally denoted by 𝐾𝑀 → 𝑀 , or sometimes just 𝐾 → 𝑀 if it will not cause confu-
sion. Its dual, denoted by 𝐾∗

𝑀 or 𝐾∗, is called the anticanonical bundle.

Proposition 4.17 (Canonical Bundle of Projective Space). Let 𝐾 → ℂℙ𝑛 be
the canonical bundle of ℂℙ𝑛 and let 𝐻 → ℂℙ𝑛 be its hyperplane bundle. Then
𝐾 ≅ 𝐻−(𝑛+1).

Proof. Problem 4-4. □

More generally, if 𝐸 → 𝑀 is a holomorphic vector bundle, each of the bundles
Λ𝑝,0 ⊗ 𝐸 is also holomorphic, and holomorphic sections of such a bundle are those
that can be written locally as a finite sum of tensor products of holomorphic forms
with holomorphic sections of 𝐸. We denote the space of holomorphic sections of
Λ𝑝,0 ⊗ 𝐸 by Ω𝑝(𝑀; 𝐸).

Problems
4-1. Let 𝑀 be a complex manifold and let 𝜔 be a 2-form on 𝑀 . Show that 𝜔 is

of type (1, 1) if and only if 𝜔(𝐽𝑋, 𝐽𝑌 ) = 𝜔(𝑋, 𝑌 ) for all vector fields 𝑋
and 𝑌 , where 𝐽 ∶ 𝑇 𝑀 → 𝑇 𝑀 is the canonical almost complex structure
on 𝑀 .

4-2. On a complex manifold 𝑀 , show that the complex vector bundles Λ𝑝,𝑞𝑀
and Λ𝑝,0𝑀 ⊗ Λ0,𝑞𝑀 are isomorphic, and under this isomorphism the
operator 𝜕𝐸 for 𝐸 = Λ𝑝,0𝑀 corresponds to the standard 𝜕 operator.
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4-3. Let (𝑀, 𝐽) be an almost complex manifold of real dimension 2𝑛, and de-
fine ℰ𝑝,𝑞(𝑀) to be the space of smooth complex-valued (𝑝+𝑞)-forms that
vanish if more than 𝑝 of their arguments are sections of 𝑇 ′𝑀 or more than
𝑞 are sections of 𝑇 ″𝑀 . Show that the following are equivalent:
(a) 𝐽 is integrable.
(b) For every pair of integers 𝑝, 𝑞 ∈ {0, … , 𝑛}, the exterior derivative

operator 𝑑 maps ℰ𝑝,𝑞(𝑀) to ℰ𝑝+1,𝑞(𝑀) ⊕ ℰ𝑝,𝑞+1(𝑀).
(c) 𝑑(ℰ0,1(𝑀)) ⊆ ℰ1,1(𝑀) ⊕ ℰ0,2(𝑀).

4-4. Prove Proposition 4.17 (canonical bundle of projective space).

4-5. Prove that there are no nontrivial global holomorphic 𝑝-forms on ℂℙ𝑛 for
𝑝 > 0. [Hint: Proceed by induction on 𝑝, using interior products with the
vector fields 𝑍𝑗 of Problem 3-5 to prove the inductive step.]

4-6. Prove that every holomorphic map from a complex projective space to a
complex torus is constant. [Hint: Show that if 𝑇 = ℂ𝑚/Λ is a complex
torus, the holomorphic 1-forms 𝑑𝑧1, … , 𝑑𝑧𝑚 on ℂ𝑚 descend to holomor-
phic forms 𝜁1, … , 𝜁𝑛 on 𝑇 , and apply the result of Problem 4-5 to 𝐹 ∗𝜁 𝑗

for 𝐹 ∶ ℂℙ𝑛 → 𝑇 .]

4-7. Let 𝑀 be a complex manifold. A smooth real-valued function 𝑢 on 𝑀
is said to be pluriharmonic if in every holomorphic chart, 𝑢 is harmonic
(in the usual one-complex-variable sense) as a function of each complex
coordinate when the others are held fixed. Show that the following are
equivalent.
(a) 𝑢 is pluriharmonic.
(b) 𝜕𝜕𝑢 = 0.
(c) For every holomorphic embedding 𝑗 ∶ 𝔻 ↪ 𝑀 of the unit disk into

𝑀 , 𝑢 ∘ 𝑗 is harmonic (in the usual sense) on 𝔻.
(d) In a neighborhood of each point of 𝑀 , 𝑢 is the real part of a holo-

morphic function.

4-8. If 𝑆 ⊆ 𝑀 is a complex submanifold of a complex manifold 𝑀 , the conor-
mal bundle of 𝑺 in 𝑴 is the holomorphic bundle 𝑁∗𝑆 → 𝑆 dual to
the holomorphic normal bundle (see Example 3.23). Show that 𝑁∗𝑆 is
canonically isomorphic to the holomorphic subbundle of Λ1,0𝑀|𝑆 con-
sisting of (1, 0)-forms that vanish when applied to vectors tangent to 𝑆.

4-9. Suppose 𝑆 ⊆ 𝑀 is a closed complex hypersurface in a complex manifold
𝑀 , and let 𝑁∗𝑆 → 𝑀 be its conormal bundle (Problem 4-8). Prove that
𝑁∗𝑆 ≅ 𝐿∗

𝑆 |𝑆 , where 𝐿𝑆 → 𝑀 is the line bundle associated with 𝑆.
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4-10. Suppose 𝑆 is a closed complex hypersurface in a complex manifold 𝑀 .
Let 𝐾𝑆 and 𝐾𝑀 denote the canonical bundles of 𝑆 and 𝑀 , respectively,
and 𝐿𝑆 the line bundle on 𝑀 associated with the hypersurface 𝑆. Prove
the following adjunction formula:

𝐾𝑆 ≅ (𝐾𝑀 ⊗ 𝐿𝑆)|𝑆 .
[Hint: Begin by covering a neighborhood of 𝑆 with holomorphic coordi-
nate charts in which the first coordinate vanishes simply on 𝑆.]



Chapter 5

Sheaves

There are many situations in differential geometry in which interesting geometric
objects can be produced locally (nonvanishing sections of bundles, orientations,
Riemannian metrics, logarithms of holomorphic functions, forms whose exterior
derivative is a given closed form, to name a few), leading to the question of whether
they can be pieced together to form a global object with the same properties. In
smooth manifold theory, this can sometimes be accomplished with a partition of
unity, as we do when proving the existence of Riemannian metrics. But there are
many such problems, such as deciding whether a closed form is exact or trying to
produce holomorphic objects of any type, in which multiplying by smooth bump
functions destroys the property we are attempting to preserve, so partitions of unity
are not useful. Sheaves were invented to systematize the process of going from local
objects to global ones in such situations. Their applications to complex manifolds
are plentiful and deep.

Sheaves were first introduced in the early 1940s by the French mathematician
Jean Leray (while he was a prisoner of war in Austria); the concept was then devel-
oped and refined by a number of mathematicians over the next two decades. The
article [Mil00] gives a good overview of the early history of the subject.

Definitions
The idea of a sheaf begins with a simple and familiar construction. Suppose 𝑀 is a
topological space. A presheaf on 𝑴 is an assignment to each open set 𝑈 ⊆ 𝑀 of
a set 𝒮 (𝑈), called the set of sections of𝓢 over 𝑼 , along with a map 𝑟𝑈

𝑉 ∶ 𝒮 (𝑈) →
𝒮 (𝑉 ) called restriction whenever 𝑈 ⊇ 𝑉 , with the properties

𝑟𝑈
𝑈 = Id𝑈 for every open set 𝑈,(5.1)

𝑟𝑉
𝑊 ∘ 𝑟𝑈

𝑉 = 𝑟𝑈
𝑊 whenever 𝑈 ⊇ 𝑉 ⊇ 𝑊 .(5.2)
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For our applications, we will require our presheaves to have some algebraic
structure. A presheaf 𝒮 is called a presheaf of abelian groups if each 𝒮 (𝑈) has
an abelian group structure and the restriction maps are all homomorphisms; pre-
sheaves of rings and presheaves of real or complex vector spaces are defined sim-
ilarly. All of these are, in particular, presheaves of abelian groups (possibly with
extra structure), so sometimes we will concentrate on presheaves of abelian groups
and leave it to the reader to fill in the easy generalizations to presheaves with addi-
tional structure. Some typical examples to keep in mind on a complex manifold 𝑀
are the presheaf 𝒪 for which 𝒪(𝑈) is the ring of scalar-valued holomorphic func-
tions on 𝑈 , and the presheaf ℰ𝑝,𝑞 for which ℰ𝑝,𝑞(𝑈) is the complex vector space
of smooth (𝑝, 𝑞)-forms on 𝑈 . (In order for these assignments to satisfy the defini-
tion of a presheaf, we must assign meanings to 𝒪(∅) and ℰ𝑝,𝑞(∅). You can check
that 𝒮 (∅) = {0} satisfies the definitions whenever 𝒮 is a presheaf of sets, abelian
groups, rings, or vector spaces, and we adopt this convention for all of our sheaves
unless otherwise specified.)

Although there is no requirement that the elements of 𝒮 (𝑈) be maps of any
kind or that the “restriction maps” be actual restrictions of maps, it is convenient
to use the notation 𝑠|𝑉 for 𝑟𝑈

𝑉 (𝑠); property (5.2) guarantees that its value does not
depend on which larger open set 𝑈 we started with.

The definition of a presheaf can be expressed concisely in the language of cat-
egory theory (see, e.g., [LeeTM, pp. 209–214] or [Hat02, pp. 162–165]). Given
a topological space 𝑀 , let Top(𝑀) denote the category whose objects are open
subsets of 𝑀 and whose morphisms are set inclusions. If C is any category what-
soever (typically sets, abelian groups, rings, or vector spaces), a presheaf on 𝑴
with values in C is a contravariant functor from Top(𝑀) to C.

Because the purpose of sheaf theory is to systematize the process of piecing
together local data to produce global results, our main objects of study will be pre-
sheaves with two additional properties, which guarantee that each section is locally
determined and that compatible local sections can be glued together to produce
global ones. A sheaf is a presheaf that satisfies the following two conditions when-
ever {𝑈𝛼}𝛼∈𝐴 is a collection of open subsets of 𝑀 and 𝑈 = ⋃𝛼 𝑈𝛼:

• LOCALITY PROPERTY: If 𝑠 and 𝑡 are elements of𝒮 (𝑈) such that 𝑠|𝑈𝛼 = 𝑡|𝑈𝛼
for each 𝛼 ∈ 𝐴, then 𝑠 = 𝑡.

• GLUING PROPERTY: If we are given elements 𝑠𝛼 ∈ 𝒮 (𝑈𝛼) for each 𝛼 such
that 𝑠𝛼|𝑈𝛼∩𝑈𝛽 = 𝑠𝛽|𝑈𝛼∩𝑈𝛽 whenever 𝑈𝛼 ∩𝑈𝛽 ≠ ∅, then there is an element
𝑠 ∈ 𝒮 (𝑈) such that 𝑠𝛼 = 𝑠|𝑈𝛼 for every 𝛼 ∈ 𝐴.

► Exercise 5.1. Show that the following presheaves (with the restriction maps
given by actual restriction) satisfy the locality and gluing properties.
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(a) Given a topological, smooth, or holomorphic vector bundle 𝐸 → 𝑀 , 𝒮 (𝑈)
is the vector space of continuous, smooth, or holomorphic sections of 𝐸 over
𝑈 , respectively (with 𝒮 (∅) = {0} as explained above).

(b) Given any continuous map 𝜋 ∶ 𝑋 → 𝑀 between topological spaces, 𝒮 (𝑈)
is the set of local sections of 𝝅 over 𝑈 , that is, continuous maps 𝜎 ∶ 𝑈 → 𝑋
such that 𝜋 ∘ 𝜎 = Id𝑈 . (In this case, 𝒮 (∅) = {∅}, because the empty map
∅ ⊆ ∅ × 𝑋 is the unique map from ∅ to any set.)

(c) With 𝑋, 𝑀 , and 𝜋 as above, 𝒮 (𝑈) is the set of rough local sections of 𝝅 over
𝑈 , that is, maps 𝜎 ∶ 𝑈 → 𝑋 that satisfy 𝜋 ∘ 𝜎 = Id𝑈 but are not necessarily
continuous.

Here are some general constructions we will use. Let 𝑀 be a topological space.
If 𝒮 is a sheaf on 𝑀 and 𝑉 ⊆ 𝑀 is an open subset, we define the restriction

of 𝓢 to 𝑽 , denoted by 𝒮 |𝑉 , to be the presheaf

(5.3) 𝒮 |𝑉 (𝑈) = 𝒮 (𝑈) for all open sets 𝑈 ⊆ 𝑉 ,
with the restriction maps inherited from 𝒮 . It follows easily from the definitions
that 𝒮 |𝑉 satisfies the gluing and locality properties and thus is a sheaf.

Given a sheaf 𝒮 on 𝑀 , a subpresheaf 𝓣 of 𝓢 is a choice of subset (or sub-
group, subring, or vector subspace as appropriate) 𝒯 (𝑈) ⊆ 𝒮 (𝑈) for each open
set 𝑈 ⊆ 𝑀 , such that 𝑟𝑈

𝑉 (𝒯 (𝑈)) ⊆ 𝒯 (𝑉 ) whenever 𝑈 ⊇ 𝑉 . If 𝒯 satisfies the
gluing and locality properties with the induced restriction maps, then it is called a
subsheaf of 𝓢.

If 𝒮1, … , 𝒮𝑘 are sheaves of abelian groups on 𝑀 , their direct sum is the sheaf
𝒮1 ⊕ ⋯ ⊕ 𝒮𝑘 defined by (𝒮1 ⊕ ⋯ ⊕ 𝒮𝑘)(𝑈) = 𝒮1(𝑈) ⊕ ⋯ ⊕ 𝑆𝑘(𝑈). It is
straightforward to check that this is a sheaf.

Examples of sheaves abound.

Example 5.2 (Sheaves). Let 𝑀 be a smooth manifold and 𝐸 → 𝑀 a smooth
complex vector bundle. The sheaves 𝒞 , 𝒞 ∗, ℰ , ℰ∗, ℰ𝑘, 𝒵 𝑘, ℰ(𝐸), ℰ𝑘(𝐸), 𝐺, and
𝐺𝑝 on 𝑀 are defined by the following assignments to each open set 𝑈 ⊆ 𝑀 ; in
each case, the restriction maps are the obvious ones unless otherwise specified.

(a) 𝒞 (𝑈) is the vector space of continuous complex-valued functions on 𝑈 .
(b) 𝒞 ∗(𝑈) is the set of nowhere-vanishing continuous complex-valued func-

tions on 𝑈 , which is an abelian group under pointwise multiplication.
(c) ℰ(𝑈) is the vector space of smooth complex-valued functions on 𝑈 .
(d) ℰ∗(𝑈) is the abelian group of nowhere-vanishing smooth complex func-

tions on 𝑈 .
(e) ℰ𝑘(𝑈) is the vector space of smooth complex 𝑘-forms on 𝑈 .
(f) 𝒵 𝑘(𝑈) is the vector space of smooth closed complex 𝑘-forms on 𝑈 .
(g) ℰ(𝐸)(𝑈) = ℰ(𝑈; 𝐸) is the vector space of smooth sections of 𝐸 over 𝑈 .
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(h) ℰ𝑘(𝐸)(𝑈) = ℰ𝑘(𝑈; 𝐸) is the vector space of smooth 𝐸-valued complex
𝑘-forms on 𝑈 .

(i) 𝐺(𝑈), for any abelian group 𝐺, is the set of locally constant functions
from 𝑈 to 𝐺 (that is, functions that are constant in a neighborhood of
each point); it is a group under pointwise addition. The sheaf 𝐺 is called
the constant sheaf with coefficients in 𝐺. If 𝐺 is a ring or vector space,
then 𝐺 is a sheaf of rings or vector spaces, respectively.

(j) 𝐺𝑝(𝑈), for a point 𝑝 ∈ 𝑀 and an abelian group 𝐺, is defined to be 𝐺 if
𝑝 ∈ 𝑈 , and {0} if not. The restrictionmap 𝑟𝑈

𝑉 is the identity if 𝑝 ∈ 𝑉 ⊆ 𝑈 ,
and otherwise it is the zero map. Any such sheaf is called a skyscraper
sheaf .

We have focused on sheaves of complex-valued functions and forms because they
aremost useful in complexmanifold theory; but some of these sheaves have obvious
real counterparts, which we will denote by a subscript ℝ when we have occasion to
use them—for example, ℰℝ is the sheaf of smooth real-valued functions on 𝑀 .

In addition, when 𝑀 is a complex manifold, 𝐸 → 𝑀 is a holomorphic vector
bundle, and 𝑆 ⊆ 𝑀 is a closed subset, the sheaves 𝒪 , 𝒪∗, ℰ𝑝,𝑞 , 𝒵 𝑝,𝑞 , Ω𝑝, ℐ𝑆 , ℐ 2

𝑆 ,
𝒪(𝐸), ℰ𝑝,𝑞(𝐸), 𝒵 𝑝,𝑞(𝐸), Ω𝑝(𝐸), ℐ𝑆(𝐸), and ℐ 2

𝑆 (𝐸) are defined as follows:
(k) 𝒪(𝑈) is the vector space of holomorphic functions from 𝑈 to ℂ.
(l) 𝒪∗(𝑈) is the abelian group of nowhere-vanishing holomorphic functions

on 𝑈 .
(m) ℰ𝑝,𝑞(𝑈) is the space of smooth (𝑝, 𝑞)-forms on 𝑈 .
(n) 𝒵 𝑝,𝑞(𝑈) is the space of smooth 𝜕-closed (𝑝, 𝑞)-forms on 𝑈 .
(o) Ω𝑝(𝑈) is the space of holomorphic 𝑝-forms on 𝑈 (the same as 𝒵 𝑝,0(𝑈)).
(p) ℐ𝑆(𝑈) is the set of holomorphic functions on 𝑈 that vanish on 𝑆 ∩ 𝑈 .
(q) ℐ 2

𝑆 (𝑈) is the vector space of holomorphic functions on 𝑈 that vanish to
second order on 𝑺 ∩ 𝑼 , which means that in a neighborhood 𝑉 of each
point they can be written as a finite sum ∑𝑗 𝑢𝑗𝑣𝑗 where 𝑢𝑗 and 𝑣𝑗 are
holomorphic functions that vanish on 𝑆 ∩ 𝑉 .

(r) 𝒪(𝐸)(𝑈) = 𝒪(𝑈; 𝐸) is the space of holomorphic sections of 𝐸 over 𝑈 .
(s) ℰ𝑝,𝑞(𝐸)(𝑈) = ℰ𝑝,𝑞(𝑈; 𝐸) is the space of smooth 𝐸-valued (𝑝, 𝑞)-forms

on 𝑈 .
(t) 𝒵 𝑝,𝑞(𝐸)(𝑈) = 𝒵 𝑝,𝑞(𝑈; 𝐸) is the space of smooth 𝜕𝐸-closed 𝐸-valued

(𝑝, 𝑞)-forms on 𝑈 .
(u) Ω𝑝(𝐸)(𝑈) = Ω𝑝(𝑈; 𝐸) is the space of holomorphic 𝐸-valued 𝑝-forms on

𝑈 .
(v) ℐ𝑆(𝐸)(𝑈) = ℐ𝑆(𝑈; 𝐸) is the set of holomorphic sections of 𝐸 over 𝑈

that vanish on 𝑆 ∩ 𝑈 .
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(w) ℐ 2
𝑆 (𝐸)(𝑈) = ℐ 2

𝑆 (𝑈; 𝐸) is the sheaf of holomorphic sections of 𝐸 over
𝑈 whose coefficient functions in any local holomorphic frame vanish to
second order on 𝑆 ∩ 𝑈 . //

It is worth noting that the sheaves𝒞 , ℰ , and𝒪 defined above also have the struc-
ture of sheaves of commutative rings under pointwise multiplication. The sheaf ℐ𝑆
is called the ideal sheaf of 𝑺, because ℐ𝑆(𝑈) is an ideal in the ring 𝒪(𝑈).

On the other hand, it is not hard to come up with examples of presheaves that
are not sheaves.

Example 5.3 (Presheaves That Are Not Sheaves). Let 𝑀 be a manifold.

(a) ℛ(𝑈) is defined to be ℝ for every nonempty open set 𝑈 ⊆ 𝑀 , and
all restriction maps to nonempty open sets are the identity map. Unless
𝑀 consists of only a single point, this presheaf is not a sheaf, because
it fails to satisfy the gluing property: whenever 𝑈𝛼 and 𝑈𝛽 are disjoint
nonempty open sets, we can choose distinct elements 𝑥𝛼 , 𝑥𝛽 ∈ ℝ and de-
fine “sections” 𝑥𝛼 ∈ ℛ(𝑈𝛼) and 𝑥𝛽 ∈ ℛ(𝑈𝛽), which vacuously satisfy
the compatibility condition because 𝑈𝛼 ∩ 𝑈𝛽 = ∅. But there is no section
𝑥 ∈ ℛ(𝑈𝛼 ∪ 𝑈𝛽) that restricts to these sections.

(b) ℛ0(𝑈) = ℝ for every nonempty open set 𝑈 , but now all restriction maps
are zero maps. This presheaf fails to satisfy the locality property.

(c) ℬ(𝑈) is the set of bounded continuous complex-valued functions on 𝑈 .
If 𝑀 is noncompact, this presheaf fails to satisfy the gluing property. //

For some purposes, it is important to consider sheaves of modules over a sheaf
of rings. Thus suppose ℛ is a sheaf of commutative rings on 𝑀 . (All our rings
are assumed to have a multiplicative identity, denoted by 1.) A sheaf 𝒮 on 𝑀 is
called a sheaf of 𝓡-modules if for each open set 𝑈 ⊆ 𝑀 , 𝒮 (𝑈) can be given the
structure of a module over the ring ℛ(𝑈), and the restriction maps are compatible
with the module structure in the sense that for any open sets 𝑉 ⊆ 𝑈 ⊆ 𝑀 and
sections 𝑟 ∈ ℛ(𝑈), 𝑠 ∈ 𝒮 (𝑈), we have

(𝑟𝑠)|𝑉 = (𝑟|𝑉 )(𝑠|𝑉 ).

Example 5.4 (Sheaves of Modules).

(a) If 𝑀 is a smooth manifold and ℰ is its sheaf of smooth complex-valued
functions, the sheaves ℰ𝑘, ℰ(𝐸), and ℰ𝑘(𝐸) defined in Example 5.2 are
sheaves of ℰ -modules.

(b) If 𝑀 is a complexmanifold, then ℰ𝑝,𝑞 and ℰ𝑝,𝑞(𝐸) are likewise sheaves of
ℰ -modules on 𝑀 ; while Ω𝑝, ℐ𝑆 , ℐ 2

𝑆 , 𝒪(𝐸), Ω𝑝(𝐸), ℐ𝑆(𝐸), and ℐ 2
𝑆 (𝐸)

are sheaves of 𝒪-modules, where 𝒪 is the sheaf of holomorphic functions
on 𝑀 .
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(c) Every sheaf 𝒮 of abelian groups on a topological space 𝑀 is a sheaf of
ℤ-modules, where ℤ is the constant sheaf on 𝑀 with coefficients in ℤ.
To verify this, suppose 𝑠 ∈ 𝒮 (𝑈) and 𝑘 ∈ ℤ(𝑈). Each point 𝑥 ∈ 𝑈 has
a neighborhood 𝑉𝑥 ⊆ 𝑈 on which 𝑘|𝑉𝑥 is constant, so (𝑘|𝑉𝑥)(𝑠|𝑉𝑥) is an
element of the group 𝒮 (𝑉𝑥). By the gluing property, these local sections
patch together to determine a global section 𝑘𝑠 ∈ 𝒮 (𝑈). //

Sheaf Morphisms

Suppose 𝒮 and 𝒮 ′ are sheaves on the same space 𝑀 , with restriction maps
denoted by 𝑟𝑈

𝑉 and 𝑟′𝑈
𝑉 , respectively. A sheafmorphism from𝓢 to𝓢′ is a collection

of maps 𝐹𝑈 ∶ 𝒮 (𝑈) → 𝒮 ′(𝑈), one for each open set 𝑈 ⊆ 𝑀 , with the property that
they commute with restriction maps: whenever 𝑈 ⊇ 𝑉 , we have 𝑟′𝑈

𝑉 ∘𝐹𝑈 = 𝐹𝑉 ∘𝑟𝑈
𝑉 :

(5.4)

𝒮 (𝑈)
𝐹𝑈

//

𝑟𝑈
𝑉

��

𝒮 ′(𝑈)

𝑟′𝑈
𝑉

��

𝒮 (𝑉 ) 𝐹𝑉
// 𝒮 ′(𝑉 ).

If 𝒮 and 𝒮 ′ are sheaves of abelian groups, rings, or vector spaces, then we require
all the maps 𝐹𝑈 to be homomorphisms in the appropriate category. In addition,
if 𝒮 and 𝒮 ′ are both sheaves of modules over a sheaf ℛ of commutative rings, a
morphism 𝐹 ∶ 𝒮 → 𝒮 ′ is called an 𝓡-module morphism if each 𝐹𝑈 is an ℛ(𝑈)-
module homomorphism. More generally, if 𝒮 and 𝒮 ′ are presheaves, then presheaf
morphisms from 𝒮 to 𝒮 ′ are defined in exactly the same way.

Sometimes if there is no risk of confusion, we will just denote all of the ho-
momorphisms 𝐹𝑈 by the same symbol 𝐹 . Using this notation together with the
shorthand notation for restrictions we introduced above, (5.4) can be written

(5.5) 𝐹 (𝑠|𝑉 ) = 𝐹 (𝑠)|𝑉 .

If 𝐹 ∶ 𝒮 → 𝒮 ′ and 𝐺 ∶ 𝒮 ′ → 𝒮 ″ are sheaf (or presheaf) morphisms, their
composition is the morphism 𝐺 ∘ 𝐹 ∶ 𝒮 → 𝒮 ″ defined by (𝐺 ∘ 𝐹 )𝑈 = 𝐺𝑈 ∘ 𝐹𝑈 for
each open set 𝑈 .

A sheaf morphism 𝐹 ∶ 𝒮 → 𝒮 ′ is called a sheaf isomorphism if there is a
sheaf morphism 𝐺 ∶ 𝒮 ′ → 𝒮 satisfying 𝐺 ∘ 𝐹 = Id𝒮 and 𝐹 ∘ 𝐺 = Id𝒮 ′ , or
equivalently if each 𝐹𝑈 is an isomorphism in the appropriate category; if there
exists such an isomorphism, we say 𝒮 and 𝒮 ′ are isomorphic sheaves, denoted by
𝒮 ≅ 𝒮 ′. Presheaf isomorphisms and isomorphic presheaves are defined similarly.
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Example 5.5 (Sheaf Morphisms).
(a) If 𝒮 is a sheaf on a topological space 𝑀 and 𝒯 is a subsheaf of 𝒮 , there

is an inclusion morphism 𝑖∶ 𝒯 ↪ 𝒮 , defined by 𝑖𝑈 (𝜎) = 𝜎 for 𝜎 ∈
𝒯 (𝑈) ⊆ 𝒮 (𝑈).

(b) If 𝑀 is a smooth manifold, then for each nonnegative integer 𝑘 and each
open subset 𝑈 ⊆ 𝑀 , the exterior derivative operator is a linear map
𝑑 ∶ ℰ𝑘(𝑈) → ℰ𝑘+1(𝑈). Because 𝑑 acts locally, it commutes with restric-
tions, and thus defines a sheaf morphism 𝑑 ∶ ℰ𝑘 → ℰ𝑘+1. Similarly, if
𝑀 is a complex manifold, there are sheaf morphisms 𝜕 ∶ ℰ𝑝,𝑞 → ℰ𝑝,𝑞+1.

(c) On a complex manifold 𝑀 , let 𝒪 and 𝒪∗ be the sheaves of holomorphic
functions and nonvanishing holomorphic functions, respectively. There
is a morphism 𝜀∶ 𝒪 → 𝒪∗ given by 𝜀𝑈 (𝑓 ) = 𝑒2𝜋𝑖𝑓 for 𝑓 ∈ 𝒪(𝑈) on an
open subset 𝑈 ⊆ 𝑀 . Because 𝜀𝑈 (𝑓 + 𝑔) = 𝜀𝑈 (𝑓 )𝜀𝑈 (𝑔), this is a sheaf
morphism. (Recall that 𝒪∗ is a sheaf of abelian groups under multiplica-
tion.)

(d) Let 𝐺 and 𝐻 be abelian groups, and let 𝐺 and 𝐻 be the corresponding
constant sheaves on some topological space 𝑀 . Every group homomor-
phism 𝐹 ∶ 𝐺 → 𝐻 defines a sheaf morphism 𝐹 ∶ 𝐺 → 𝐻 by setting
𝐹 𝑈 (𝑓 ) = 𝐹 ∘ 𝑓 for 𝑓 ∈ 𝐺(𝑈). //

For any fixed topological space 𝑀 , the sheaves on 𝑀 and sheaf morphisms
form a category. Similarly, there is a category of sheaves of abelian groups on 𝑀 ,
or similarly sheaves of rings, real or complex vector spaces, or indeed sheaves on
𝑀 with values in any category.

The Étalé Space of a Presheaf
In order to analyze the behavior of sheaf morphisms, we need to construct certain
sets called stalks associated with a presheaf or sheaf. Before doing the general con-
struction, let us illustrate the principle in one concrete special case. Suppose 𝑀 is
a complex manifold and 𝒪 is its sheaf of holomorphic functions. For each 𝑝 ∈ 𝑀 ,
we define an equivalence relation on the set of all holomorphic functions 𝑓 ∈ 𝒪(𝑈)
for open sets 𝑈 that contain 𝑝, by saying 𝑓 ∈ 𝒪(𝑈) is equivalent to 𝑔 ∈ 𝒪(𝑉 ) if
𝑓 ≡ 𝑔 on some neighborhood of 𝑝. The equivalence class of 𝑓 ∈ 𝒪(𝑈) is called
the germ of 𝒇 at 𝒑 and denoted by [𝑓 ]𝑝; it is not usually necessary to specify a
particular open subset because the same germ is represented by the restriction of 𝑓
to any neighborhood of 𝑝, however small. The stalk of 𝓞 at 𝒑 is the vector space
𝒪𝑝 consisting of germs of all holomorphic functions at 𝑝. Addition and scalar mul-
tiplication of germs are defined by adding or multiplying any representatives that
are defined on the same open set. The same construction can be done with contin-
uous or smooth functions, or with continuous, smooth, or holomorphic sections of
a vector bundle.
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To define stalks for arbitrary presheaves we use instead the following general
algebraic construction. A directed set is a nonempty set 𝐼 with a binary relation “≤”
that is reflexive and transitive, and such that any two elements have a common upper
bound. (In many examples, directed sets are actually partially ordered sets, but
they may not be, because the relation need not be antisymmetric; see the discussion
following the proof of Lemma 6.5 for an example.)

A direct system of algebraic objects (which in our applications will be abelian
groups, rings, or vector spaces) is a family {𝐺𝛼}𝛼∈𝐼 of objects indexed by a directed
set 𝐼 , together with a homomorphism 𝑓𝛼𝛽 ∶ 𝐺𝛼 → 𝐺𝛽 whenever 𝛼 ≤ 𝛽, satisfying
𝑓𝛼𝛼 = Id𝐺𝛼 for each 𝛼 and 𝑓𝛽𝛾 ∘ 𝑓𝛼𝛽 = 𝑓𝛼𝛾 whenever 𝛼 ≤ 𝛽 ≤ 𝛾 .

Given a direct system, define an equivalence relation on the disjoint union of
all the 𝐺𝛼’s by saying 𝑔𝛼 ∈ 𝐺𝛼 is equivalent to 𝑔𝛽 ∈ 𝐺𝛽 if there is some 𝛾 ∈ 𝐼
with 𝛼 ≤ 𝛾 and 𝛽 ≤ 𝛾 such that 𝑓𝛼𝛾 (𝑔𝛼) = 𝑓𝛽𝛾 (𝑔𝛽) ∈ 𝐺𝛾 . The direct limit of the
direct system, denoted by lim

⟶
𝐺𝛼 , is the set of equivalence classes with addition, for

example, defined by

[𝑔𝛼] + [𝑔𝛽] = [𝑓𝛼𝛾 (𝑔𝛼) + 𝑓𝛽𝛾 (𝑔𝛽)],

where 𝛾 is some upper bound for 𝛼 and 𝛽. This is well defined because all of the
maps 𝑓𝛼𝛽 are homomorphisms. Other operations such as ring multiplication or
scalar multiplication are defined similarly. For each object 𝐺𝛼 , there is a canonical
homomorphism from 𝐺𝛼 to the direct limit, obtained by sending 𝑔 ∈ 𝐺𝛼 to its
equivalence class.

Suppose 𝒮 is a presheaf of abelian groups on a topological space 𝑀 . For each
𝑝 ∈ 𝑀 , the collection of groups 𝒮 (𝑈) where 𝑈 ranges over all open sets containing
𝑝, together with the restriction maps, is a direct system with the relation 𝑈 ≤ 𝑉 if
𝑈 ⊇ 𝑉 . (The intersection of two open sets containing 𝑝 is a common upper bound.)
We define the stalk of 𝓢 at 𝒑, denoted by 𝒮𝑝, to be the direct limit of this system.
The equivalence class of an element 𝑠 ∈ 𝒮 (𝑈) under this relation is denoted by
[𝑠]𝑝; by analogy with the construction for holomorphic functions described above,
we call [𝑠]𝑝 the germ of 𝒔 at 𝒑. You should convince yourself that this construction
applied to the sheaf 𝒪 yields germs of functions as we defined them above.

► Exercise 5.6. Suppose 𝑀 is a Hausdorff space and 𝐺𝑝 is a skyscraper sheaf
as defined in Example 5.2(j). Show that the stalk (𝐺𝑝)𝑝 is isomorphic to 𝐺, while
for 𝑞 ≠ 𝑝, (𝐺𝑝)𝑞 = 0. Give an example of a skyscraper sheaf on a non-Hausdorff
space for which this is not true.

Suppose 𝒮 and 𝒯 are presheaves of abelian groups on 𝑀 . Every presheaf mor-
phism 𝐹 ∶ 𝒮 → 𝒯 induces natural homomorphisms on stalks as follows. Given
𝑝 ∈ 𝑀 , we define the stalk homomorphism 𝐹𝑝 ∶ 𝒮𝑝 → 𝒯𝑝 by 𝐹𝑝([𝑠]𝑝) = [𝐹 (𝑠)]𝑝,
where 𝑠 ∈ 𝒮 (𝑈) is any representative of the germ [𝑠]𝑝. To see that this is well
defined, suppose 𝑠 ∈ 𝒮 (𝑈) and 𝑠′ ∈ 𝒮 (𝑈 ′) represent the same germ at 𝑝. Then
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there is an open set 𝑊 ⊆ 𝑈 ∩ 𝑈 ′ containing 𝑝 such that 𝑠|𝑊 = 𝑠′|𝑊 , and (5.5)
implies 𝐹 (𝑠)|𝑊 = 𝐹 (𝑠|𝑊 ) = 𝐹 (𝑠′|𝑊 ) = 𝐹 (𝑠′)|𝑊 , so 𝐹 (𝑠) and 𝐹 (𝑠′) represent the
same germ at 𝑝. Also, because 𝐹 and the restriction maps are homomorphisms on
each set 𝒮 (𝑈), it follows that 𝐹𝑝 is a homomorphism; and if 𝒮 is a sheaf of rings
or vector spaces, then 𝐹𝑝 is a homomorphism in the same category.

Using the concept of stalks, we will define a topological space canonically as-
sociated with each presheaf, which will turn out to provide an important mechanism
for turning presheaves into sheaves. An étalé space1 over a topological space 𝑀
is a topological space 𝐸 together with a local homeomorphism 𝜋 ∶ 𝐸 → 𝑀 . The
preimage 𝐸𝑝 = 𝜋−1(𝑝) of a point 𝑝 ∈ 𝑀 is called the stalk of 𝑬 over 𝒑. An étalé
space is called an étalé space of abelian groups if each stalk has an abelian group
structure and the group operations are continuous in the following sense: negation
is a continuous map from 𝐸 to 𝐸, while group addition is continuous as a map from
𝐸 ×𝑀 𝐸 to 𝐸, where 𝐸 ×𝑀 𝐸 ⊆ 𝐸 ×𝐸 is the fiber product of 𝐸 with 𝐸 over 𝑀 (that
is, the subset {(𝑥1, 𝑥2) ∈ 𝐸 × 𝐸 ∶ 𝜋(𝑥1) = 𝜋(𝑥2)} with the subspace topology).
Étalé spaces of vector spaces or rings are defined analogously, with addition and
multiplication continuous as above, and scalar multiplication continuous as a map
from ℝ × 𝐸 or ℂ × 𝐸 to 𝐸 when ℝ or ℂ is given the discrete topology.

Theorem 5.7 (The Étalé Space of a Presheaf). Let 𝒮 be a presheaf over a topo-
logical space 𝑀 , and let Et(𝒮 ) be the disjoint union of the stalks 𝒮𝑝 for all 𝑝 ∈ 𝑀 ,
with projection 𝜋 ∶ Et(𝒮 ) → 𝑀 defined by 𝜋([𝑠]𝑝) = 𝑝. For each open set 𝑈 ⊆ 𝑀
and each 𝑠 ∈ 𝒮 (𝑈), define a map 𝑠+ ∶ 𝑈 → Et(𝒮 ) by

(5.6) 𝑠+(𝑝) = [𝑠]𝑝.

Then Et(𝒮 ) has a unique topology such that 𝜋 is a local homeomorphism and each
𝑠+ is continuous. If 𝒮 is a presheaf of abelian groups, rings, or vector spaces, then
Et(𝒮 ) is an étalé space of objects in the same category.

Proof. We wish to take the collection of all subsets of the form 𝑠+(𝑈) = {[𝑠]𝑝 ∶
𝑝 ∈ 𝑈}, for open sets 𝑈 ⊆ 𝑀 and sections 𝑠 ∈ 𝒮 (𝑈), as a basis for a topology on
Et(𝒮 ). To see that it is a basis, we need to verify two things: (i) every point of Et(𝒮 )
is in some 𝑠+(𝑈); and (ii) if two basis sets 𝑠+(𝑈) and 𝑡+(𝑉 ) intersect at a point [𝑤]𝑝,
then there is a basis set 𝑣+(𝑊 ) such that [𝑤]𝑝 ∈ 𝑣+(𝑊 ) ⊆ 𝑠+(𝑈)∩𝑡+(𝑉 ). Property
(i) is immediate: every germ [𝑠]𝑝 is represented by some section 𝑠 ∈ 𝒮 (𝑈), and then
[𝑠]𝑝 is an element of the basis set 𝑠+(𝑈). For (ii), assume [𝑤]𝑝 ∈ 𝑠+(𝑈) ∩ 𝑡+(𝑉 );
this means 𝑝 ∈ 𝑈 ∩𝑉 and the germs of 𝑤, 𝑠, and 𝑡 at 𝑝 are all equal. In other words,
there is some neighborhood 𝑊 ⊆ 𝑈 ∩ 𝑉 of 𝑝 such that 𝑤|𝑊 = 𝑠|𝑊 = 𝑡|𝑊 , and
then [𝑤]𝑝 ∈ 𝑤+(𝑊 ) ⊆ 𝑠+(𝑈) ∩ 𝑡+(𝑉 ) as required.

1The French word étalé is pronounced “ay-tah-LAY” and means “spread out.” There is another closely
related French word étale (“ay-TAHL”) without the second accent mark, meaning “slack,” which has a variety of
definitions in algebra and algebraic geometry; but étalé seems to have only this one mathematical meaning.
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To see that each map 𝑠+ ∶ 𝑈 → Et(𝒮 ) is continuous, let 𝑡+(𝑉 ) ⊆ Et(𝒮 ) be a
basis open set and observe that

(𝑠+)−1(𝑡+(𝑉 )) = {𝑝 ∈ 𝑈 ∩ 𝑉 ∶ [𝑠]𝑝 = [𝑡]𝑝}
= {𝑝 ∈ 𝑈 ∩ 𝑉 ∶ 𝑠|𝑊 = 𝑡|𝑊 for some neighborhood 𝑊 of 𝑝},

which is open in 𝑈 .
Next we show that 𝜋 is a local homeomorphism. It suffices to show that the

restriction of 𝜋 to each basis open set 𝑠+(𝑈) is a homeomorphism onto 𝑈 . To see
that it is continuous, let 𝑉 ⊆ 𝑈 be open. Then 𝜋−1(𝑉 ) ∩ 𝑠+(𝑈) is the set of germs
of 𝑠 at points of 𝑉 , or in other words exactly the basis set (𝑠|𝑉 )+(𝑉 ). On the other
hand, 𝜋|𝑠+(𝑈) ∶ 𝑠+(𝑈) → 𝑈 has a continuous inverse given by the local section
𝑠+ ∶ 𝑈 → 𝑠+(𝑈), so it is a homeomorphism onto its image.

To show that the topology is unique, suppose 𝐸 is the same set with another
topology such that 𝜋 is a local homeomorphism and each 𝑠+ is continuous. First we
will show that each set 𝑠+(𝑈) is open in 𝐸. Thus let 𝜉 ∈ 𝑠+(𝑈) be arbitrary, and set
𝑝 = 𝜋(𝜉). Let 𝑊 be a neighborhood of 𝜉 in 𝐸 such that 𝜋|𝑊 is a homeomorphism
from 𝑊 to an open set 𝑊 ⊆ 𝑀 , and let 𝑊0 = (𝑠+)−1(𝑊 ); because 𝑠+ is continuous
as a map to 𝐸, 𝑊0 is an open neighborhood of 𝑝 contained in 𝑈 ∩𝑊 . Because 𝜋|𝑊
is a homeomorphism, 𝑊 0 = (𝜋|𝑊 )−1(𝑊0) is an open neighborhood of 𝜉 contained
in 𝑊 . Also, the fact that 𝜋 ∘ 𝑠+ = Id𝑈 implies 𝜋(𝑊 0) = 𝜋 ∘ 𝑠+ ∘ 𝜋(𝑊 0), and
injectivity of 𝜋 on 𝑊 then implies 𝑊 0 = 𝑠+ ∘ 𝜋(𝑊 0). Thus 𝑊 0 is also contained
in 𝑠+(𝑈). Since each point of 𝑠+(𝑈) has a neighborhood contained in 𝑠+(𝑈), we
see that 𝑠+(𝑈) is open in 𝐸.

Now both identity maps Et(𝒮 ) → 𝐸 and 𝐸 → Et(𝒮 ) are continuous, because
each is equal to the composition 𝑠+ ∘𝜋 when restricted to one of the open sets 𝑠+(𝑈).
Thus the two topologies are the same.

If 𝒮 is a presheaf of abelian groups, rings, or vector spaces, then each stalk
𝒮𝑝 inherits the appropriate algebraic structure from the direct limit operation as
described above. Let 𝑎∶ Et(𝒮 ) ×𝑀 Et(𝒮 ) → Et(𝒮 ) be addition. To see that it
is continuous, suppose 𝑠+(𝑈) ⊆ Et(𝒮 ) is a basis open set. Then 𝑎−1(𝑠+(𝑈)) is
the set of all pairs of the form ([𝑣]𝑝, [𝑤]𝑝) where 𝑝 ∈ 𝑈 , 𝑣, 𝑤 ∈ 𝒮 (𝑌 ) for some
neighborhood 𝑌 of 𝑝 contained in 𝑈 , and 𝑣 + 𝑤 = 𝑠|𝑌 . That is to say,

𝑎−1(𝑠+(𝑈)) = ⋃
𝑝∈𝑌 ⊆𝑈

𝑣,𝑤∈𝑆(𝑌 )
𝑣+𝑤=𝑠|𝑌

𝑣+(𝑌 ) × 𝑤+(𝑌 ).

As a union of open sets, this is open. Similar arguments show that the other alge-
braic operations are continuous in appropriate cases. □

The next lemma gives a useful characterization of continuity of sections of
Et(𝒮 ) in terms of sections of 𝒮 .
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Lemma 5.8. Let 𝒮 be a presheaf on a topological space 𝑀 and 𝜋 ∶ Et(𝒮 ) → 𝑀
its étalé space. For any subset 𝐵 ⊆ 𝑀 , a rough section 𝜑∶ 𝐵 → Et(𝒮 ) (i.e.,
a map such that 𝜋 ∘ 𝜑 = Id𝐵) is continuous if and only if each point in 𝐵 has a
neighborhood 𝑉 in 𝑀 and a section 𝑠 ∈ 𝒮 (𝑉 ) such that 𝜑|𝑉 ∩𝐵 = 𝑠+|𝑉 ∩𝐵 .

Proof. Suppose first that 𝜑∶ 𝐵 → Et(𝒮 ) is a continuous section. Given 𝑝 ∈ 𝐵,
the definition of Et(𝒮 ) shows that 𝜑(𝑝) = [𝑠]𝑝 for some section 𝑠 ∈ 𝒮 (𝑊 ) on
some neighborhood 𝑊 of 𝑝. Then 𝑠+(𝑊 ) is a neighborhood of [𝑠]𝑝 in Et(𝒮 ), and
since 𝜑 is continuous, 𝑉 = 𝜑−1(𝑠+(𝑊 )) is a neighborhood of 𝑝 in 𝑈 . This means
𝜑(𝑞) = [𝑠]𝑞 for all 𝑞 ∈ 𝑉 ∩ 𝐵, or in other words 𝜑 agrees with the restriction of 𝑠+

to 𝑉 ∩ 𝐵.
Conversely, if 𝜑 satisfies the condition in statement of the lemma, then it is

continuous because it agrees with a continuous section 𝑠+ in a neighborhood of
each point. □

Theorem 5.9 (The Sheafification Functor). Suppose 𝑀 is a topological space
and 𝒮 is a presheaf on 𝑀 . Then there is a sheaf 𝒮 +, called the sheafification
of 𝓢, together with a canonical presheaf morphism 𝜃𝒮 ∶ 𝒮 → 𝒮 +, satisfying the
following properties.

(a) If 𝒮 is a presheaf of abelian groups, rings, or vector spaces, then 𝒮 + is a
sheaf of objects in the same category.

(b) 𝒮 + satisfies the following universal property: If 𝒯 is any sheaf and
𝐹 ∶ 𝒮 → 𝒯 is any presheaf morphism, there is a unique sheaf morphism
𝐹 ∶ 𝒮 + → 𝒯 satisfying 𝐹 ∘ 𝜃𝒮 = 𝐹 :

(5.7) 𝒮 𝐹 //

𝜃𝒮
��

𝒯

𝒮 +
𝐹

==|
|

|
|

(c) 𝜃𝒮 is an isomorphism if and only if 𝒮 is a sheaf.
(d) If 𝒯 is any presheaf and 𝐹 ∶ 𝒮 → 𝒯 is a presheaf morphism, there is a

unique sheaf morphism 𝐹 + ∶ 𝒮 + → 𝒯 + satisfying 𝜃𝒯 ∘ 𝐹 = 𝐹 + ∘ 𝜃𝒮 :

(5.8)

𝒮 𝐹 //

𝜃𝒮
��

𝒯
𝜃𝒯
��

𝒮 +
𝐹 +

//___ 𝒯 +.

It also satisfies (Id𝒮 )+ = Id𝒮 + and (𝐹 ∘ 𝐺)+ = 𝐹 + ∘ 𝐺+.
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Proof. Define the sheaf 𝒮 + on 𝑀 by letting 𝒮 +(𝑈) be the set of local sections of
Et(𝒮 ) over the open set 𝑈 ⊆ 𝑀 , that is, continuous maps 𝜑∶ 𝑈 → Et(𝒮 ) such
that 𝜋 ∘ 𝜑 = Id𝑈 ; and letting the restriction maps be actual restrictions of sections.
This is a sheaf by the result of Exercise 5.1(b). The algebraic operations on 𝒮 + are
defined pointwise: for example, if 𝒮 is a presheaf of abelian groups, we define a
group structure on each set 𝒮 +(𝑈) by

(𝑠1 + 𝑠2)(𝑝) = 𝑠1(𝑝) + 𝑠2(𝑝).

(If 𝑈 = ∅, we just interpret 𝒮 +(𝑈) = {∅} to be the trivial group.) The fact that the
group operations are continuous guarantees that the result is a continuous section of
Et(𝒮 ). The same argument applies to negation and to the other algebraic operations
in the case of a presheaf of rings or vector spaces. With these pointwise operations,
it is immediate that each restriction map is a homomorphism. This completes the
proof of (a).

The presheaf morphism 𝜃𝒮 ∶ 𝒮 → 𝒮 + is defined by 𝜃𝒮 (𝑠) = 𝑠+ for 𝑠 ∈ 𝑆(𝑈).
To prove (b), suppose 𝒯 is a sheaf and 𝐹 ∶ 𝒮 → 𝒯 is a presheaf morphism. We
define the sheaf morphism 𝐹 ∶ 𝒮 + → 𝒯 first by defining 𝐹 (𝑠+) = 𝐹 (𝑠) ∈ 𝒯 (𝑈)
for any open set 𝑈 ∈ 𝑀 and 𝑠 ∈ 𝒮 (𝑈); this ensures that 𝐹 ∘ 𝜃𝒮 = 𝐹 . Then we
extend 𝐹 to act on an arbitrary section 𝜑 ∈ 𝒮 +(𝑈) as follows: Lemma 5.8 shows
that there is an open cover {𝑈𝛼} of 𝑈 and sections 𝑠𝛼 ∈ 𝒮 (𝑈𝛼) such that 𝜑|𝑈𝛼 = 𝑠+

𝛼
for each 𝛼. Let 𝐹 (𝜑) be the element 𝜏 ∈ 𝒯 (𝑈) such that 𝜏|𝑈𝛼 = 𝐹 (𝑠𝛼) for all 𝛼.
Such a section exists because 𝒯 satisfies the gluing property, and it is well defined
independently of the choice of open cover because 𝒯 satisfies the locality property.
Moreover, any other such map 𝐹 ′ would have to agree with this one because the
restriction of 𝐹 ′(𝜑) to sufficiently small open sets has to agree with sections of the
form 𝐹 (𝑠+) = 𝐹 ∘ 𝜃𝒮 (𝑠). This completes the proof of (b).

To prove (c), note first that if 𝜃𝒮 is a presheaf isomorphism, then 𝒮 is certainly
a sheaf because 𝒮 + is. Conversely, assume 𝒮 is a sheaf. Applying (b) to Id𝒮 ∶ 𝒮 →
𝒮 , we conclude there is a sheaf morphism Id𝒮 ∶ 𝒮 + → 𝒮 such that Id𝒮 ∘𝜃𝒮 = Id𝒮 .
On the other hand, the same result applied to 𝜃𝒮 ∶ 𝒮 → 𝒮 + shows that there is a
unique morphism 𝑔 ∶ 𝒮 + → 𝒮 + satisfying 𝑔 ∘ 𝜃𝒮 = 𝜃𝒮 ; since both 𝑔 = Id𝒮 + and
𝑔 = 𝜃𝒮 ∘ Id𝒮 are such morphisms, we conclude that 𝜃𝒮 ∘ Id𝒮 = Id𝒮 + . Thus Id𝒮 is
an inverse for 𝜃𝒮 .

Finally, to prove (d), suppose 𝐹 ∶ 𝒮 → 𝒯 is a presheaf morphism. Define
𝐹 + ∶ 𝒮 + → 𝒯 + by 𝐹 + = 𝜃𝒯 ∘ 𝐹 , the morphism whose existence and uniqueness
are guaranteed by the universal property of part (b); then (5.8) follows from (5.7).
The argument in the preceding paragraph showed that (Id𝒮 )+ = 𝜃𝒮 = Id𝒮 + . If
𝐹 ∶ 𝒮 → 𝒯 and 𝐺 ∶ 𝒯 → 𝒰 are presheaf morphisms, then both ℎ1 = 𝐺+ ∘ 𝐹 +

and ℎ2 = (𝐺 ∘ 𝐹 )+ satisfy ℎ𝑗 ∘ 𝜃𝒮 = 𝜃𝒰 ∘ 𝐺 ∘ 𝐹 , so by the uniqueness part of
statement (b), they are equal. □
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If 𝜋 ∶ 𝐸 → 𝑀 and 𝜋′ ∶ 𝐸′ → 𝑀 are étalé spaces over 𝑀 , an étalé space
morphism from 𝐸 to 𝐸′ is a continuous map 𝐹 ∶ 𝐸 → 𝐸′ such that 𝜋′ ∘ 𝐹 = 𝜋,
and such that 𝐹 restricts to a homomorphism on each stalk with respect to whatever
algebraic structure the stalks are endowed with. For each topological space 𝑀 , we
can define a category Sh(𝑀) of sheaves (of abelian groups, say) on 𝑀 and sheaf
morphisms, and a category Et(𝑀) of étalé spaces of abelian groups on 𝑀 and étalé
space morphisms. The construction of the étalé space of a sheaf defines a functor
Et∶ Sh(𝑀) → Et(𝑀).

The next proposition shows, essentially, that sheaves and étalé spaces contain
exactly the same information. If C and D are categories, a functor ℱ ∶ C →
D is called an equivalence of categories if every object of D is isomorphic to
ℱ (𝑐) for some object 𝑐 of C, and for every pair of objects 𝑐1, 𝑐2 of C, the map
ℱ ∶ HomC(𝑐1, 𝑐2) → HomD(ℱ (𝑐1), ℱ (𝑐2)) is bijective.
Proposition 5.10. Let 𝑀 be a topological space, Sh(𝑀) the category of sheaves
of abelian groups on 𝑀 , and Et(𝑀) the category of étalé spaces of abelian groups
over 𝑀 . The étalé space functor Et∶ Sh(𝑀) → Et(𝑀) is an equivalence of cate-
gories.

Proof. Problem 5-5. □

You will find that some authors define sheaves to be étalé spaces, and sheaf
morphisms to be étalé space morphisms. The preceding proposition shows that
one can translate back and forth between that definition and the one we have given
without any loss of information.

The sheafification functor has some important applications to defining natural
combinations of sheaves. We begin with quotient sheaves. Suppose 𝒮 is a sheaf
of abelian groups on 𝑀 and ℛ is a subsheaf of 𝒮 . In general, the presheaf 𝑈 ↦
𝒮 (𝑈)/ℛ(𝑈) need not be a sheaf, as the next example illustrates.

Example 5.11. Suppose 𝑀 is a compact, connected complex manifold and 𝑝, 𝑞 are
distinct points in 𝑀 . Let 𝒪 be the sheaf of holomorphic functions on 𝑀 , and let
ℐ ↪ 𝒪 be the subsheaf of holomorphic functions that vanish at both 𝑝 and 𝑞 (the
ideal sheaf of {𝑝, 𝑞}). Let 𝑈1 = 𝑀 ∖ {𝑝} and 𝑈2 = 𝑀 ∖ {𝑞}. The constant function
1 on 𝑈1 determines a nontrivial element of the quotient space 𝒪(𝑈1)/ℐ (𝑈1), and
the constant function 2 determines a nontrivial element of 𝒪(𝑈2)/ℐ (𝑈2). Since
𝒪(𝑈1 ∩ 𝑈2)/ℐ (𝑈1 ∩ 𝑈2) is the zero vector space, both elements restrict to zero in
this quotient space. But there is no element of 𝒪(𝑀)/ℐ (𝑀) that restricts to the
equivalence class of 1 on 𝑈1 and the equivalence class of 2 on 𝑈2, because every
element of 𝒪(𝑀) is constant. Thus the presheaf 𝑈 ↦ 𝒪(𝑈)/ℐ (𝑈) does not satisfy
the gluing property. //

To get around this problem, we define the quotient sheaf 𝒮 /ℛ to be the sheafi-
fication of the presheaf 𝑈 ↦ 𝒮 (𝑈)/ℛ(𝑈).
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Another use of sheafification is to define tensor products of sheaves. Suppose
ℛ is a sheaf of commutative rings on 𝑀 , and 𝒮 and 𝒯 are both sheaves of ℛ-
modules. We can form the presheaf 𝑈 ↦ 𝒮 (𝑈) ⊗ℛ(𝑈) 𝒯 (𝑈), but once again this
might not be a sheaf. (See Problem 5-9 for a counterexample.) We define the tensor
product of 𝓢 and 𝓣 over 𝓡, denoted by 𝒮 ⊗ℛ 𝒯 , to be the sheafification of the
presheaf 𝑈 ↦ 𝒮 (𝑈) ⊗ℛ(𝑈) 𝒯 (𝑈). The next proposition illustrates the naturalness
of this concept.

Proposition 5.12. Suppose 𝑀 is a complex manifold and 𝐸, 𝐸′ → 𝑀 are holo-
morphic vector bundles over 𝑀 . Then the tensor product sheaf 𝒪(𝐸) ⊗𝒪 𝒪(𝐸′) is
isomorphic to 𝒪(𝐸 ⊗ 𝐸′).

Proof. Let 𝑈 ⊆ 𝑀 be an open subset. An element 𝜎 ∈ 𝒪(𝑈; 𝐸) ⊗𝒪(𝑈) 𝒪(𝑈; 𝐸′)
can be represented as a finite sum of abstract tensor products, ∑𝑗 𝜎𝑗 ⊗ 𝜎′

𝑗 , where
𝜎𝑗 ∈ 𝒪(𝑈; 𝐸) and 𝜎′

𝑗 ∈ 𝒪(𝑈; 𝐸′). We let 𝐹𝑈 (𝜎) be the holomorphic section
of the tensor product bundle 𝐸 ⊗ 𝐸′ over 𝑈 given by the same formula: 𝑥 ↦
∑𝑗 𝜎𝑗(𝑥) ⊗ 𝜎′

𝑗 (𝑥). Because this formula is bilinear over 𝒪(𝑈), this gives a well-
defined homomorphism

𝐹𝑈 ∶ 𝒪(𝑈; 𝐸) ⊗𝒪(𝑈) 𝒪(𝑈; 𝐸′) → 𝒪(𝑈; 𝐸 ⊗ 𝐸′),

and because 𝐹𝑉 is the restriction of 𝐹𝑈 whenever 𝑉 ⊆ 𝑈 , this defines a presheaf
morphism. ByTheorem 5.9(b), it induces a sheafmorphism𝐹 from𝒪(𝐸)⊗𝒪 𝒪(𝐸′)
to 𝒪(𝐸 ⊗ 𝐸′).

We will prove the proposition by showing that 𝐹 is bijective on stalks (see
Problem 5-2). It suffices to show that 𝐹𝑈 is bijective whenever 𝑈 ⊆ 𝑀 is an open
subset over which both 𝐸 and 𝐸′ are trivial.

Suppose 𝑈 is such a set, and (𝑠𝑗), (𝑠′
𝑘) are holomorphic local frames on 𝑈

for 𝐸 and 𝐸′, respectively. Suppose first that 𝜎 = ∑𝑗 𝜎𝑗 ⊗ 𝜎′
𝑗 is an element of

𝒪(𝑈; 𝐸) ⊗𝒪(𝑈) 𝒪(𝑈; 𝐸′) such that 𝐹𝑈 (𝜎) = 0. Writing 𝜎𝑗 = ∑𝑘 𝑓 𝑘
𝑗 𝑠𝑘 and 𝜎′

𝑗 =
∑𝑙 𝑓 ′𝑙

𝑗 𝑠′
𝑙 for some holomorphic functions 𝑓 𝑘

𝑗 , 𝑓 ′𝑙
𝑗 and using the properties of the

tensor product, we see that the following holds for all 𝑥 ∈ 𝑈 :

0 = ∑
𝑗

𝜎𝑗(𝑥) ⊗ 𝜎′
𝑗 (𝑥) = ∑

𝑗,𝑘,𝑙
𝑓 𝑘

𝑗 (𝑥)𝑓 ′𝑙
𝑗 (𝑥)𝑠𝑘(𝑥) ⊗ 𝑠′

𝑙 (𝑥).

Since this is true for all 𝑥 ∈ 𝑈 and the elements 𝑠𝑘(𝑥) ⊗ 𝑠′
𝑙 (𝑥) are linearly indepen-

dent, it follows that ∑𝑗 𝑓 𝑘
𝑗 𝑓 ′𝑙

𝑗 ≡ 0 on 𝑈 for each 𝑘 and 𝑙. Thus

∑
𝑗

𝜎𝑗 ⊗ 𝜎′
𝑗 = ∑

𝑘
𝑠𝑘 ⊗ ∑

𝑙
(∑

𝑗
𝑓 𝑘

𝑗 𝑓 ′𝑙
𝑗 )𝑠′

𝑙 = 0,

so 𝐹𝑈 is injective.
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On the other hand, if 𝛾 = ∑𝑘,𝑙 𝑔𝑘𝑙𝑠𝑘 ⊗ 𝑠′
𝑙 is an arbitrary holomorphic section

of 𝐸 ⊗ 𝐸′ over 𝑈 , then

𝛾 = 𝐹𝑈 (∑
𝑘

𝑠𝑘 ⊗ (∑
𝑙

𝑔𝑘𝑙𝑠′
𝑙 )),

so 𝐹𝑈 is surjective as well. □

► Exercise 5.13. Given a sheaf ℛ of commutative rings, show that ℛ acts as
an identity under tensor product, in the sense that if 𝒮 is any sheaf of ℛ-modules,
then ℛ ⊗ℛ 𝒮 ≅ 𝒮 ⊗ℛ ℛ ≅ 𝒮 .

Suppose ℛ is a sheaf of commutative rings on a topological space 𝑀 . A sheaf
𝒮 of ℛ-modules is called a free sheaf of rank 𝒌 if it is ℛ-module isomorphic to
the 𝑘-fold direct sum ℛ𝑘 = ℛ ⊕ ⋯ ⊕ ℛ. It is called a locally free sheaf of rank
𝒌 if every point of 𝑀 has a neighborhood 𝑈 on which the restricted sheaf 𝒮 |𝑈 is
isomorphic to ℛ𝑘|𝑈 .

The next proposition shows that locally free sheaves of 𝒪-modules of fixed
finite rank on a complex manifold correspond to holomorphic vector bundles.
Proposition 5.14 (Locally Free Sheaves and Vector Bundles). Let 𝑀 be a com-
plex manifold. If 𝐸 → 𝑀 is a holomorphic vector bundle of rank 𝑘, then 𝒪(𝐸)
is a locally free sheaf of 𝒪-modules of rank 𝑘. Conversely, if 𝒮 is a locally free
sheaf of 𝒪-modules of rank 𝑘 on 𝑀 , then there is a rank-𝑘 holomorphic vector
bundle 𝐸 → 𝑀 , unique up to isomorphism, such that 𝒮 ≅ 𝒪(𝐸) (as sheaves of
𝒪-modules).

Proof. First let 𝐸 → 𝑀 be a holomorphic vector bundle of rank 𝑘. On any open
subset 𝑈 ⊆ 𝑀 over which 𝐸 is trivial, we can choose a holomorphic local frame
(𝑠1, … , 𝑠𝑘). Define a morphism Λ∶ 𝒪𝑘|𝑈 → 𝒪(𝐸)|𝑈 by

Λ𝑉 (𝑓1, … , 𝑓𝑘) = 𝑓1𝑠1 + ⋯ + 𝑓𝑘𝑠𝑘 ∈ 𝒪(𝑉 ; 𝐸)
for each open subset 𝑉 ⊆ 𝑈 and holomorphic functions 𝑓1, … , 𝑓𝑘 ∈ 𝒪(𝑉 ). This
is easily verified to be an 𝒪-module isomorphism.

Conversely, suppose 𝒮 is a locally free sheaf of 𝒪-modules of rank 𝑘 on 𝑀 .
There is an open cover {𝑈𝛼}𝛼∈𝐴 of 𝑀 such that for each 𝛼 ∈ 𝐴 there exists an
isomorphism Ψ𝛼 ∶ 𝒮 |𝑈𝛼 ≅ 𝒪𝑘|𝑈𝛼 . Where two such open sets 𝑈𝛼 , 𝑈𝛽 intersect, we
have two isomorphisms of 𝒪(𝑈𝛼 ∩ 𝑈𝛽)-modules:

𝒪(𝑈𝛼 ∩ 𝑈𝛽)𝑘
(Ψ𝛽 )𝑈𝛼∩𝑈𝛽←−−−−−−− 𝒮 (𝑈𝛼 ∩ 𝑈𝛽)

(Ψ𝛼)𝑈𝛼∩𝑈𝛽−−−−−−−→ 𝒪(𝑈𝛼 ∩ 𝑈𝛽)𝑘.

Because the composite map (Ψ𝛼)𝑈𝛼∩𝑈𝛽 ∘ (Ψ𝛽)−1
𝑈𝛼∩𝑈𝛽

is an 𝒪(𝑈𝛼 ∩ 𝑈𝛽)-module iso-
morphism, it has the form

(5.9) (𝑓1, … , 𝑓𝑘) ↦ (𝑡𝑗
1𝑓𝑗 , … , 𝑡𝑗

𝑘𝑓𝑗)
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for some invertible 𝑘 × 𝑘 matrix of functions 𝑡𝑗
𝑖 ∈ 𝒪(𝑈𝛼 ∩ 𝑈𝛽). Let us denote this

matrix-valued holomorphic function by 𝜏𝛼𝛽 . A straightforward computation shows
that 𝜏𝛼𝛽𝜏𝛽𝛾 = 𝜏𝛼𝛾 on 𝑈𝛼 ∩ 𝑈𝛽 ∩ 𝑈𝛾 whenever the intersection is nonempty. Thus by
the vector bundle construction theorem, the collection of functions {𝜏𝛼𝛽 ∶ 𝛼, 𝛽 ∈
𝐴} forms the data for a holomorphic vector bundle 𝐸 → 𝑀 that is trivial over each
set 𝑈𝛼 .

To see that the sheaf 𝒪(𝐸) is isomorphic to 𝒮 , note that each local trivialization
Φ𝛼 ∶ 𝐸|𝑈𝛼 → 𝑈𝛼 × ℂ𝑘 induces a sheaf isomorphism Φ̃𝛼 ∶ 𝒪(𝐸)|𝑈𝛼 → 𝒪𝑘|𝑈𝛼 (the
inverse of the isomorphism constructed in the first paragraph of this proof). Where
𝑈𝛼 and 𝑈𝛽 intersect, these isomorphisms satisfy

(5.10) (Φ̃𝛼)𝑈𝛼∩𝑈𝛽 ∘ (Φ̃𝛽)−1
𝑈𝛼∩𝑈𝛽

(𝑓1, … , 𝑓𝑘) = ((𝜏𝛼𝛽)𝑗
1𝑓𝑗 , … , (𝜏𝛼𝛽)𝑗

𝑘𝑓𝑗).

Thus restricted to 𝑈𝛼 ∩ 𝑈𝛽 , it follows from (5.9) and (5.10) that

(5.11) (Ψ𝛼)𝑈𝛼∩𝑈𝛽 ∘ (Ψ𝛽)−1
𝑈𝛼∩𝑈𝛽

= (Φ̃𝛼)𝑈𝛼∩𝑈𝛽 ∘ (Φ̃𝛽)−1
𝑈𝛼∩𝑈𝛽

.

For each 𝛼, define a sheaf isomorphism 𝐹𝛼 ∶ 𝒪(𝐸)|𝑈𝛼 → 𝒮 |𝑈𝛼 by

𝐹𝛼 = Ψ−1
𝛼 ∘ Φ̃𝛼 .

It follows from (5.11) that the restrictions of 𝐹𝛼 and 𝐹𝛽 agree on 𝑈𝛼 ∩ 𝑈𝛽 . Thus
we can define a sheaf isomorphism 𝐹 ∶ 𝒪(𝐸) → 𝒮 as follows: for each open set
𝑉 ⊆ 𝑀 and section 𝜎 ∈ 𝒪(𝑉 ; 𝐸), let 𝐹𝑉 (𝜎) ∈ 𝒮 (𝑉 ) be the section satisfying

𝐹𝑉 (𝜎)|𝑉 ∩𝑈𝛼
= (𝐹𝛼)𝑉 ∩𝑈𝛼 (𝜎|𝑉 ∩𝑈𝛼 ) for each 𝛼 ∈ 𝐴.

The gluing and locality properties of 𝒮 guarantee that this is well defined.
To show that the bundle 𝐸 is unique up to isomorphism, it suffices to show

that if 𝐸 and 𝐸′ are rank-𝑘 holomorphic vector bundles over 𝑀 such that 𝒪(𝐸) ≅
𝒪(𝐸′), then 𝐸 ≅ 𝐸′. Given such bundles 𝐸 and 𝐸′, suppose 𝐹 ∶ 𝒪(𝐸) → 𝒪(𝐸′) is
a sheaf isomorphism. We can choose an open cover {𝑈𝛼}𝛼∈𝐴 of 𝑀 such that 𝐸 and
𝐸′ are both trivial over each 𝑈𝛼 , with local trivializations Φ𝛼 and Φ′

𝛼 and transition
functions 𝜏𝛼𝛽 and 𝜏′

𝛼𝛽 . As above, these isomorphisms lead to sheaf isomorphisms
Φ̃𝛼 ∶ 𝒪(𝐸)|𝑈𝛼 → 𝒪𝑘|𝑈𝛼 and Φ̃′

𝛼 ∶ 𝒪(𝐸′)|𝑈𝛼 → 𝒪𝑘|𝑈𝛼 . For each 𝛼 ∈ 𝐴, we have a
composition of 𝒪(𝑈𝛼)-module isomorphisms

𝒪(𝑈𝛼)𝑘
(Φ̃𝛼)−1

𝑈𝛼−−−−−→ 𝒪(𝑈𝛼; 𝐸)
(𝐹 )𝑈𝛼−−−−→ 𝒪(𝑈𝛼; 𝐸′)

(Φ̃′
𝛼)𝑈𝛼−−−−−→ 𝒪(𝑈𝛼)𝑘.
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As before, each such composition is represented by a matrix-valued holomorphic
function 𝜓𝛼 ∶ 𝑈𝛼 → GL(𝑘, ℂ), and a straightforward computation shows that these
functions satisfy 𝜏𝛼𝛽 = 𝜓−1

𝛼 𝜏′
𝛼𝛽𝜓𝛽 on 𝑈𝛼 ∩ 𝑈𝛽 , so Proposition 3.7 shows that the

corresponding bundles are isomorphic. □

► Exercise 5.15. Verify that the same proof shows there are analogous corre-
spondences between locally free sheaves of ℰ -modules and smooth vector bun-
dles on a smooth manifold, and between locally free sheaves of 𝒞 -modules and
topological vector bundles on a topological space.

A locally free sheaf (of 𝒪-modules, say) of rank 1 is called an invertible sheaf ,
reflecting the fact that every such sheaf has an inverse under tensor product: if 𝐿 is a
holomorphic line bundle, then it follows from Proposition 5.12 and Lemma 3.28(d)
that 𝒪(𝐿) ⊗𝒪 𝒪(𝐿∗) ≅ 𝒪(𝐿 ⊗ 𝐿∗) ≅ 𝒪 .

In the algebraic geometry literature, it is common to focus primarily on locally
free sheaves of 𝒪-modules, with vector bundles relegated to the background. If
vector bundles are mentioned at all, they are often not distinguished from the corre-
sponding sheaves. In particular, on ℂℙ𝑛, the sheaf 𝒪(𝐻𝑑) of holomorphic sections
of the 𝑑-fold tensor power of the hyperplane bundle is usually abbreviated by 𝒪(𝑑),
and that shorthand notation is used both for the invertible sheaf of sections and the
line bundle 𝐻𝑑 itself. From a differential-geometric point of view, however, vector
bundles and sheaves are very different objects, and we will continue to use different
notations for them.

The next proposition expresses an extremely important relationship between
ideal sheaves and invertible sheaves.

Proposition 5.16. Suppose 𝑀 is a complex manifold, 𝑆 ⊆ 𝑀 is a closed complex
hypersurface, 𝐿𝑆 → 𝑀 is the holomorphic line bundle associated with 𝑆, and
𝐸 → 𝑀 is any holomorphic vector bundle.

(a) The ideal sheaf ℐ𝑆 is isomorphic to the sheaf 𝒪(𝐿∗
𝑆) of holomorphic sec-

tions of the dual bundle 𝐿∗
𝑆 .

(b) More generally, the sheaf ℐ𝑆(𝐸) of holomorphic sections of 𝐸 vanishing
on 𝑆 is isomorphic to ℐ𝑆 ⊗𝒪 𝒪(𝐸) ≅ 𝒪(𝐿∗

𝑆 ⊗ 𝐸).
(c) The sheafℐ 2

𝑆 (𝐸) of holomorphic sections of𝐸 that vanish to second order
on 𝑆 is isomorphic to 𝒪(𝐿∗

𝑆 ⊗ 𝐿∗
𝑆 ⊗ 𝐸).

Proof. Problem 5-10. □

Exact Sequences of Sheaves
Most of the applications of sheaves are based on the notion of exact sequences.
For abelian groups, rings, or vector spaces, the definition of an exact sequence is



138 5. Sheaves

straightforward—it is a sequence of homomorphisms such that the image of each
homomorphism is equal to the kernel of the next. But that simple characterization
fails to make sense for sheaves.

If 𝐹 ∶ 𝒮 → 𝒯 is a morphism between sheaves of abelian groups, we can define
a subsheaf Ker𝐹 ⊆ 𝒮 , called the kernel of 𝑭 , by

(Ker𝐹 )(𝑈) = Ker𝐹𝑈 ⊆ 𝒮 (𝑈).

► Exercise 5.17. In the situation described above, show that Ker𝐹 satisfies the
gluing and locality properties, and thus is a subsheaf of 𝒮 .

However, for the image of a sheaf morphism, things are not so easy, because the
presheaf 𝑈 ↦ Im𝐹𝑈 may fail to be a sheaf, as the following example demonstrates.

Example 5.18. Let 𝑀 be a smooth 𝑛-manifold, and for each nonnegative integer
𝑘, let ℰ𝑘 be the sheaf of smooth 𝑘-forms on 𝑀 . Let 𝑑 ∶ ℰ𝑘 → ℰ𝑘+1 be the sheaf
morphism defined by exterior differentiation. The image presheaf of 𝑑 is the pre-
sheaf for which (Im 𝑑)(𝑈) is the space of exact (𝑘 + 1)-forms on 𝑈 . However, the
gluing property might fail for this presheaf: a form that is locally exact need not be
globally exact. //

To remedy this problem, we need a special definition of exactness for sequences
of sheaf morphisms. Consider sheaves ℛ, 𝒮 , 𝒯 of abelian groups on a topological
space 𝑀 together with sheaf morphisms

(5.12) ℛ 𝐹⟶ 𝒮 𝐺⟶ 𝒯 .
The sequence is said to be exact if it is exact on each stalk: for each 𝑝 ∈ 𝑀 , the
sequence of induced stalk homomorphisms

(5.13) ℛ𝑝
𝐹𝑝⟶ 𝒮𝑝

𝐺𝑝⟶ 𝒯𝑝

is exact in the usual sense that the image of 𝐹𝑝 is equal to the kernel of 𝐺𝑝.
The next exercise shows that exactness on the presheaf level implies exactness

on the sheaf level.

► Exercise 5.19. Suppose ℛ, 𝒮 , and 𝒯 are presheaves of abelian groups on a
topological space 𝑀 , and 𝐹 ∶ ℛ → 𝒮 and 𝐺 ∶ 𝒮 → 𝒯 are morphisms such that
the following sequence is exact for each open subset 𝑈 ⊆ 𝑀 :

ℛ(𝑈)
𝐹𝑈⟶ 𝒮 (𝑈)

𝐺𝑈⟶ 𝒯 (𝑈).
Prove that the associated sheaf sequence

ℛ+ 𝐹 +

⟶ 𝒮 + 𝐺+

⟶ 𝒯 +

is exact.
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But sheaf sequences that are not exact on the presheaf level may still be exact
as sheaf sequences. It is worth unpacking the definition to see what this means
explicitly in practice.

Lemma 5.20. The sheaf sequence (5.12) is exact if and only if both of the following
conditions are satisfied:

(i) 𝐺𝑈 ∘ 𝐹𝑈 = 0 for every open set 𝑈 ⊆ 𝑀 , and

(ii) Given 𝑠 ∈ 𝒮 (𝑈) such that 𝐺𝑈 (𝑠) = 0, for each 𝑝 ∈ 𝑈 there are an open
set 𝑉 ⊆ 𝑈 containing 𝑝 and a section 𝑟 ∈ ℛ(𝑉 ) such that 𝐹𝑉 (𝑟) = 𝑠|𝑉 .

Proof. First assume that (i) and (ii) hold. Condition (i) implies that the image of
the stalk homomorphism 𝐹𝑝 is contained in Ker𝐺𝑝 for each 𝑝. To prove the reverse
inclusion, let [𝑠]𝑝 ∈ Ker𝐺𝑝 be arbitrary. Then there is some neighborhood 𝑈 of 𝑝
and a section 𝑠 representing this germ such that 𝐺𝑈 (𝑠) = 0 ∈ 𝒯 (𝑈). Condition (ii)
guarantees the existence of a smaller neighborhood 𝑉 of 𝑝 such that 𝑠|𝑉 = 𝐹𝑉 (𝑟)
for some section 𝑟 ∈ ℛ(𝑉 ). It follows that 𝐹𝑝([𝑟]𝑝) = [𝐹𝑉 (𝑟)]𝑝 = [𝑠]𝑝, so Ker𝐺𝑝 ⊆
Im𝐹𝑝.

Conversely, assume the sequence (5.12) is exact. Suppose 𝑟 ∈ ℛ(𝑈) for some
open set 𝑈 . Then for each 𝑝 ∈ 𝑈 , the germ of 𝐺𝑈 ∘ 𝐹𝑈 (𝑟) at 𝑝 represents an
element of 𝐺𝑝 ∘ 𝐹𝑝(ℛ𝑝), which is zero. This means 𝐺𝑈 ∘ 𝐹𝑈 (𝑟) restricts to zero in
a neighborhood of each point, so by the locality property it is zero. This shows that
(i) holds. The proof of (ii) is left as an exercise. □

► Exercise 5.21. Complete the proof of this lemma by showing that if the se-
quence (5.12) is exact, then condition (ii) holds.

An important special case is a short exact sequence of sheaves: this is a five-
term exact sequence of the form

(5.14) 0 → ℛ 𝐹⟶ 𝒮 𝐺⟶ 𝒯 → 0,

where the zeros on the ends represent the trivial sheaf , whose spaces of sections
and restriction maps are all zero.

Lemma 5.20 shows that exactness at ℛ means that whenever 𝑟 ∈ ℛ(𝑈) is in
the kernel of 𝐹𝑈 , it restricts to zero in a neighborhood of each point; but in this
case, since there is only one zero section, it follows that 𝐹𝑈 ∶ ℛ(𝑈) → 𝒮 (𝑈) is
injective for each 𝑈 . If this is the case, we say the sheaf morphism 𝐹 is injective.
On the other hand, exactness at 𝒯 means that given 𝑡 ∈ 𝒯 (𝑈), for each 𝑝 ∈ 𝑈
there is a neighborhood 𝑉 of 𝑝 contained in 𝑈 and a section 𝑠 ∈ 𝒮 (𝑉 ) such that
𝐺𝑉 (𝑠) = 𝑡|𝑉 ; in this case, we say the sheaf morphism 𝐺 is surjective.
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Proposition 5.22. Suppose 𝑀 is a topological space.

(a) If 𝒮 is a sheaf of abelian groups on 𝑀 and ℛ is a subsheaf of 𝒮 , there is
a canonical sheaf morphism Π∶ 𝒮 → 𝒮 /ℛ such that the following sheaf
sequence is exact:

(5.15) 0 → ℛ
𝑖

↪ 𝒮 Π⟶ 𝒮 /ℛ → 0,

where 𝑖 is the inclusion of ℛ into 𝒮 .
(b) For any short exact sequence of sheaf morphisms (5.14) between sheaves

of abelian groups on 𝑀 , 𝐹 is an isomorphism onto Ker𝐺, and there is a
sheaf isomorphism 𝐺 ∶ 𝒮 /Ker𝐺 → 𝒯 such that the following diagram
commutes:

(5.16)
0 // ℛ 𝐹 // 𝒮 𝐺

//

Π !!D
DD

DD
DD

D 𝒯 // 0.

𝒮 /Ker𝐺
𝐺

OO

Proof. Given a subsheaf ℛ ↪ 𝒮 , let 𝒫 be the presheaf 𝒫 (𝑈) = 𝒮 (𝑈)/ℛ(𝑈),
whose sheafification is the quotient sheaf 𝒮 /ℛ; and let 𝜋 ∶ 𝒮 → 𝒫 be the presheaf
morphism given by the quotient maps 𝜋𝑈 ∶ 𝒮 (𝑈) → 𝒮 (𝑈)/ℛ(𝑈). We define the
sheaf morphism Π∶ 𝒮 → 𝒮 /ℛ by Π = 𝜃𝒫 ∘ 𝜋, where 𝜃𝒫 ∶ 𝒫 → 𝒮 /ℛ is the
canonical presheaf morphism given by Theorem 5.9.

The sequence (5.15) is exact at ℛ because 𝑖 is injective. For exactness at 𝒮 ,
we will use Lemma 5.20. Note first that 𝜋 ∘ 𝑖 = 0, which implies Π ∘ 𝑖 = 0, so
condition (i) of the lemma is satisfied. On the other hand, given 𝑠 ∈ 𝒮 (𝑈) such
that Π𝑈 (𝑠) = 0, this means that for each 𝑝 ∈ 𝑈 there is a neighborhood 𝑉 of 𝑝 such
that 𝑠|𝑉 ∈ ℛ(𝑉 ), so condition (ii) is satisfied.

Finally, exactness at 𝒮 /ℛ is just the fact that each element 𝜉 of the stalk (𝒮 /ℛ)𝑝
is represented on some neighborhood 𝑉 of 𝑝 by some section 𝑠 ∈ 𝒮 (𝑉 ) mod ℛ(𝑉 ),
and it follows that Π𝑝([𝑠]𝑝) = 𝜉. This completes the proof of (a).

To prove the first claim in (b), let 𝒦 denote the subsheaf Ker𝐺 ⊆ 𝒮 . For each
open set 𝑈 ⊆ 𝑀 , Lemma 5.20 shows that 𝐹𝑈 (ℛ(𝑈)) ⊆ 𝒦(𝑈), and the discus-
sion in the paragraph preceding the statement of the proposition showed that 𝐹𝑈 is
injective. On the other hand, given 𝑘 ∈ 𝒦(𝑈), each 𝑝 ∈ 𝑈 has a neighborhood
𝑉 ⊆ 𝑈 on which 𝑘|𝑉 = 𝐹𝑉 (𝑟) for some 𝑟 ∈ ℛ(𝑉 ). The collection of all such
neighborhoods is an open cover of 𝑈 , and wherever two such sets 𝑉 , 𝑉 ′ overlap
and 𝑟, 𝑟′ are the corresponding sections, we have

𝐹𝑉 ∩𝑉 ′(𝑟|𝑉 ∩𝑉 ′) = 𝐹𝑉 (𝑟)|𝑉 ∩𝑉 ′ = 𝑘|𝑉 ∩𝑉 ′ = 𝐹𝑉 ′(𝑟′)|𝑉 ∩𝑉 ′

= 𝐹𝑉 ∩𝑉 ′(𝑟′|𝑉 ∩𝑉 ′),
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and injectivity of 𝐹𝑉 ∩𝑉 ′ shows that 𝑟|𝑉 ∩𝑉 ′ = 𝑟′|𝑉 ∩𝑉 ′ . Thus these sections glue
together to form a section ̃𝑟 ∈ ℛ(𝑈) satisfying 𝐹𝑈 ( ̃𝑟) = 𝑘, showing that the homo-
morphism 𝐹𝑈 ∶ ℛ(𝑈) → 𝒦(𝑈) is also surjective.

To prove the second claim in (b), note first that the existence of the morphism 𝐺
making (5.16) commute follows from the result of Problem 5-8(b) (identifying 𝒯
with the quotient sheaf 𝒯 /0). We will show that for each open subset 𝑈 ⊆ 𝑀 , the
group homomorphism 𝐺𝑈 ∶ (𝒮 /𝒦)(𝑈) → 𝒯 (𝑈) is bijective. From the definition
of the sheafification functor, for any sections 𝜎 ∈ (𝒮 /𝒦)(𝑈) and 𝜏 ∈ 𝒯 (𝑈), the
equation 𝐺𝑈 (𝜎) = 𝜏 means that for each 𝑝 ∈ 𝑈 there exist a neighborhood 𝑉𝑝
and a section 𝑠𝑝 ∈ 𝒮 (𝑉𝑝)/𝒦(𝑉𝑝) such that 𝐺𝑉𝑝(𝑠𝑝) = 𝜏|𝑉𝑝 . To see that 𝐺𝑈 is
injective, if 𝐺𝑈 (𝜎) = 0, then because each 𝐺𝑉𝑝 is injective on the quotient group
𝒮 (𝑉𝑝)/𝒦(𝑉𝑝), we see that 𝜎 restricts to zero on each 𝑉𝑝 and thus is zero itself. To
see that 𝐺𝑈 is surjective, given 𝜏 ∈ 𝒯 (𝑈), the surjectivity of 𝐺 means that for each
𝑝 ∈ 𝑈 we can choose a neighborhood 𝑉𝑝 small enough that there exists 𝑠𝑝 ∈ 𝒮 (𝑉𝑝)
with 𝐺𝑉𝑝(𝑠𝑝) = 𝜏|𝑉𝑝 , and any two such sections agree modulo 𝒦(𝑉𝑝); thus the
local sections can be glued together to form a section 𝜎 ∈ (𝒮 /𝒦)(𝑈) satisfying
𝐺𝑈 (𝜎) = 𝜏. □

Example 5.23 (Exact Sheaf Sequences).

(a) On an 𝑛-dimensional smooth manifold 𝑀 , we have a sequence of sheaves
of complex vector spaces

(5.17) 0 → ℂ ↪ ℰ0 𝑑⟶ ℰ1 𝑑⟶ ℰ2 𝑑⟶ ⋯ 𝑑⟶ ℰ𝑛 → 0.

It is an exact sheaf sequence because every closed form is locally in the
image of 𝑑.

(b) For each 𝑘 ≥ 0, we can extract a short exact sheaf sequence from the one
above:

(5.18) 0 → 𝒵 𝑘 ↪ ℰ𝑘 𝑑⟶ 𝒵 𝑘+1 → 0,

where 𝒵 𝑘 and 𝒵 𝑘+1 are the sheaves of closed forms.
(c) On a complex 𝑛-manifold 𝑀 , thanks to the 𝜕-Poincaré lemma, for each 𝑝

we have an exact sheaf sequence associated with the Dolbeault complex:

(5.19) 0 → Ω𝑝 ↪ ℰ𝑝,0 𝜕⟶ ℰ𝑝,1 𝜕⟶ ℰ𝑝,2 → ⋯ → ℰ𝑝,𝑛 → 0,

where Ω𝑝 is the sheaf of holomorphic 𝑝-forms (i.e., 𝜕-closed (𝑝, 0)-forms).
As before, we can extract short exact sequences:

0 → 𝒵 𝑝,𝑞 ↪ ℰ𝑝,𝑞 𝜕⟶ 𝒵 𝑝,𝑞+1 → 0.
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More generally, if 𝐸 → 𝑀 is a holomorphic vector bundle, then we have
an exact sheaf sequence of bundle-valued (𝑝, 𝑞)-forms:

0 → Ω𝑝(𝐸) ↪ ℰ𝑝,0(𝐸)
𝜕𝐸⟶ ℰ𝑝,1(𝐸)

𝜕𝐸⟶ ℰ𝑝,2(𝐸) → ⋯ → ℰ𝑝,𝑛(𝐸) → 0.

(d) On a complex manifold 𝑀 , we have the following sequence of sheaves of
abelian groups:

(5.20) 0 → ℤ
𝜄

↪ 𝒪 𝜀⟶ 𝒪∗ → 0,

where ℤ is the constant sheaf, 𝜄 is inclusion of integer-valued functions as
holomorphic functions, and 𝜀(𝑓) = 𝑒2𝜋𝑖𝑓 . This is called the exponential
sheaf sequence. It is immediate that 𝜄 is injective and 𝜀 ∘ 𝜄(𝑓 ) ≡ 1. (By
custom, we denote the right-hand trivial sheaf by 0, even though 𝒪∗ is a
sheaf of groups under multiplication whose identity section is more nat-
urally written as 1.) To check exactness at 𝒪 , just note that if 𝑒2𝜋𝑖𝑓 = 1
on an open set 𝑈 , then 𝑓 must be constant and integer-valued on each
connected component of 𝑈 . Surjectivity at 𝒪∗ follows from the fact that
each point of 𝑀 has a neighborhood on which every nonvanishing holo-
morphic function has a holomorphic logarithm (see Problem 5-11).

(e) On a smooth manifold, there is a sheaf sequence analogous to the one
above, the smooth exponential sheaf sequence:

0 → ℤ
𝜄

↪ ℰ 𝜀⟶ ℰ∗ → 0,

where ℰ and ℰ∗ are the sheaves of smooth complex-valued functions and
nonvanishing smooth complex-valued functions, respectively. It is exact
by the same argument.

(f) Suppose 𝑀 is a complex manifold and 𝑝 ∈ 𝑀 . We have a short exact
sheaf sequence

(5.21) 0 → ℐ{𝑝} ↪ 𝒪 𝑒⟶ ℂ𝑝 → 0,

where ℐ{𝑝} is the ideal sheaf of {𝑝} (the sheaf of holomorphic functions
that vanish at 𝑝), ℂ𝑝 is the skyscraper sheaf whose stalk at 𝑝 is ℂ and all
other stalks are zero, and 𝑒 is the evaluation map 𝑒𝑈 (𝑓 ) = 𝑓(𝑝) if 𝑝 ∈ 𝑈
and 0 otherwise. //

The basic fact about sheaves is that even if a sheaf sequence is exact, the local
nature of sheaf exactness means that exactness does not necessarily hold on spaces
of sections. For example, in the sheaf sequence (5.17), if we look at the spaces of
global sections, we find a sequence of vector spaces and linear maps

(5.22) 0 → ℰ0(𝑀) 𝑑⟶ ℰ1(𝑀) 𝑑⟶ ℰ2(𝑀) → ⋯ → ℰ𝑛(𝑀) → 0.
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This sequence is not exact, but it is a cochain complex. Its cohomology groups are
the de Rham cohomology groups with complex coefficients, which we denote by
𝐻𝑘

dR(𝑀; ℂ). To avoid confusion, we will denote ordinary (real) de Rham cohomol-
ogy by 𝐻𝑘

dR(𝑀; ℝ). Because conjugation of complex differential forms commutes
with the exterior derivative operator, conjugation descends to a conjugate-linear
automorphism of each complex de Rham cohomology group. Thus we can view
𝐻𝑘

dR(𝑀; ℝ) as a real-linear subspace of 𝐻𝑘
dR(𝑀; ℂ), namely the space of coho-

mology classes that are invariant under conjugation, and 𝐻𝑘
dR(𝑀; ℂ) is isomorphic

to the complexification of 𝐻𝑘
dR(𝑀; ℝ). It follows that the complex dimension of

𝐻𝑘
dR(𝑀; ℂ) is equal to the real dimension of 𝐻𝑘

dR(𝑀; ℝ), namely the 𝑘th Betti
number 𝑏𝑘(𝑀).

We can also look at the global section sequence associated with the short exact
sequence (5.18):

0 → 𝒵 𝑘(𝑀) ↪ ℰ𝑘(𝑀) 𝑑⟶ 𝒵 𝑘+1(𝑀).

This global section sequence is exact as far as it goes, as you can check (or see Prop.
5.24 below), but the last homomorphism need not be surjective, which is why we
have left off the last zero. In fact, the question of when 𝑑 is surjective onto the space
of closed forms, and if not, how to quantify the failure of exactness, is exactly the
question addressed by de Rham cohomology.

For another example, on a complex manifold 𝑀 , let 𝑝, 𝑞 be distinct points of
𝑀 and consider the following variation on the sequence (5.21):

0 → ℐ{𝑝,𝑞} ↪ 𝒪 𝑒⟶ ℂ𝑝 ⊕ ℂ𝑞 → 0,

where now 𝑒 evaluates a function at the two points 𝑝 and 𝑞. (The sheaf ℂ𝑝 ⊕ ℂ𝑞 is
a “double skyscraper sheaf”: it has two nontrivial stalks and all the rest are zero.)
When we examine the global section maps, we find

0 → ℐ{𝑝,𝑞}(𝑀) ↪ 𝒪(𝑀)
𝑒𝑀⟶ ℂ ⊕ ℂ,

where 𝑒𝑀 (𝑓 ) = (𝑓(𝑝), 𝑓 (𝑞)). Again, you can check that this sequence is exact as
far as it goes, but the question of whether 𝑒𝑀 is surjective for all 𝑝 and 𝑞 is exactly
the question of whether 𝒪(𝑀) separates points, a key requirement for 𝑀 to be a
Stein manifold. A variant of this sheaf sequence will play a central role in our proof
of the Kodaira embedding theorem in Chapter 10.

In the last two examples, global section sequences associated with short exact
sheaf sequences failed to be exact, but it was only surjectivity at the last term that
failed. The next proposition shows that this pattern is quite general.
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Proposition 5.24. On a topological space 𝑀 , suppose the following is an exact
sequence of sheaves of abelian groups

(5.23) 0 → ℛ 𝐹⟶ 𝒮 𝐺⟶ 𝒯 → 0.
Then for each open subset 𝑈 ⊆ 𝑀 , the section sequence

(5.24) 0 → ℛ(𝑈)
𝐹𝑈⟶ 𝒮 (𝑈)

𝐺𝑈⟶ 𝒯 (𝑈)
is exact.

Proof. As we noted above, exactness of (5.23) at ℛ implies that 𝐹𝑈 ∶ ℛ(𝑈) →
𝒮 (𝑈) is injective for all 𝑈 , so (5.24) is exact at ℛ(𝑈). To prove exactness at 𝒮 (𝑈),
note that Proposition 5.22 showed that 𝐹 is an isomorphism from ℛ onto the sub-
sheaf Ker𝐺 ⊆ 𝒮 ; in particular, this means that 𝐹𝑈 (ℛ(𝑈)) = Ker(𝐺𝑈 ). □

In the next chapter, we will develop some powerful tools to help determine
when the global section sequence associated with a short exact sheaf sequence is
exact.

Most of the sheaves that arise in complex geometry are of three types: constant
sheaves, which carry topological information (see, for example, Thm. 6.18 below);
sheaves of 𝒪-modules (called analytic sheaves), which carry information about the
holomorphic structure (e.g., Thm. 6.19); and sheaves of ℰ -modules, which provide
a crucial tool for deriving properties of the other two types (e.g., Thm. 6.11). The
analytic sheaves that we will be able to say the most about are the locally free ones,
that is, the sheaves of sections of holomorphic vector bundles.

It is worth remarking that there is a generalization of locally free sheaves that
turns out to be extremely important in algebraic geometry and analysis of several
complex variables, because sheaves of this type have many of the same properties
as locally free sheaves. An analytic sheaf 𝒮 on a complex manifold 𝑀 is said to be
coherent if it is locally finitely generated, meaning each point of 𝑀 has a neigh-
borhood 𝑈 and finitely many sections 𝑠1, … , 𝑠𝑚 ∈ 𝒮 (𝑈) that generate each stalk
𝒮𝑥 as an 𝒪𝑥-module for 𝑥 ∈ 𝑈 ; and given any such sections, the kernel of the sheaf
morphism 𝒪𝑚|𝑈 → 𝒮 |𝑈 given by (𝑓1, … , 𝑓𝑚) ↦ ∑𝑖 𝑓𝑖𝑠𝑖 is also locally finitely
generated (where, as before, 𝒪𝑚 = 𝒪 ⊕ ⋯ ⊕ 𝒪). Locally free analytic sheaves are
coherent, as are ideal sheaves associated with analytic or algebraic varieties (see
[GH94, pp. 695–704]). We will not have occasion to use coherent analytic sheaves
in this book.

Problems
5-1. Suppose 𝒮 is a sheaf of abelian groups and ℛ ↪ 𝒮 is a subsheaf. Show

that each stalk homomorphism ℛ𝑝 → 𝒮𝑝 is injective, so it makes sense
to identify ℛ𝑝 with a subgroup of 𝒮𝑝.
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5-2. Suppose 𝐹 ∶ 𝒮 → 𝒯 is a morphism between sheaves of abelian groups
over a topological space 𝑀 . Show that 𝐹 is an isomorphism if and only
if each stalk homomorphism 𝐹𝑝 is bijective.

5-3. Let 𝑀 be a topological space and 𝐺 an abelian group. Define the constant
presheaf on 𝑴 with coefficients in 𝑮 to be the presheaf 𝒢 for which
𝒢 (𝑈) = 𝐺 for every open set 𝑈 , and all restriction maps are the identity.
Show that the sheafification of 𝒢 is isomorphic to the constant sheaf 𝐺.

5-4. Suppose 𝒮 → 𝑀 is an étalé space, 𝑈 ⊆ 𝑀 is open, and 𝜎, 𝜏 ∶ 𝑈 → 𝒮
are continuous sections. Show that the set {𝑥 ∈ 𝑈 ∶ 𝜎(𝑥) = 𝜏(𝑥)} is
open. If 𝑈 is connected and 𝜎(𝑝) = 𝜏(𝑝) for some 𝑝 ∈ 𝑀 , does this imply
that 𝜎 ≡ 𝜏 on 𝑈?

5-5. Prove Proposition 5.10 (the étalé space functor is an equivalence of cate-
gories).

5-6. (a) Let 𝒞 be the sheaf of continuous real-valued functions on ℝ. Show
that the étalé space Et(𝒞 ) is not Hausdorff.

(b) Let 𝒪 be the sheaf of holomorphic functions on a complex manifold.
Show that Et(𝒪) is Hausdorff.

5-7. Suppose 𝒮 and 𝒯 are sheaves of abelian groups on a topological space
𝑀 . Define a presheaf ℋom(𝒮 , 𝒯 ) by letting ℋom(𝒮 , 𝒯 )(𝑈) be the group
of sheaf morphisms from 𝒮 |𝑈 to 𝒯 |𝑈 . Show that ℋom(𝒮 , 𝒯 ) is a sheaf
of abelian groups on 𝑀 .

5-8. Suppose 𝒮 , 𝒮 ′ are sheaves of abelian groups on a topological space 𝑀
and ℛ ↪ 𝒮 , ℛ′ ↪ 𝒮 ′ are subsheaves.
(a) Show that each stalk (𝒮 /ℛ)𝑝 is canonically isomorphic to the quo-

tient group 𝒮𝑝/ℛ𝑝, where ℛ𝑝 is considered as a subgroup of 𝒮𝑝 as in
Exercise 5.6.

(b) Show that if 𝐹 ∶ 𝒮 → 𝒮 ′ is a morphism that takes ℛ to ℛ′, then 𝐹
passes to the quotient to yield a morphism 𝐹 ∶ 𝒮 /ℛ → 𝒮 ′/ℛ′.

5-9. Let 𝑀 be a complex manifold and let 𝐿 → 𝑀 be a holomorphic line
bundle that admits no nontrivial global holomorphic sections (such as
the tautological bundle on ℂℙ𝑛). Show that the presheaf 𝒯 defined by
𝒯 (𝑈) = 𝒪(𝑈; 𝐿) ⊗𝒪(𝑈) 𝒪(𝑈; 𝐿∗) is not a sheaf because it does not sat-
isfy the gluing property.

5-10. Prove Proposition 5.16 (relating ideal sheaves and sheaves of sections of
line bundles).

5-11. Suppose 𝑈 ⊆ ℂ𝑛 is a simply connected open set and 𝑓 ∶ 𝑈 → ℂ is
a nonvanishing smooth function. Prove that there is a smooth function
𝐿∶ 𝑈 → ℂ such that 𝑓(𝑧) = 𝑒𝐿(𝑧) for all 𝑧 ∈ 𝑈 ; and show that 𝐿 is
holomorphic if 𝑓 is. [Hint: Consider the closed 1-form 𝜔 = 𝑑𝑓/𝑓 .]
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5-12. Let 𝑋 and 𝑌 be topological spaces and 𝑓 ∶ 𝑋 → 𝑌 a continuous map. For
any sheaf 𝒮 on 𝑋 (of abelian groups, say), define a presheaf 𝑓∗𝒮 on 𝑌
by 𝑓∗𝒮 (𝑈) = 𝒮 (𝑓 −1(𝑈)); and define restriction maps 𝑟∗

𝑈
𝑉 ∶ 𝑓∗𝒮 (𝑈) →

𝑓∗𝒮 (𝑉 ) by 𝑟∗
𝑈
𝑉 = 𝑟𝑓 −1(𝑈)

𝑓 −1(𝑉 ).
(a) Show that 𝑓∗𝒮 is a sheaf of abelian groups on 𝑌 , called a direct image

sheaf .
(b) Show that for each sheaf morphism 𝐴∶ 𝒮 → 𝒮 ′ between sheaves on

𝑋, there is a morphism 𝐴∗ ∶ 𝑓∗𝒮 → 𝑓∗𝒮 ′, so that the assignment
𝒮 ↦ 𝑓∗𝒮 , 𝐴 ↦ 𝐴∗ is a covariant functor from the category of
sheaves of abelian groups on 𝑋 to the analogous category on 𝑌 .

(c) Show that if 𝑓 is a constant map, then 𝑓∗𝒮 is a skyscraper sheaf
whose nontrivial stalk is the space 𝒮 (𝑋) of global sections.

5-13. Let 𝑋, 𝑌 , and 𝑓 be as in Problem 5-12. In addition to the operation taking
sheaves on 𝑋 to direct image sheaves on 𝑌 , there is a reverse operation
taking sheaves on 𝑌 to sheaves on 𝑋, but it is a little less straightforward
to define. Given a sheaf 𝒯 of abelian groups on 𝑌 , let 𝜋 ∶ Et(𝒯 ) → 𝑌
be its étalé space, let 𝒯 # ⊆ 𝑋 × Et(𝒯 ) be the following fiber product:

𝒯 # = {(𝑥, 𝜏) ∈ 𝑋 × Et(𝒯 ) ∶ 𝑓(𝑥) = 𝜋(𝜏)}.
(a) Show that with the subspace topology and the projection 𝜋1 ∶ 𝒯 # →

𝑋 given by 𝜋1(𝑥, 𝜏) = 𝑥, 𝒯 # is an étalé space of abelian groups on
𝑋. Its sheaf of sections, denoted by 𝑓 −1𝒯 , is called an inverse image
sheaf .

(b) Show that for each sheaf morphism 𝐴∶ 𝒯 → 𝒯 ′ between sheaves
on 𝑌 , it is possible to assign a morphism 𝑓 −1𝐴∶ 𝑓 −1𝒯 → 𝑓 −1𝒯 ′

in such a way as to define a covariant functor from sheaves on 𝑌 to
sheaves on 𝑋.

(c) Show that if 𝑓 ∶ 𝑈 → 𝑌 is inclusion of an open subset, then 𝑓 −1𝒯
is isomorphic to the restriction 𝒯 |𝑈 defined by (5.3).

(d) Show that if 𝑓 ∶ 𝑋 → 𝑌 is a constant map with value 𝑐 ∈ 𝑌 , then
𝑓 −1𝒯 is the constant sheaf 𝒯𝑐 , where 𝒯𝑐 is the stalk of 𝒯 at 𝑐.



Chapter 6

Sheaf Cohomology

As the discussion in the previous chapter suggests, an important question in the the-
ory of sheaves is ascertaining when the global section sequence associated with an
exact sheaf sequence is exact, and if not, how to characterize the failure of exactness.
In this chapter, we introduce a powerful machine called sheaf cohomology that can
answer questions like these andmanymore. There is a considerable amount of tech-
nical work that has to be done to establish the necessary results; but the work will
pay off richly when we start seeing applications of the theory to complex manifolds.

Definitions
As with many aspects of this subject, there are various definitions of sheaf coho-
mology available. The construction we will give is called Čech cohomology after
the early twentieth century Czech mathematician Eduard Čech, who introduced the
main ideas behind it in 1932 [Čec32]. It is not the most general construction, be-
cause it only behaves well on paracompact Hausdorff spaces; but that topological
restriction is not an issue for us because we only need to consider sheaves on man-
ifolds, and the Čech construction is supremely well suited to our purposes. At the
end of the chapter, we will explain its relationship with other sheaf cohomology
theories.

Suppose 𝑀 is a topological space and 𝒮 is a sheaf of abelian groups on 𝑀 .
Given an indexed open cover 𝒰 = {𝑈𝛼}𝛼∈𝐴 of 𝑀 and a nonnegative integer 𝑝,
a 𝒑-cochain on 𝓤 with coefficients in 𝓢 (sometimes called a Čech cochain to
distinguish it from the singular cochains used in algebraic topology) is an operator
𝑐 that assigns to every multi-index (𝛼0, … , 𝛼𝑝) of length (𝑝 + 1) a section 𝑐𝛼0…𝛼𝑝 ∈
𝒮 (𝑈𝛼0 ∩⋯∩𝑈𝛼𝑝). (Note that this means 𝑐𝛼0…𝛼𝑝 = 0 whenever 𝑈𝛼0 ∩⋯∩𝑈𝛼𝑝 = ∅.)
The 𝒑th cochain group on𝓤 with coefficients in𝓢 is the set 𝐶𝑝(𝒰; 𝒮 ) of all such
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cochains, which is an abelian group under the addition operation defined by

(𝑐 + 𝑐′)𝛼0…𝛼𝑝 = 𝑐𝛼0…𝛼𝑝 + 𝑐′
𝛼0…𝛼𝑝 .

If 𝒮 is a sheaf of real or complex vector spaces, then 𝐶𝑝(𝒰; 𝒮 ) is also a vector space
with the obvious scalar multiplication. (This notation 𝐶𝑝(𝒰; 𝒮 ), with arguments
consisting of an open cover and a sheaf, should not be confused with notations like
𝐶𝑝(𝑀, 𝑁) for spaces of maps of class 𝐶𝑝 between manifolds.)

The coboundary operator is the homomorphism 𝛿 ∶ 𝐶𝑝(𝒰; 𝒮 ) → 𝐶𝑝+1(𝒰; 𝒮 )
defined by

(𝛿𝑐)𝛼0…𝛼𝑝+1 =
𝑝+1

∑
𝑗=0

(−1)𝑗𝑐𝛼0…𝛼𝑗…𝛼𝑝+1|𝑈0∩⋯∩𝑈𝑝+1
.

Lemma 6.1. With 𝛿 defined as above, 𝛿 ∘ 𝛿 = 0.

Proof. We compute

(𝛿𝛿𝑐)𝛼0…𝛼𝑝+2 = ∑
𝑗

0≤𝑗≤𝑝+1

(−1)𝑗(𝛿𝑐)𝛼0…𝛼𝑗…𝛼𝑝+2|𝑈0∩⋯∩𝑈𝑝+2

= ∑
𝑗,𝑘

0≤𝑘<𝑗≤𝑝+1

(−1)𝑗+𝑘𝑐𝛼0…𝛼𝑘…𝛼𝑗…𝛼𝑝+1|𝑈0∩⋯∩𝑈𝑝+2

+ ∑
𝑗,𝑘

0≤𝑗<𝑘≤𝑝+1

(−1)𝑗+𝑘−1𝑐𝛼0…𝛼𝑗…𝛼𝑘…𝛼𝑝+1|𝑈0∩⋯∩𝑈𝑝+2
,

where the sign in the last sum reflects the fact that when 𝑘 > 𝑗, the index 𝛼𝑘 is in
position 𝑘 − 1 in (𝛿𝑐)𝛼0…𝛼𝑗…𝛼𝑝+2 . After interchanging the dummy indices 𝑗 and 𝑘
in the last sum, we see that these two sums exactly cancel each other. □

(Those who have studied simplicial cohomology might recognize these for-
mulas as being close kin to the formula for the coboundary operator in simplicial
cohomology. This connection is explained in Problem 6-10.)

Lemma 6.1 shows that the cochain groups fit together in a cochain complex:

0 → 𝐶0(𝒰; 𝒮 ) 𝛿⟶ 𝐶1(𝒰; 𝒮 ) 𝛿⟶ ⋯ 𝛿⟶ 𝐶𝑝(𝒰; 𝒮 ) 𝛿⟶ 𝐶𝑝+1(𝒰; 𝒮 ) → ⋯ .

The cohomology groups of this complex are called the Čech cohomology groups
on 𝓤 with coefficients in 𝓢:

𝐻𝑝(𝒰; 𝒮 ) =
Ker (𝛿 ∶ 𝐶𝑝(𝒰; 𝒮 ) → 𝐶𝑝+1(𝒰; 𝒮 ))
Im (𝛿 ∶ 𝐶𝑝−1(𝒰; 𝒮 ) → 𝐶𝑝(𝒰; 𝒮 ))
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(where we interpret 𝐶𝑝(𝒰; 𝒮 ) to be zero when 𝑝 < 0). In general these are abelian
groups; if 𝒮 is a sheaf of (real or complex) vector spaces, then each 𝐻𝑝(𝒰; 𝒮 ) is a
vector space.

A cochain 𝑐 ∈ 𝐶𝑝(𝒰; 𝒮 ) satisfying 𝛿𝑐 = 0 is called a (Čech) cocycle, and
one satisfying 𝑐 = 𝛿𝑏 for some 𝑏 ∈ 𝐶𝑝−1(𝒰; 𝒮 ) is called a (Čech) coboundary.
We denote the group of cocycles on 𝒰 by 𝑍𝑝(𝒰; 𝒮 ), and the group of cobound-
aries by 𝐵𝑝(𝒰; 𝒮 ), so we can also write 𝐻𝑝(𝒰; 𝒮 ) = 𝑍𝑝(𝒰; 𝒮 )/𝐵𝑝(𝒰; 𝒮 ). The
equivalence class of a cocycle 𝑐 in this quotient is denoted by [𝑐] and is called a
cohomology class; two cocycles that determine the same cohomology class are said
to be cohomologous.

This is already rather abstract, so let us look at a few examples before proceed-
ing.
Example 6.2 (Čech Cocycles in Degree 0). Suppose 𝒮 is a sheaf of abelian groups
on a topological space 𝑀 and 𝒰 = {𝑈𝛼}𝛼∈𝐴 is an indexed open cover of 𝑀 . A
0-cochain 𝑐 on 𝒰 just assigns a section 𝑐𝛼 ∈ 𝒮 (𝑈𝛼) for each 𝛼. The coboundary of
such a cochain is

(𝛿𝑐)𝛼𝛽 = 𝑐𝛽|𝑈𝛼∩𝑈𝛽
− 𝑐𝛼|𝑈𝛼∩𝑈𝛽

.
Since there are no (−1)-cochains, there are no nontrivial 0-coboundaries, and thus
𝐻0(𝒰; 𝒮 ) is equal to the space 𝑍0(𝒰; 𝒮 ) of cocycles.

One way to obtain such a cocycle is to start with a global section 𝜎 ∈ 𝒮 (𝑀),
and define a 0-cochain 𝑐 by 𝑐𝛼 = 𝜎|𝑈𝛼 for each 𝛼. It follows automatically from
the properties of the sheaf restriction maps that 𝑐 is a cocycle, so this defines a
map 𝐼𝒰,𝒮 ∶ 𝒮 (𝑀) → 𝐻0(𝒰; 𝒮 ), which is a homomorphism of whatever algebraic
structures 𝒮 (𝑀) and 𝐻0(𝒰; 𝒮 ) are endowed with. Injectivity of 𝐼𝒰,𝒮 follows from
the locality property of sheaves, and surjectivity from the gluing property, so 𝐼𝒰,𝒮
is an isomorphism. Thus 𝐻0(𝒰; 𝒮 ) is always isomorphic to the space 𝒮 (𝑀) of
global sections of 𝒮 . //
Example 6.3 (ČechCocycles inDegree 1). Let𝑀 , 𝒮 , and𝒰 be as in the preceding
example. A 1-cochain on 𝒰 is a choice of a section 𝑐𝛼𝛽 ∈ 𝒮 (𝑈𝛼 ∩ 𝑈𝛽) for each pair
of indices 𝛼, 𝛽. The coboundary operator is

(𝛿𝑐)𝛼𝛽𝛾 = 𝑐𝛽𝛾 − 𝑐𝛼𝛾 + 𝑐𝛼𝛽 on 𝑈𝛼 ∩ 𝑈𝛽 ∩ 𝑈𝛾

(where the phrase “on 𝑈𝛼 ∩𝑈𝛽 ∩𝑈𝛾” should be interpreted to mean that each section
is restricted to that set before performing the addition and subtraction). Thus 𝑐 is
a cocycle if and only if 𝑐𝛼𝛾 = 𝑐𝛼𝛽 + 𝑐𝛽𝛾 on 𝑈𝛼 ∩ 𝑈𝛽 ∩ 𝑈𝛾 for all 𝛼, 𝛽, 𝛾 . Two such
cocycles 𝑐 and 𝑐′ are cohomologous if and only if there is a 0-cochain 𝑏 such that

𝑐𝛼𝛽 − 𝑐′
𝛼𝛽 = 𝑏𝛽 − 𝑏𝛼 on 𝑈𝛼 ∩ 𝑈𝛽 .

If 𝒮 is a sheaf of abelian groups written multiplicatively, we would write
(𝛿𝑐)𝛼𝛽𝛾 = 𝑐𝛽𝛾𝑐−1

𝛼𝛾 𝑐𝛼𝛽 on 𝑈𝛼 ∩ 𝑈𝛽 ∩ 𝑈𝛾 ,
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so the formula for 𝑐 to be a cocycle would be
𝑐𝛼𝛽𝑐𝛽𝛾 = 𝑐𝛼𝛾 on 𝑈𝛼 ∩ 𝑈𝛽 ∩ 𝑈𝛾 .

Two 1-cocycles 𝑐 and 𝑐′ are cohomologous if and only if there is a 0-cochain 𝑏 such
that

𝑐𝛼𝛽 = 𝑐′
𝛼𝛽𝑏𝛽𝑏−1

𝛼 on 𝑈𝛼 ∩ 𝑈𝛽 .
This might look remarkably similar to the isomorphism criterion for line bundles
in terms of their transition functions; that is not an accident, as we will see later in
this chapter. //
Example 6.4 (1-Cocycles of Closed Forms). Suppose 𝑀 is a smooth manifold
and 𝜔 is a smooth closed 𝑘-form on 𝑀 . By the Poincaré lemma, we can find an
open cover 𝒰 = {𝑈𝛼}𝛼∈𝐴 such that on each 𝑈𝛼 there is a smooth (𝑘 − 1)-form 𝜂𝛼
satisfying 𝜔|𝑈𝛼 = 𝑑𝜂𝛼 . These (𝑘 − 1)-forms might not agree where they overlap,
so for each 𝛼 and 𝛽 we can define a (𝑘 − 1)-form 𝛾𝛼𝛽 on 𝑈𝛼 ∩ 𝑈𝛽 by

𝛾𝛼𝛽 = 𝜂𝛽|𝑈𝛼∩𝑈𝛽
− 𝜂𝛼|𝑈𝛼∩𝑈𝛽

.

Since 𝑑𝜂𝛽 = 𝜔 = 𝑑𝜂𝛼 on the intersection of their domains, 𝛾𝛼𝛽 is a closed form,
and thus this assignment defines a 1-cochain 𝛾 ∈ 𝐶1(𝒰; 𝒵 𝑘−1), where as before
𝒵 𝑘−1 is the sheaf of closed (𝑘 − 1)-forms on 𝑀 . It follows immediately from
the definition of 𝛾 that 𝛿𝛾 = 0, so 𝛾 is actually a 1-cocycle with coefficients in
𝒵 𝑘−1. It is a coboundary if and only if there is a collection of closed (𝑘 − 1)-forms
𝜎𝛼 ∈ 𝒵 𝑘−1(𝑈𝛼) such that

𝛾𝛼𝛽 = 𝜎𝛽 − 𝜎𝛼 on 𝑈𝛼 ∩ 𝑈𝛽 ,
which is to say

𝜎𝛽 − 𝜎𝛼 = 𝜂𝛽 − 𝜂𝛼 on 𝑈𝛼 ∩ 𝑈𝛽 .
If this is the case, then we see that 𝜂𝛼 − 𝜎𝛼 and 𝜂𝛽 − 𝜎𝛽 restrict to the same form on
the intersection of their domains, so they piece together to produce a global (𝑘 − 1)-
form 𝜃 such that 𝑑𝜃 = 𝜔 (because 𝑑𝜃 = 𝑑𝜂𝛼 − 𝑑𝜎𝛼 = 𝜔 − 0 on 𝑈𝛼). Conversely,
if 𝜔 is exact, we can choose the 𝜂𝛼’s all to be restrictions of a global form 𝜂, so
the cocycle 𝛾 is zero. Thus starting with a closed 𝑘-form 𝜔, we have produced a
1-cocycle on 𝒰 with coefficients in 𝒵 𝑘−1, which is a coboundary if and only if 𝜔
is exact. This is a special case of a deep connection between de Rham cohomology
and sheaf cohomology, which we will explore later in the chapter. //

Dependence on the Open Cover

Next we have to examine how the Čech cohomology groups depend on the
choice of open cover. Given an indexed open cover 𝒰 = {𝑈𝛼}𝛼∈𝐴, recall that
another such open cover 𝒱 = {𝑉𝛽}𝛽∈𝐵 is a refinement of𝓤 if for each 𝛽 ∈ 𝐵, there
is some 𝛼 ∈ 𝐴 such that 𝑉𝛽 ⊆ 𝑈𝛼 . If this is the case, then we can choose a refining
map 𝜌∶ 𝒱 → 𝒰 , by which we mean a map 𝜌∶ 𝐵 → 𝐴 such that 𝑉𝛽 ⊆ 𝑈𝜌(𝛽) for
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every 𝛽. Using this, we define a homomorphism 𝜌# ∶ 𝐶𝑝(𝒰; 𝒮 ) → 𝐶𝑝(𝒱 ; 𝒮 ) for
each 𝑝 by

(𝜌#𝑐)𝛽0…𝛽𝑝 = 𝑐𝜌(𝛽0)…𝜌(𝛽𝑝)|𝑉𝛽0 ∩⋯∩𝑉𝛽𝑝
.

Then a straightforward computation shows that 𝛿(𝜌#𝑐) = 𝜌#(𝛿𝑐), so 𝜌# maps cocy-
cles to cocycles and coboundaries to coboundaries, and thus descends to a homo-
morphism 𝜌∗ ∶ 𝐻𝑝(𝒰; 𝒮 ) → 𝐻𝑝(𝒱 ; 𝒮 ). If 𝒮 is a sheaf of real or complex vector
spaces, then 𝜌∗ is linear.

Lemma 6.5. The homomorphism 𝜌∗ is independent of the choice of refining map.

Proof. Given 𝒰 and 𝒱 as above, suppose 𝜌, ̃𝜌∶ 𝒱 → 𝒰 are two different refining
maps. For each 𝑝, define a homomorphism 𝜃 ∶ 𝐶𝑝(𝒰; 𝒮 ) → 𝐶𝑝−1(𝒱 ; 𝒮 ) by

(𝜃𝑐)𝛽0…𝛽𝑝−1 =
𝑝−1

∑
𝑗=0

(−1)𝑗𝑐𝜌(𝛽0)…𝜌(𝛽𝑗 ) ̃𝜌(𝛽𝑗 )… ̃𝜌(𝛽𝑝−1)|𝑉𝛽0 ∩⋯∩𝑉𝛽𝑝−1
.

We will show that 𝜃 satisfies the following cochain homotopy formula:

(6.1) 𝜃𝛿 + 𝛿𝜃 = ̃𝜌# − 𝜌#.

(The terminology comes from algebraic topology, where such formulas are com-
monly used for showing that two maps between chain complexes or cochain com-
plexes induce the same map on homology or cohomology; a classic example is to
show that homotopic maps between topological spaces induce the same homology
and cohomology homomorphisms.)

Granting (6.1) for now, given a cohomology class [𝑐] ∈ 𝐻𝑝(𝒰; 𝒮 ) represented
by a cocycle 𝑐 ∈ 𝑍𝑝(𝒰; 𝒮 ), we see that ̃𝜌#𝑐 − 𝜌#𝑐 = 0 + 𝛿𝜃𝑐, so ̃𝜌∗[𝑐] = [ ̃𝜌#𝑐] =
[𝜌#𝑐] = 𝜌∗[𝑐], which proves the lemma.

To complete the proof, we need to verify the cochain homotopy formula (6.1).
This is just a messy computation. Here it is. (We suppress the restrictions from the
notation for brevity; all of the sections on the right-hand side are understood to be
restricted to 𝑉𝛽0 ∩ ⋯ ∩ 𝑉𝛽𝑝 .)

(𝜃𝛿𝑐)𝛽0…𝛽𝑝 =
𝑝

∑
𝑗=0

(−1)𝑗(𝛿𝑐)𝜌(𝛽0)…𝜌(𝛽𝑗 ) ̃𝜌(𝛽𝑗 )… ̃𝜌(𝛽𝑝)

= ∑
𝑗,𝑘

0≤𝑘≤𝑗≤𝑝

(−1)𝑗+𝑘𝑐𝜌(𝛽0)…𝜌(𝛽𝑘)…𝜌(𝛽𝑗 ) ̃𝜌(𝛽𝑗 )… ̃𝜌(𝛽𝑝)

+ ∑
𝑗,𝑘

0≤𝑗≤𝑘≤𝑝

(−1)𝑗+𝑘+1𝑐𝜌(𝛽0)…𝜌(𝛽𝑗 ) ̃𝜌(𝛽𝑗 )… ̂̃𝜌(𝛽𝑘)… ̃𝜌(𝛽𝑝);
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(𝛿𝜃𝑐)𝛽0…𝛽𝑝 =
𝑝

∑
𝑘=0

(−1)𝑘(𝜃𝑐)𝛽0…𝛽𝑘…𝛽𝑝

= ∑
𝑗,𝑘

0≤𝑗<𝑘≤𝑝

(−1)𝑘+𝑗𝑐𝜌(𝛽0)…𝜌(𝛽𝑗 ) ̃𝜌(𝛽𝑗 )… ̂̃𝜌(𝛽𝑘)… ̃𝜌(𝛽𝑝)

+ ∑
𝑗,𝑘

0≤𝑘<𝑗≤𝑝

(−1)𝑘+𝑗−1𝑐𝜌(𝛽0)…𝜌(𝛽𝑘)…𝜌(𝛽𝑗 ) ̃𝜌(𝛽𝑗 )… ̃𝜌(𝛽𝑝).

When these expressions are added together, each term in the expression for 𝜃𝛿𝑐
is canceled by one term in the expression for 𝛿𝜃𝑐, except the terms in 𝜃𝛿𝑐 where
𝑗 = 𝑘. Those terms give

(𝜃𝛿𝑐 + 𝛿𝜃𝑐)𝛽0…𝛽𝑝 =
𝑝

∑
𝑗=0

𝑐𝜌(𝛽0)…𝜌(𝛽𝑗−1) ̃𝜌(𝛽𝑗 )… ̃𝜌(𝛽𝑝)

+
𝑝

∑
𝑗=0

(−1)𝑐𝜌(𝛽0)…𝜌(𝛽𝑗 ) ̃𝜌(𝛽𝑗+1)… ̃𝜌(𝛽𝑝).

This is a telescoping sum in which all the terms cancel except the 𝑗 = 0 term in the
first sum and the 𝑗 = 𝑝 term in the second sum; what is left is exactly ( ̃𝜌#𝑐)𝛽0…𝛽𝑝 −
(𝜌#𝑐)𝛽0…𝛽𝑝 . □

The result of this lemma is that whenever 𝒱 is a refinement of 𝒰 , there is a
canonical homomorphism 𝜌∗

𝒰𝒱 ∶ 𝐻𝑝(𝒰; 𝒮 ) → 𝐻𝑝(𝒱 ; 𝒮 ). Moreover, if in addi-
tion 𝒲 is a refinement of 𝒱 , we can choose our refining maps so that the refining
map from 𝒲 to 𝒰 is the composition of the maps from 𝒲 to 𝒱 and 𝒱 to 𝒰 , so
that 𝜌∗

𝒱 𝒲 ∘ 𝜌∗
𝒰𝒱 = 𝜌∗

𝒰𝒲 . It follows that the collection of all open covers of 𝑀
with the homomorphisms 𝜌∗

𝒰𝒱 is a direct system—given any two open covers, the
collection of all of their intersections is a refinement of both. (The set of open cov-
ers with the relation 𝒰 ≤ 𝒱 if 𝒱 is a refinement of 𝒰 is an example of a directed
set that is not partially ordered: two open covers can be refinements of each other
without being equal.)

We define the 𝒑th sheaf cohomology group of𝑴 with coefficients in𝓢 as the
direct limit of this system:

𝐻𝑝(𝑀; 𝒮 ) = lim
⟶

𝐻𝑝(𝒰; 𝒮 ).

If 𝒮 is a sheaf of real or complex vector spaces, then 𝐻𝑝(𝑀; 𝒮 ) is a vector space.
These groups are sometimes called the Čech cohomology groups with coefficients
in𝓢, to distinguish them from other constructions of sheaf cohomology groups; see
the last section of this chapter for the relationships among the various constructions.
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For each open cover 𝒰 , there is a canonical homomorphism from 𝐻𝑝(𝒰; 𝒮 )
to 𝐻𝑝(𝑀; 𝒮 ), which sends a cohomology class [𝑐] to its equivalence class in the
direct limit. Let us denote this equivalence class by [[𝑐]] ∈ 𝐻𝑝(𝑀; 𝒮 ). Unwinding
the definitions, we see that for a given cover 𝒰 = {𝑈𝛼}𝛼∈𝐴, two cocycles 𝑐, 𝑐′ ∈
𝐶𝑝(𝒰; 𝒮 ) satisfy [[𝑐]] = [[𝑐′]] if and only if there is a cover 𝒱 = {𝑉𝛽}𝛽∈𝐵 refining
𝒰 and a refining map 𝜌∶ 𝒱 → 𝒰 such that 𝜌#(𝑐−𝑐′) is a coboundary in 𝐶𝑝(𝒱 ; 𝒮 ).
Theorem 6.6 (Functoriality of Sheaf Cohomology). Suppose 𝒮 , 𝒯 are sheaves
of abelian groups on a topological space 𝑀 and 𝐹 ∶ 𝒮 → 𝒯 is a sheaf morphism.
For each 𝑝, there is a homomorphism 𝐹∗ ∶ 𝐻𝑝(𝑀; 𝒮 ) → 𝐻𝑝(𝑀; 𝒯 ), and these
homomorphisms satisfy

(Id𝒮 )∗ = Id𝐻𝑝(𝑀;𝒮 ) and (𝐹 ∘ 𝐺)∗ = 𝐹∗ ∘ 𝐺∗.
If 𝐹 is a morphism between sheaves of real or complex vector spaces, then 𝐹∗ is
linear.

Proof. For a specific open cover 𝒰 = {𝑈𝛼}, define 𝐹# ∶ 𝐶𝑝(𝒰; 𝒮 ) → 𝐶𝑝(𝒰; 𝒯 )
by
(6.2) (𝐹#𝑐)𝛼0…𝛼𝑝 = 𝐹 (𝑐𝛼0…𝛼𝑝).

It clearly satisfies Id# = Id and (𝐹 ∘ 𝐺)# = 𝐹# ∘ 𝐺#. Moreover, a straightforward
computation shows that
(6.3) 𝐹# ∘ 𝛿 = 𝛿 ∘ 𝐹#,
which implies that 𝐹# descends to a homomorphism (still denoted by 𝐹#) from
𝐻𝑝(𝒰; 𝒮 ) to 𝐻𝑝(𝒰; 𝒯 ). Another straightforward computation shows that for any
pair of covers 𝒰 and 𝒱 equipped with a refining map 𝜌∶ 𝒱 → 𝒰 , we have 𝐹# ∘
𝜌# = 𝜌# ∘ 𝐹#, so 𝐹# descends to a homomorphism 𝐹∗ ∶ 𝐻𝑝(𝑀; 𝒮 ) → 𝐻𝑝(𝑀; 𝒯 )
satisfying the conclusions of the proposition. For sheaves of vector spaces, one
need only check that all of the homomorphisms above are linear maps. □

Theorem 6.7 (Degree 0 Sheaf Cohomology). For every sheaf 𝒮 of abelian groups
on a topological space 𝑀 , there is an isomorphism 𝐼𝒮 ∶ 𝒮 (𝑀) ≅ 𝐻0(𝑀; 𝒮 ) such
that for every sheaf morphism 𝐹 ∶ 𝒮 → 𝒯 , the following diagram commutes:

(6.4)
𝒮 (𝑀)

𝐹𝑀
��

𝐼𝒮
// 𝐻0(𝑀; 𝒮 )

𝐹∗
��

𝒯 (𝑀)
𝐼𝒯

// 𝐻0(𝑀; 𝒯 ).
If 𝒮 is a sheaf of real or complex vector spaces, then 𝐼𝒮 is linear.

Proof. Suppose 𝒮 is a sheaf of abelian groups on 𝑀 . Example 6.2 showed that
for each open cover 𝒰 of 𝑀 , there is an isomorphism 𝐼𝒰,𝒮 ∶ 𝒮 (𝑀) → 𝐻0(𝒰; 𝒮 ).
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For any open cover 𝒱 refining 𝒰 , it follows from the definitions that these isomor-
phisms commute with refining maps: 𝜌∗

𝒰𝒱 ∘ 𝐼𝒰,𝒮 = 𝐼𝒱 ,𝒮 . Thus they pass to the
direct limit to yield a canonical isomorphism 𝐼𝒮 ∶ 𝒮 (𝑀) → 𝐻0(𝑀; 𝒮 ), which is
linear if 𝒮 is a sheaf of vector spaces.

If 𝐹 ∶ 𝒮 → 𝒯 is a sheaf morphism, recall that for each open cover 𝒰 , the map
𝐹# ∶ 𝐻0(𝒰; 𝒮 ) → 𝐻0(𝒰; 𝒯 ) is defined by (𝐹#𝑐)𝛼 = 𝐹 (𝑐𝛼). It is immediate that
𝐹# ∘ 𝐼𝒰,𝒮 = 𝐼𝒰,𝒯 ∘ 𝐹𝑀 , and then commutativity of (6.4) follows by passing to the
direct limit. □

The Long Exact Cohomology Sequence
By far the most important property of the sheaf cohomology groups is expressed in
the next theorem. It relies on the following standard result in homological algebra.
If 𝐴∗, 𝐵∗, and 𝐶∗ are cochain complexes, a sequence of cochain maps

(6.5) 0 → 𝐴∗ 𝛼→ 𝐵∗ 𝛽→ 𝐶∗ → 0

is called an exact sequence of cochain complexes if each sequence of homomor-
phisms 0 → 𝐴𝑝 → 𝐵𝑝 → 𝐶𝑝 → 0 is exact.

Lemma 6.8 (The Zigzag Lemma). Suppose we are given an exact sequence of
cochain complexes of the form (6.5). Then for each 𝑝 there is a connecting homo-
morphism 𝛿∗ ∶ 𝐻𝑝(𝐶∗) → 𝐻𝑝+1(𝐴∗) such that the following sequence is exact:

⋯
𝛿∗⟶ 𝐻𝑝(𝐴∗)

𝛼∗⟶ 𝐻𝑝(𝐵∗)
𝛽∗⟶ 𝐻𝑝(𝐶∗)

𝛿∗⟶ 𝐻𝑝+1(𝐴∗)
𝛼∗⟶ ⋯ .

For each 𝑝, the homomorphism 𝛿∗ ∶ 𝐻𝑝(𝐶∗) → 𝐻𝑝+1(𝐴∗) is characterized as fol-
lows:

(6.6) 𝛿∗([𝑐]) = [𝑎] if and only if there exists some 𝑏 ∈ 𝐵𝑝 such that
𝛽(𝑏) = 𝑐 and 𝛼(𝑎) = 𝛿𝑏.

If all of the groups and homomorphisms are real or complex vector spaces, then the
connecting homomorphisms are linear maps.

See [LeeTM, Lemma 13.17] or [Hat02, Thm. 2.16] for a proof. (The zigzag
lemma is stated and proved there for chain complexes, in which the arrows go in the
direction of decreasing indices, but the proof for cochain complexes works exactly
the same way.)

Theorem 6.9 (The Long Exact Sequence in Sheaf Cohomology). Suppose 𝒜 ,
ℬ, and 𝒞 are sheaves of abelian groups on a paracompact Hausdorff space 𝑀 ,
and the following sequence of sheaf morphisms is exact:

(6.7) 0 → 𝒜 𝛼⟶ ℬ 𝛽⟶ 𝒞 → 0.
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Then for each 𝑝 ≥ 0, there exists a connecting homomorphism

𝛿∗ ∶ 𝐻𝑝(𝑀; 𝒞 ) → 𝐻𝑝+1(𝑀; 𝒜)

such that the following sequence is exact:

(6.8) 0 → 𝐻0(𝑀; 𝒜 )
𝛼∗⟶ 𝐻0(𝑀; ℬ)

𝛽∗⟶ 𝐻0(𝑀; 𝒞 )
𝛿∗⟶ 𝐻1(𝑀; 𝒜)

𝛼∗⟶ ⋯

⋯
𝛼∗⟶ 𝐻𝑝(𝑀; ℬ)

𝛽∗⟶ 𝐻𝑝(𝑀; 𝒞 )
𝛿∗⟶ 𝐻𝑝+1(𝑀; 𝒜)

𝛼∗⟶ ⋯ .

If 𝒜 , ℬ, and 𝒞 are all sheaves of real or complex vector spaces, then 𝛿∗ is linear. It
satisfies the following naturality property: given a commutative diagram of sheaves
and sheaf morphisms

(6.9)
0 // 𝒜 𝛼

//

𝐴
��

ℬ 𝛽
//

𝐵
��

𝒞 //

𝐶
��

0

0 // 𝒜 ′
𝛼′

// ℬ′
𝛽′

// 𝒞 ′ // 0

in which the horizontal rows are exact, the two connecting homomorphisms 𝛿∗ and
𝛿′

∗ satisfy 𝐴∗ ∘ 𝛿∗ = 𝛿′
∗ ∘ 𝐶∗ for each 𝑝:

(6.10)

𝐻𝑝(𝑀; 𝒞 )
𝛿∗ //

𝐶∗
��

𝐻𝑝+1(𝑀; 𝒜)
𝐴∗
��

𝐻𝑝(𝑀; 𝒞 ′)
𝛿′

∗
// 𝐻𝑝+1(𝑀; 𝒜 ′).

Proof. Begin with an arbitrary open cover 𝒰 for 𝑀 . For each 𝑝 ≥ 0, consider the
following sequence of cochain groups:

0 → 𝐶𝑝(𝒰; 𝒜)
𝛼#⟶ 𝐶𝑝(𝒰; ℬ)

𝛽#⟶ 𝐶𝑝(𝒰; 𝒞 ).

Proposition 5.24 applied on each intersection 𝑈𝛼0 ∩⋯∩𝑈𝛼𝑝 shows that this sequence
is exact. However, 𝛽# might not be surjective. So we cheat: define the subgroup
𝐶𝑝

𝛽 (𝒰; 𝒞 ) ⊆ 𝐶𝑝(𝒰; 𝒞 ) to be the image of 𝛽# ∶ 𝐶𝑝(𝒰; ℬ) → 𝐶𝑝(𝒰; 𝒞 ), so we have
a short exact sequence

0 → 𝐶𝑝(𝒰; 𝒜 )
𝛼#⟶ 𝐶𝑝(𝒰; ℬ)

𝛽#⟶ 𝐶𝑝
𝛽 (𝒰; 𝒞 ) → 0.



156 6. Sheaf Cohomology

Now consider the following diagram of group homomorphisms (where we con-
sider cochain groups to be zero in degrees less than 0):

0 // 𝐶𝑝−1(𝒰; 𝒜)
𝛼# / /

𝛿
��

𝐶𝑝−1(𝒰; ℬ)
𝛽# //

𝛿
��

𝐶𝑝−1
𝛽 (𝒰; 𝒞 )

𝛿
��

// 0

0 // 𝐶𝑝(𝒰; 𝒜 )
𝛼# //

𝛿
��

𝐶𝑝(𝒰; ℬ)
𝛽# //

𝛿
��

𝐶𝑝
𝛽 (𝒰; 𝒞 )

𝛿
��

// 0

0 // 𝐶𝑝+1(𝒰; 𝒜)
𝛼# / / 𝐶𝑝+1(𝒰; ℬ)

𝛽# // 𝐶𝑝+1
𝛽 (𝒰; 𝒞 ) // 0.

Since 𝛿 commutes with 𝛽# by (6.3), it follows that 𝛿 takes 𝐶𝑝−1
𝛽 (𝒰; 𝒞 ) to 𝐶𝑝

𝛽 (𝒰; 𝒞 )
and 𝐶𝑝

𝛽 (𝒰; 𝒞 ) to 𝐶𝑝+1
𝛽 (𝒰; 𝒞 ). The horizontal rows of this diagram are exact, and

the columns are cochain complexes; and it commutes by (6.3). Let 𝐻∗
𝛽 (𝒰; 𝒞 ) de-

note the cohomology of the cochain complex 𝐶∗
𝛽 (𝒰; 𝒞 ).

The zigzag lemma shows that for each 𝑝 there is a connecting homomorphism
𝛿∗ ∶ 𝐻𝑝

𝛽 (𝒰; 𝒞 ) → 𝐻𝑝+1(𝒰; 𝒜) such that the following sequence is exact:

⋯ → 𝐻𝑝(𝒰; 𝒜 )
𝛼∗⟶ 𝐻𝑝(𝒰; ℬ)

𝛽∗⟶ 𝐻𝑝
𝛽 (𝒰; 𝒞 )

𝛿∗⟶ 𝐻𝑝+1(𝒰; 𝒜) → ⋯ .

Next we need to examine what happens when we pass to the direct limit. Given
a cover 𝒱 refining 𝒰 and a refining map 𝜌∶ 𝒱 → 𝒰 , we get a homomorphism
𝜌# ∶ 𝐻𝑝(𝒰; 𝒜 ) → 𝐻𝑝(𝒱 ; 𝒜) that commutes with all of the above maps, as you
can check, with similar homomorphisms for 𝒜 and ℬ. Thus in the limit we obtain
a sequence
(6.11)

⋯ → 𝐻𝑝(𝑀; 𝒜 )
𝛼∗⟶ 𝐻𝑝(𝑀; ℬ)

𝛽∗⟶ 𝐻𝑝
𝛽 (𝑀; 𝒞 )

𝛿∗⟶ 𝐻𝑝+1(𝑀; 𝒜) → ⋯ ,

where 𝐻𝑝
𝛽 (𝑀; 𝒞 ) = lim

⟶
𝐻𝑝

𝛽 (𝒰; 𝒞 ) for each 𝑝. It is straightforward to check that
this sequence is still exact.

To complete the proof, we will show that the map

ℐ ∶ 𝐻𝑝
𝛽 (𝑀; 𝒞 ) → 𝐻𝑝(𝑀; 𝒞 )

induced by inclusion 𝐶𝑝
𝛽 (𝒰; 𝒞 ) ↪ 𝐶𝑝(𝒰; 𝒞 ) is an isomorphism for each 𝑝. The

proof will be based on the following fact, whose verification we postpone until the
end of the proof:

(6.12)
Given a cochain 𝑐 ∈ 𝐶𝑝(𝒰; 𝒞 ), there exist a refinement 𝒱 of 𝒰
and a refining map 𝜌∶ 𝒱 → 𝒰 such that 𝜌#𝑐 ∈ 𝐶𝑝

𝛽 (𝒱 ; 𝒞 ).
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Granting this for the moment, we prove that ℐ is bijective. To show that it
is injective, suppose ℐ ([[𝑐]]) = 0. We can choose a representative cochain 𝑐 ∈
𝐶𝑝

𝛽 (𝒰; 𝒞 ) for some open cover 𝒰 , and the hypothesis implies there is a refiningmap
𝜌∶ 𝒱 → 𝒰 and a cochain 𝛾 ∈ 𝐶𝑝−1(𝒱 ; 𝒞 ) such that 𝜌#𝑐 = 𝛿𝛾 . By (6.12), there is
another refining map ̃𝜌∶ 𝒲 → 𝒱 such that ̃𝜌#𝛾 = 𝛽#𝑏 for some 𝑏 ∈ 𝐶𝑝−1(𝒲 ; 𝒞 ).
Then

̃𝜌#𝜌#𝑐 = ̃𝜌#𝛿𝛾 = 𝛿 ̃𝜌#𝛾 = 𝛿𝛽#𝑏,
so, after refinement, 𝑐 maps to a coboundary in 𝐶𝑝

𝛽 (𝒲 ; 𝒞 ) and thus [[𝑐]] = 0 ∈
𝐻𝑝

𝛽 (𝑀; 𝒞 ).
To show that ℐ is surjective, let [[𝑐]] ∈ 𝐻𝑝(𝑀; 𝒞 ) be arbitrary, represented

by a cochain 𝑐 ∈ 𝐶𝑝(𝒰; 𝒞 ) with 𝛿𝑐 = 0. By (6.12), there exists a refining map
𝜌∶ 𝒱 → 𝒰 such that 𝜌#𝑐 = 𝛽#𝑏 for some 𝑏 ∈ 𝐶𝑝(𝒱 ; ℬ). Now

𝛿𝛽#𝑏 = 𝛿𝜌#𝑐 = 𝜌#𝛿𝑐 = 0,
so 𝛽#𝑏 represents a cohomology class in 𝐻𝑝

𝛽 (𝒰; 𝒞 ), and passing to the limit, we see
that [[𝑐]] = ℐ ([[𝛽#𝑏]]).

Thus we can replace 𝐻𝑝
𝛽 (𝒰; 𝒞 ) with 𝐻𝑝(𝒰; 𝒞 ) in (6.11), replace 𝛽∗ by 𝛽∗ ∘ ℐ

(which is just 𝛽∗ ∶ 𝐻𝑝(𝑀; ℬ) → 𝐻𝑝(𝑀; 𝒞 )), and replace 𝛿∗ by 𝛿∗ ∘ ℐ −1, and we
obtain the long exact sequence (6.8).

Now we prove the naturality claim. Suppose we have a commutative diagram
(6.9) of sheaf morphisms with exact rows. Let 𝛾 ∈ 𝐻𝑝(𝑀; 𝒞 ) be arbitrary. By
(6.12), we can choose an open cover 𝒰 such that 𝛾 is represented by a cocycle
𝑐 ∈ 𝐶𝑝

𝛽 (𝒰; 𝒞 ). By (6.6), 𝛿∗(𝛾) is represented by a cocycle 𝑎 ∈ 𝐶𝑝+1(𝒰; 𝒜) such
that there exists 𝑏 ∈ 𝐶𝑝(𝒰; ℬ) with
(6.13) 𝛽#𝑏 = 𝑐 and 𝛼#𝑎 = 𝛿𝑏.

Set 𝑏′ = 𝐵#𝑏 ∈ 𝐶𝑝(𝒰; ℬ′) and 𝑎′ = 𝐴#𝑎 ∈ 𝐶𝑝+1(𝒰; 𝒜 ′). Note that (6.3)
shows that 𝐵# commutes with 𝛿, and commutativity of (6.9) implies that 𝛼′

# ∘ 𝐴# =
𝐵# ∘ 𝛼# and 𝛽′

# ∘ 𝐵# = 𝐶# ∘ 𝛽#. These identities together with (6.13) yield
𝛽#𝑏′ = 𝛽′

#𝐵#𝑏 = 𝐶#𝛽#𝑏 = 𝐶#𝑐,
𝛼′

#𝑎′ = 𝛼′
#𝐴#𝑎 = 𝐵#𝛼#𝑎 = 𝐵#𝛿𝑏 = 𝛿𝐵#𝑏 = 𝛿𝑏′,

so it follows from (6.3) that 𝛿′
∗𝐶∗𝛾 = 𝛿′

∗[[𝐶#𝑐]] is represented by 𝑎′. Therefore,
𝐴∗𝛿∗𝛾 = 𝐴∗[[𝑎]] = [[𝐴#𝑎]] = [[𝑎′]] = 𝛿′

∗𝐶∗𝛾 , which shows that diagram (6.10)
commutes as claimed.

It remains only to prove statement (6.12). (This is the only part of the proof
where we use the fact that 𝑀 is a paracompact Hausdorff space.) Suppose 𝑐 ∈
𝐶𝑝(𝒰; 𝒞 ) is arbitrary. After refining the cover if necessary, we can assume that
𝒰 = {𝑈𝛼}𝛼∈𝐴 is locally finite. By [LeeTM, Lemma 4.84], for each 𝛼 ∈ 𝐴 there
exists an open set 𝑊𝛼 such that 𝑊 𝛼 ⊆ 𝑈𝛼 and the collection {𝑊𝛼}𝛼∈𝐴 still covers
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𝑀 . Because the cover 𝒰 is locally finite and the sheaf sequence (6.7) is exact, for
each 𝑥 ∈ 𝑀 we can choose a neighborhood 𝑉𝑥 small enough that the following
properties are satisfied:

(i) If 𝑥 ∈ 𝑈𝛼0 ∩ ⋯ ∩ 𝑈𝛼𝑝 , then 𝑉𝑥 ⊆ 𝑈𝛼0 ∩ ⋯ ∩ 𝑈𝛼𝑝 and there exists a section
𝑏(𝑥)

𝛼0…𝛼𝑝 ∈ ℬ(𝑉𝑥) such that 𝛽(𝑏(𝑥)
𝛼0…𝛼𝑝) = 𝑐𝛼0…𝛼𝑝|𝑉𝑥 .

(ii) If 𝑥 ∈ 𝑊𝛼 , then 𝑉𝑥 ⊆ 𝑊𝛼 .
(iii) If 𝑉𝑥 ∩ 𝑊𝛼 ≠ ∅, then 𝑉𝑥 ⊆ 𝑈𝛼 .

Let 𝒱 be the indexed open cover {𝑉𝑥}𝑥∈𝑀 . By (i), it is a refinement of 𝒰 .
Choose a refining map 𝜌∶ 𝒱 → 𝒰 such that for each 𝑥 ∈ 𝑀 , we have 𝑥 ∈
𝑊𝜌(𝑥) ⊆ 𝑈𝜌(𝑥). For any (𝑝 + 1)-tuple 𝑥0, … , 𝑥𝑝, define

𝑏̃𝑥0…𝑥𝑝 = 𝑏(𝑥0)
𝜌(𝑥0)…𝜌(𝑥𝑝).

Then it is straightforward to check that the cochain 𝑏 ∈ 𝐶𝑝(𝒱 ; ℬ) satisfies 𝛽#𝑏 =
𝜌#𝑐. □

For many sheaves, we can define an important numerical invariant as follows.
Suppose 𝒮 is a sheaf of real or complex vector spaces on a topological space 𝑀 .
If the spaces 𝐻𝑘(𝑀; 𝒮 ) are all finite-dimensional and are nonzero for only finitely
many values of 𝑘, we define the Euler characteristic of 𝓢 to be the integer

𝜒(𝒮 ) = ∑
𝑘

(−1)𝑘 dim𝐻𝑘(𝑀; 𝒮 ).

(The name reflects the analogy with the Euler characteristic of a topological space,
which can be computed as the alternating sum of the ranks of the singular homology
groups [LeeTM, Thm. 13.36].)

Proposition 6.10. Suppose 0 → ℛ → 𝒮 → 𝒯 → 0 is a short exact sequence
of sheaves of vector spaces on a locally compact Hausdorff space 𝑀 . If the Euler
characteristics 𝜒(ℛ), 𝜒(𝒮 ), and 𝜒(𝒯 ) are all defined, then

𝜒(𝒮 ) = 𝜒(ℛ) + 𝜒(𝒯 ).

Proof. By Theorem 6.9, we have a long exact sequence

⋯ → 𝐻𝑘(𝑀; ℛ) → 𝐻𝑘(𝑀; 𝒮 ) → 𝐻𝑘(𝑀; 𝒯 ) → 𝐻𝑘+1(𝑀; ℛ) → ⋯ .

For each 𝑘, let 𝑍𝑘(𝑀; 𝒮 ) denote the kernel of the homomorphism 𝐻𝑘(𝑀; 𝒮 ) →
𝐻𝑘(𝑀; 𝒯 ), which is also the image of 𝐻𝑘(𝑀; ℛ) → 𝐻𝑘(𝑀; 𝒮 ); and define
𝑍𝑘(𝑀; ℛ) and 𝑍𝑘(𝑀; 𝒯 ) similarly. It follows from the rank-nullity law of linear
algebra (which says that for a linear map 𝐹 ∶ 𝑉 → 𝑊 between finite-dimensional
vector spaces, the dimension of 𝑉 is equal to the sum of the dimensions of the
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kernel and the image of 𝐹 ) that

dim𝐻𝑘(𝑀; ℛ) = dim𝑍𝑘(𝑀; ℛ) + dim𝑍𝑘(𝑀; 𝒮 ),
dim𝐻𝑘(𝑀; 𝒮 ) = dim𝑍𝑘(𝑀; 𝒮 ) + dim𝑍𝑘(𝑀; 𝒯 ),
dim𝐻𝑘(𝑀; 𝒯 ) = dim𝑍𝑘(𝑀; 𝒯 ) + dim𝑍𝑘+1(𝑀; ℛ).

Multiplying each of these equations by (−1)𝑘 and summing over 𝑘 gives formulas
for the respective Euler characteristics. When we add the first and last of these
equations and subtract the second, we find that all the terms on the right-hand side
cancel, yielding 𝜒(ℛ) − 𝜒(𝒮 ) + 𝜒(𝒯 ) = 0. □

Acyclic Resolutions
The definition of the sheaf cohomology groups is too abstract to be useful for com-
putations in most circumstances. In this section, we introduce an important tool
that often makes computations straightforward.

Suppose 𝒮 is a sheaf of abelian groups on a topological space 𝑀 . A resolution
of 𝓢 is a (possibly infinite) exact sequence of sheaves of abelian groups and sheaf
morphisms of the form

(6.14) 0 → 𝒮 → 𝒜 0 → 𝒜 1 → 𝒜 2 → ⋯ .

If 𝒮 is a sheaf of real or complex vector spaces, then we require sheaves and mor-
phisms in the same category. Thus, for example, the de Rham sheaf sequence (5.17)
is a resolution of the constant sheaf ℂ.

A sheaf 𝒜 of abelian groups on 𝑀 is said to be acyclic if 𝐻𝑞(𝑀; 𝒜) = 0 for
all 𝑞 ≥ 1. (Of course, 𝐻0(𝑀; 𝒜) ≅ 𝒜(𝑀), so we cannot expect that to be zero
in most cases.) A resolution (6.14) is called an acyclic resolution if each of the
sheaves 𝒜 𝑘 is acyclic for 𝑘 ≥ 0.

The main tool for computing sheaf cohomology groups is the following theo-
rem. It is named the de Rham–Weil theorem because André Weil [Wei52] intro-
duced this technique as a way of proving the de Rham theorem (see Theorem 6.20
below).

Theorem 6.11 (De Rham–Weil). Suppose 𝒮 is a sheaf of abelian groups on a
paracompact Hausdorff space 𝑀 and

(6.15) 0 → 𝒮 𝜄⟶ 𝒜 0 𝑑⟶ 𝒜 1 𝑑⟶ 𝒜 2 → ⋯

is an acyclic resolution of 𝒮 . Then the sequence of global sections

0 → 𝒜 0(𝑀) 𝑑⟶ 𝒜 1(𝑀) 𝑑⟶ 𝒜 2(𝑀) → ⋯
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is a cochain complex, and for each 𝑞, the sheaf cohomology group 𝐻𝑞(𝑀; 𝒮 ) is
isomorphic to the cohomology group 𝐻𝑞(𝒜 ∗(𝑀)) of this complex; more precisely,

𝐻0(𝑀; 𝒮 ) ≅ Ker (𝑑 ∶ 𝒜 0(𝑀) → 𝒜 1(𝑀)), and

𝐻𝑞(𝑀; 𝒮 ) ≅
Ker (𝑑 ∶ 𝒜 𝑞(𝑀) → 𝒜 𝑞+1(𝑀))
Im (𝑑 ∶ 𝒜 𝑞−1(𝑀) → 𝒜 𝑞(𝑀))

for 𝑞 ≥ 1.

If (6.15) is a resolution of sheaves of real or complex vector spaces, then the iso-
morphisms are linear. The isomorphisms satisfy the following naturality property:
Suppose 𝐹 ∶ 𝒮 → 𝒯 is a morphism between sheaves of abelian groups on 𝑀 and
we have a commutative diagram of sheaf homomorphisms in which both horizontal
rows are acyclic resolutions:

(6.16)
0 // 𝒮 𝜄

//

𝐹
��

𝒜 0 𝑑
//

𝜑0
��

𝒜 1 𝑑
//

𝜑1
��

𝒜 2 𝑑
//

𝜑2
��

⋯

0 // 𝒯
𝜄′

// ℬ0
𝑑′

// ℬ1
𝑑′

// ℬ2
𝑑′

// ⋯ .

Then for each 𝑞 ≥ 0, the following diagram commutes:

(6.17)
𝐻𝑞(𝑀; 𝒮 ) ≅

//

𝐹∗
��

𝐻𝑞(𝒜 ∗(𝑀))
𝜑𝑞

∗��

𝐻𝑞(𝑀; 𝒯 ) ≅
// 𝐻𝑞(ℬ∗(𝑀)),

where 𝜑𝑞
∗ is the cohomology homomorphism induced by the global section homo-

morphisms 𝜑𝑞 ∶ 𝒜 𝑞(𝑀) → ℬ𝑞(𝑀).

Proof. Given an acyclic resolution (6.15), the fact that the global section sequence
is a cochain complex follows from Lemma 5.20, and the claim about 𝐻0(𝑀; 𝒮 )
follows from Proposition 5.24. From now on, we assume 𝑞 ≥ 1.

For each 𝑘 ≥ 0, define a sheaf 𝒵 𝑘 by

𝒵 𝑘 = Ker (𝑑 ∶ 𝒜 𝑘 → 𝒜 𝑘+1).

This is a subsheaf of 𝒜 𝑘 by Exercise 5.17, but not necessarily acyclic. In particular,
𝒵 0 is isomorphic to 𝒮 by Proposition 5.22.

For each 𝑘 ≥ 0, we get a short exact sequence

0 → 𝒵 𝑘 ↪ 𝒜 𝑘 𝑑⟶ 𝒵 𝑘+1 → 0.

The associated long exact sequence reads in part

𝐻𝑞−1(𝑀; 𝒜 𝑘) → 𝐻𝑞−1(𝑀; 𝒵 𝑘+1) → 𝐻𝑞(𝑀; 𝒵 𝑘) → 𝐻𝑞(𝑀; 𝒜 𝑘).
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When 𝑞 > 1, the groups on both ends are zero because 𝒜 𝑘 is acyclic; therefore we
have isomorphisms

(6.18) 𝐻𝑞−1(𝑀; 𝒵 𝑘+1) ≅ 𝐻𝑞(𝑀; 𝒵 𝑘) for 𝑞 > 1.

To prove the theorem, we proceed as follows. Assuming 𝑞 > 1, we apply (6.18)
repeatedly to conclude

𝐻𝑞(𝑀; 𝒮 ) ≅ 𝐻𝑞(𝑀; 𝒵 0)
≅ 𝐻𝑞−1(𝑀; 𝒵 1)
≅ 𝐻𝑞−2(𝑀; 𝒵 2)
⋮

≅ 𝐻1(𝑀; 𝒵 𝑞−1),

and the same conclusion holds trivially when 𝑞 = 1. At this point, we can no longer
use (6.18). Instead, we have the exact sequence

𝐻0(𝑀; 𝒜 𝑞−1) 𝑑⟶ 𝐻0(𝑀; 𝒵 𝑞)
𝛿∗⟶ 𝐻1(𝑀; 𝒵 𝑞−1) → 𝐻1(𝑀; 𝒜 𝑞−1).

Here the right-hand group is zero, which means that 𝛿∗ is surjective, and exactness
implies

𝐻1(𝑀; 𝒵 𝑞−1) ≅ 𝐻0(𝑀; 𝒵 𝑞)
Ker 𝛿∗

≅ 𝒵 𝑞(𝑀)
Im 𝑑 ≅

Ker (𝑑 ∶ 𝒜 𝑞(𝑀) → 𝒜 𝑞+1(𝑀))
Im (𝑑 ∶ 𝒜 𝑞−1(𝑀) → 𝒜 𝑞(𝑀))

,

which is what we needed to prove. In the case of sheaves of vector spaces, all the
maps above are linear.

To prove the naturality claim, suppose we have a commutative diagram of the
form (6.16). For each 𝑘, let 𝒲 𝑘 ⊆ ℬ𝑘 be the kernel of 𝑑′ ∶ ℬ𝑘 → ℬ𝑘+1. Since
(6.16) commutes, 𝜑𝑘 maps 𝒵 𝑘 to 𝒲 𝑘 for each 𝑘, and we have commutative dia-
grams of sheaf morphisms:

(6.19)
0 // 𝒵 𝑘 � � //

𝜑𝑘
��

𝒜 𝑘 //

𝜑𝑘
��

𝒵 𝑘+1 //

𝜑𝑘+1
��

0

0 // 𝒲 𝑘 � � // ℬ𝑘 // 𝒲 𝑘+1 // 0,

in which the first and third vertical maps are understood to be restricted to the ap-
propriate subsheaves. Because the isomorphisms 𝐻𝑞(𝑀; 𝒮 ) ≅ 𝐻𝑞(𝒜 ∗(𝑀)) and
𝐻𝑞(𝑀; 𝒯 ) ≅ 𝐻𝑞(ℬ∗(𝑀)) are obtained as compositions of (restrictions of) con-
necting homomorphisms in the long exact sequences associated with the rows of
(6.19), the commutativity of (6.17) follows by repeatedly applying the naturality
result of Theorem 6.9. □
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Fine Sheaves

To apply the de Rham–Weil theorem, we need to have a good supply of acyclic
sheaves. We start with an important example.

Example 6.12 (Sheaves of Smooth Forms Are Acyclic). Let 𝑀 be a smooth
manifold. We will show that each sheaf ℰ𝑘 of smooth complex-valued 𝑘-forms
is acyclic.

To prove this claim, it suffices to show that 𝐻𝑝(𝒰; ℰ𝑘) = 0 for every open
cover 𝒰 of 𝑀 . Let 𝒰 = {𝑈𝛼}𝛼∈𝐴 be an arbitrary open cover, and choose a
smooth partition of unity {𝜑𝛼}𝛼∈𝐴 subordinate to 𝒰 . Define a homomorphism
𝜃 ∶ 𝐶𝑝(𝒰; ℰ𝑘) → 𝐶𝑝−1(𝒰; ℰ𝑘) by

(6.20) (𝜃𝑐)𝛼0…𝛼𝑝−1 = ∑
𝛽∈𝐴

𝜑𝛽𝑐𝛽𝛼0…𝛼𝑝−1 ,

where the 𝑘-form 𝜑𝛽𝑐𝛽𝛼0…𝛼𝑝−1 is extended to all of 𝑈𝛼0 ∩ ⋯ ∩ 𝑈𝛼𝑝−1 by defining it
to be zero outside the support of 𝜑𝛽 . Because this is a finite sum of smooth 𝑘-forms
in a neighborhood of each point, it defines a smooth form on 𝑈𝛼0 ∩ ⋯ ∩ 𝑈𝛼𝑝−1 and
thus a (𝑝 − 1)-cochain. We will show that 𝜃 satisfies a cochain homotopy formula
𝛿𝜃 + 𝜃𝛿 = Id𝐶𝑝(𝒰;ℰ𝑘), from which it follows that every cocycle in 𝐶𝑝(𝒰; ℰ𝑘) is a
coboundary, thus proving the claim.

To verify the cochain homotopy formula, we compute

(𝛿𝜃𝑐)𝛼0…𝛼𝑝 =
𝑝

∑
𝑗=0

(−1)𝑗(𝜃𝑐)𝛼0…𝛼𝑗…𝛼𝑝

=
𝑝

∑
𝑗=0

∑
𝛽

(−1)𝑗𝜑𝛽𝑐𝛽𝛼0…𝛼𝑗…𝛼𝑝 ,

(𝜃𝛿𝑐)𝛼0…𝛼𝑝 = ∑
𝛽

𝜑𝛽(𝛿𝑐)𝛽𝛼0…𝛼𝑝

= ∑
𝛽

𝜑𝛽𝑐 ̂𝛽𝛼0…𝛼𝑝 + ∑
𝛽

𝑝

∑
𝑗=0

(−1)𝑗+1𝜑𝛽𝑐𝛽𝛼0…𝛼𝑗…𝛼𝑝 .

When these expressions are added together, everything cancels except the first sum
in the last line, which is equal to 𝑐𝛼0…𝛼𝑝 because ∑𝛽 𝜑𝛽 ≡ 1. //

The same argument generalizes in an obvious way to any sheaf of smooth sec-
tions of a smooth vector bundle on a smooth manifold, and to any sheaf of con-
tinuous sections of a topological vector bundle on a paracompact Hausdorff space
(which is the type of space on which partitions of unity can be constructed; see
[LeeTM, Thm. 4.85]). Since the purpose of sheaf cohomology is to determine
when local objects can be patched together to form global ones, you should think
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of these phenomena as expressions of the fact that there are no obstructions to patch-
ing things together when partitions of unity are available.

The preceding example can be generalized significantly. Given a sheaf 𝒮 of
abelian groups on a topological space 𝑀 and a locally finite indexed open cover
𝒰 = {𝑈𝛽}𝛽∈𝐵 , we define a sheaf partition of unity subordinate to 𝓤 to be an
indexed collection of sheaf morphisms 𝜂𝛽 ∶ 𝒮 → 𝒮 satisfying the following two
conditions:

(i) For each 𝛽 ∈ 𝐵, the support of 𝜂𝛽 is contained in 𝑈𝛽 (where the support
of a sheaf morphism 𝐹 ∶ 𝒮 → 𝒯 is the closure of the set of points 𝑥 ∈ 𝑀
such that the stalk homomorphism 𝐹𝑥 is nonzero).

(ii) For each 𝑥, ∑𝛽∈𝐵(𝜂𝛽)𝑥 = Id𝒮𝑥 .
(The fact that the open cover is locally finite ensures that each point has a neighbor-
hood on which 𝜂𝛽 = 0 for all but finitely many 𝛽, so the sum in (ii) has only finitely
many nonzero terms.) A sheaf 𝒮 is said to be fine if for every locally finite open
cover there exists a sheaf partition of unity subordinate to it. To avoid confusion,
we will refer to a partition of unity in the usual topological sense (a collection of
continuous functions taking values in [0, 1] whose sum is 1 and whose supports are
locally finite) as a topological partition of unity; if the underlying space is a smooth
manifold and each of the functions is smooth, it will be called a smooth partition
of unity.
Example 6.13 (Fine Sheaves).

(a) On a smooth manifold 𝑀 , the sheaf ℰ of smooth complex-valued func-
tions is fine: given a locally finite open cover 𝒰 = {𝑈𝛽}𝛽∈𝐵 , let {𝜓𝛽}𝛽∈𝐵
be a subordinate smooth partition of unity, and define 𝜂𝛽 ∶ ℰ → ℰ by
sending 𝑓 ∈ ℰ(𝑈) to 𝜓𝛽𝑓 . By the same argument, every sheaf of ℰ -
modules on 𝑀 is fine, as is every sheaf of modules over the sheaf ℰℝ of
real-valued smooth functions. The most important examples are sheaves
of sections of smooth vector bundles.

(b) If 𝑀 is a paracompact Hausdorff space, the sheaf 𝒞 of continuous com-
plex-valued functions is fine by essentially the same argument, as is any
sheaf of 𝒞 -modules on 𝑀 .

(c) Every skyscraper sheaf is fine. Let 𝐺𝑝 be a skyscraper sheaf on a topo-
logical space 𝑀 supported at 𝑝 ∈ 𝑀 . Given a locally finite open cover
{𝑈𝛼}𝛼∈𝐴 of 𝑀 , choose one index 𝛽 ∈ 𝐴 such that 𝑝 ∈ 𝑈𝛽 , and define 𝜂𝛽
to be the identity morphism and 𝜂𝛼 = 0 for all 𝛼 ≠ 𝛽. //

On the other hand, constant sheaves and sheaves of 𝒪-modules are almost never
fine (see Problem 6-1).
Proposition 6.14. If 𝒮 is a fine sheaf on a paracompact Hausdorff space 𝑀 , then
𝒮 is acyclic.
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Proof. Let 𝒮 be such a sheaf. Since every open cover of 𝑀 has a locally finite
open refinement, to prove the proposition it suffices to show that 𝐻𝑘(𝒰; 𝒮 ) = 0
for every 𝑘 ≥ 1 and every locally finite open cover 𝒰 . Given a locally finite open
cover 𝒰 = {𝑈𝛽}𝛽∈𝐵 , let {𝜂𝛽}𝛽∈𝐵 be a sheaf partition of unity subordinate to it. For
each of the sheaf morphisms 𝜂𝛽 and any open subset 𝑉 ⊆ 𝑀 , the homomorphism
𝜂𝛽 ∶ 𝒮 (𝑉 ∩𝑈𝛽) → 𝒮 (𝑉 ∩𝑈𝛽) extends to a homomorphism ̃𝜂𝛽 ∶ 𝒮 (𝑉 ∩𝑈𝛽) → 𝒮 (𝑉 )
by requiring that

̃𝜂𝛽(𝑐)|𝑉 ∩𝑈𝛽
= 𝜂𝛽(𝑐) and ̃𝜂𝛽(𝑐)|𝑉 ∖supp 𝜂𝛽

= 0;

the gluing and locality properties of sheaves guarantee that this is uniquely defined.
For each 𝑝 ≥ 1, define a map 𝜃 ∶ 𝐶𝑝(𝒰; 𝒮 ) → 𝐶𝑝−1(𝒰; 𝒮 ) by analogy with

(6.20):
(𝜃𝑐)𝛼0…𝛼𝑝−1 = ∑

𝛽∈𝐵
̃𝜂𝛽(𝑐𝛽𝛼0…𝛼𝑝−1),

where we interpret the sum on the right-hand side by noting that 𝑈𝛼0 ∩ ⋯ ∩ 𝑈𝛼𝑝−1
has an open cover such that only finitely many terms of this sum are nonzero on
each open set of the cover, and the gluing property ensures that these finite sums
patch together to determine an element of 𝒮 (𝑈𝛼0 ∩⋯∩𝑈𝛼𝑝−1). The rest of the proof
of the proposition is exactly like the argument in Example 6.12. □

In complexmanifold theory, the acyclic sheaves that will concern us are sheaves
of ℰ -modules and skyscraper sheaves.

Sheaf Cohomology and Singular Cohomology
For the next result about sheaf cohomology, we need a few more definitions. We
begin with a very brief review of singular homology and cohomology theory.
For much more detail on the subject, consult any algebraic topology text such as
[Hat02] or [Mun84].

Singular Homology

For a nonnegative integer 𝑘, the standard 𝒌-simplex Δ𝑘 is the convex hull of
the 𝑘 + 1 points {𝑒0, 𝑒1, … , 𝑒𝑘} in ℝ𝑘, where 𝑒0 = 0 and 𝑒𝑗 is the 𝑗th standard basis
vector for 𝑗 ≥ 1. Since every point in the convex hull can be written as a linear
combination ∑𝑘

𝑗=0 𝑡𝑗𝑒𝑗 with ∑𝑘
𝑗=0 𝑡𝑗 = 1, we can express Δ𝑘 more explicitly as

Δ𝑘 = {(𝑡1, … , 𝑡𝑘) ∈ ℝ𝑘 ∶ 0 ≤ 𝑡𝑗 ≤ 1 and
𝑘

∑
𝑗=1

𝑡𝑗 ≤ 1}.

Let 𝑀 be a topological space. A singular 𝒌-simplex in 𝑀 is a continuous map
𝜎 ∶ Δ𝑘 → 𝑀 . The free abelian group on the set of all singular 𝑘-simplices is called
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the singular chain group in dimension 𝑘; we will denote it by Sing𝑘(𝑀). An ele-
ment of that group, called a singular 𝒌-chain, is a finite formal linear combination
of singular 𝑘-simplices with integer coefficients.

The boundary of a singular 𝑘-simplex 𝜎 is the singular (𝑘−1)-chain 𝜕𝜎 defined
by

𝜕𝜎 =
𝑘

∑
𝑖=0

(−1)𝑖𝜎 ∘ 𝐹𝑖,𝑘,

where 𝐹𝑖,𝑘 ∶ Δ𝑘−1 → Δ𝑘, called the 𝑖th face map in dimension 𝑘, is the restriction
of the unique affine map from ℝ𝑘−1 to ℝ𝑘 that sends the vertices 𝑒0, … , 𝑒𝑘−1 to
𝑒0, … , 𝑒𝑖, … , 𝑒𝑘, respectively, so it maps Δ𝑘−1 homeomorphically onto the face of
Δ𝑘 opposite 𝑒𝑖. The boundary operator extends by linearity to a group homomor-
phism 𝜕 ∶ Sing𝑘(𝑀) → Sing𝑘−1(𝑀). A computation shows that 𝜕 ∘ 𝜕 = 0, and
therefore it makes sense to define the 𝒌th singular homology group of𝑴 by

𝐻𝑘(𝑀) =
Ker (𝜕 ∶ Sing𝑘(𝑀) → Sing𝑘−1(𝑀))
Im (𝜕 ∶ Sing𝑘+1(𝑀) → Sing𝑘(𝑀))

.

A singular 𝑘-chain 𝑐 is called a cycle if it satisfies 𝜕𝑐 = 0, and a boundary if
𝑐 = 𝜕𝑏 for some (𝑘 − 1)-chain 𝑏. Every cycle 𝑐 determines an element of 𝐻𝑘(𝑀),
called its homology class and denoted by [𝑐]; any other cycle differing from 𝑐 by a
boundary represents the same homology class. Two cycles that differ by a boundary
are said to be homologous.

We need the following basic fact about singular homology of manifolds. Sup-
pose 𝑀 is a compact, connected, orientable smooth 𝑛-manifold. Every such mani-
fold admits a smooth triangulation, which is a singular 𝑛-cycle 𝑐 = ∑𝑗 𝜎𝑗 with the
property that each 𝜎𝑗 ∶ Δ𝑛 → 𝑀 is a smooth orientation-preserving embedding,
and the images of two distinct 𝜎𝑗’s intersect only along their boundaries if at all.
(See [Mun66, Thm. 10.6] for a proof.) The cohomology class of 𝑐 depends only on
the orientation of 𝑀 ; it is denoted by [𝑀] and called the fundamental class of𝑴 .
For a proof of the following proposition, see [Mun84, Cor. 65.3] or [Hat02, Thm.
3.26]).

Proposition 6.15. Suppose 𝑀 is a compact, connected, oriented smooth 𝑛-dimen-
sional manifold, and [𝑀] is its fundamental class. Then 𝐻𝑛(𝑀) is an infinite cyclic
group generated by [𝑀].

Singular Cohomology

If 𝐺 is an abelian group, a singular 𝒌-cochain in 𝑴 with coefficients in 𝑮
is a group homomorphism 𝜑∶ Sing𝑘(𝑀) → 𝐺. The set of all such cochains, de-
noted by Sing𝑘(𝑀; 𝐺) = Hom (Sing𝑘(𝑀), 𝐺), is a group under pointwise addi-
tion: (𝜑 + 𝜑′)(𝑐) = 𝜑(𝑐) + 𝜑′(𝑐). If in addition 𝐺 is a real or complex vector
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space, then Sing𝑘(𝑀; 𝐺) is a vector space under pointwise scalar multiplication. A
singular cochain is uniquely determined by its action on each singular simplex.

The dual of the boundary map is a group homomorphism 𝛿 ∶ Sing𝑘(𝑀; 𝐺) →
Sing𝑘+1(𝑀; 𝐺) called the coboundary operator; it is defined by

(𝛿𝜑)(𝑐) = 𝜑(𝜕𝑐).

A singular cochain 𝜑 satisfying 𝛿𝜑 = 0 is called a (singular) cocycle, and one
satisfying 𝜑 = 𝛿𝜓 for some cochain 𝜓 is a (singular) coboundary. The fact that
𝜕 ∘ 𝜕 = 0 implies immediately that 𝛿 ∘ 𝛿 = 0, so every coboundary is a cocycle.
Thus we can form the following quotient space, called the 𝒌th singular cohomology
group of𝑴 with coefficients in 𝑮:

𝐻𝑘
Sing(𝑀; 𝐺) =

Ker (𝛿 ∶ Sing𝑘(𝑀; 𝐺) → Sing𝑘+1(𝑀; 𝐺))
Im (𝛿 ∶ Sing𝑘−1(𝑀; 𝐺) → Sing𝑘(𝑀; 𝐺))

.

If 𝐺 is a real or complex vector space, then so is 𝐻𝑘
Sing(𝑀; 𝐺).

Every homomorphism 𝐹 ∶ 𝐺 → 𝐻 between abelian groups induces a homo-
morphism 𝐹# ∶ Sing𝑘(𝑀; 𝐺) → Sing𝑘(𝑀; 𝐻) by 𝐹#(𝜑)(𝑐) = 𝐹 (𝜑(𝑐)) for each
singular cochain 𝜑 and singular chain 𝑐. This homomorphism commutes with the
coboundary operators, so it defines a cochain map and thus descends to a homomor-
phism 𝐹∗ ∶ 𝐻𝑘

Sing(𝑀; 𝐺) → 𝐻𝑘
Sing(𝑀; 𝐻), called a coefficient homomorphism.

For a fixed space 𝑀 , the coefficient homomorphisms satisfy

(Id𝐺)∗ = Id𝐻𝑘
Sing(𝑀;𝐺) and (𝐹 ∘ 𝐹 ′)∗ = 𝐹∗ ∘ 𝐹 ′

∗ ,

so the assignment 𝐺 ↦ 𝐻𝑘
Sing(𝑀; 𝐺), 𝐹 ↦ 𝐹∗ is a covariant functor from the

category of abelian groups to itself, with a similar statement for the category of real
or complex vector spaces.

It is a standard result in algebraic topology that the singular homology and
cohomology groups are homotopy invariants. One important consequence of this
fact is that if 𝑀 is a contractible space, then its singular cohomology groups agree
with those of a one-point space, namely 𝐻0

Sing(𝑀; 𝐺) ≅ 𝐺 and 𝐻𝑘
Sing(𝑀; 𝐺) = 0

for 𝑘 > 0.
The natural action of singular cochains on singular chains defines a bilinear

map from Sing𝑘(𝑀; 𝐺) ×Sing𝑘(𝑀) to 𝐺, carrying (𝜑, 𝑐) to 𝜑(𝑐). This descends to
a bilinear map

𝐻𝑘
Sing(𝑀; 𝐺) × 𝐻𝑘(𝑀) → 𝐺,

called the Kronecker pairing and denoted by ⟨[𝜑], [𝑐]⟩ = 𝜑(𝑐). To see that this is
well-defined, note that because 𝑐 is a cycle, if 𝜑 = 𝛿𝜓 is a coboundary we have
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⟨[𝜑], [𝑐]⟩ = ⟨[𝛿𝜓], [𝑐]⟩ = (𝛿𝜓)(𝑐) = 𝜓(𝜕𝑐) = 0; and similarly if 𝑐 is a boundary
then ⟨[𝜑], [𝑐]⟩ = 0. Using this pairing, we define the Kronecker homomorphism

𝜅 ∶ 𝐻𝑘
Sing(𝑀; 𝐺) → Hom(𝐻𝑘(𝑀), 𝐺)

by
𝜅([𝜑])([𝑐]) = ⟨[𝜑], [𝑐]⟩.

The singular cohomology groups of a space contain exactly the same informa-
tion as the homology groups, but arranged in a different way. The precise state-
ment of this fact, called the universal coefficient theorem ([Hat02, Chap. 3] or
[Mun84, §53]), gives explicit formulas for the cohomology groups in terms of the
homology groups. We do not need the full strength of that theorem, but we will
need the following two consequences.

Proposition 6.16 (Universal Coefficient Theorem, Special Case). Let 𝑀 be
a topological space and 𝐺 be an abelian group, and let 𝜅 ∶ 𝐻𝑘

Sing(𝑀; 𝐺) →
Hom(𝐻𝑘(𝑀); 𝐺) be the Kronecker homomorphism in degree 𝑘.

(a) 𝜅 is surjective.
(b) If 𝐺 is a field, then 𝜅 is a vector space isomorphism.
(c) If 𝐻𝑘−1(𝑀) is a free abelian group, then 𝜅 is a group isomorphism.

The following consequence of the universal coefficient theorem is proved in
[Hat02, Cor. 3.4] or [Mun84, Thm. 45.5].

Proposition 6.17 (Homology Isomorphisms Yield Cohomology Isomorphisms).
Suppose 𝐴∗ and 𝐵∗ are chain complexes of free abelian groups and 𝜑∶ 𝐴∗ → 𝐵∗
is a chain map, meaning that the following diagram commutes:

⋯ 𝜕
// 𝐴𝑘+1

𝜕
//

𝜑
��

𝐴𝑘
𝜕

//

𝜑
��

𝐴𝑘−1
𝜕

//

𝜑
��

⋯

⋯ 𝜕
// 𝐵𝑘+1 𝜕

// 𝐵𝑘 𝜕
// 𝐵𝑘−1 𝜕

// ⋯ .

Let 𝐺 be an abelian group or a real or complex vector space, and define 𝐴𝑘 =
Hom(𝐴𝑘, 𝐺) and 𝐵𝑘 = Hom(𝐵𝑘, 𝐺). Consider the diagram

⋯ 𝛿
// 𝐴𝑘−1 𝛿

// 𝐴𝑘 𝛿
// 𝐴𝑘+1 𝛿

// ⋯

⋯ 𝛿
// 𝐵𝑘−1

𝛿
//

𝜑#
OO

𝐵𝑘
𝛿

//

𝜑#
OO

𝐵𝑘+1
𝛿

//

𝜑#
OO

⋯ ,
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where (𝜑#𝛾)(𝑐) = 𝛾(𝜑𝑐), and (𝛿𝛾)(𝑐) = 𝛾(𝜕𝑐). If the induced homology homo-
morphisms 𝜑∗ ∶ 𝐻𝑘(𝐴∗) → 𝐻𝑘(𝐵∗) are all isomorphisms, then so are the induced
cohomology homomorphisms 𝜑∗ ∶ 𝐻𝑘(𝐵∗) → 𝐻𝑘(𝐴∗).

Cohomology of Constant Sheaves

The next theorem shows that for a class of spaces that includes all manifolds, the
sheaf cohomology groups of a constant sheaf agree with the singular cohomology
groups. We need one last definition before introducing the theorem: a topological
space is said to be locally contractible if it has a basis of contractible open subsets.
For example, every topological manifold is locally contractible.

Theorem 6.18 (Cohomology of Constant Sheaves). Suppose 𝑀 is a locally con-
tractible paracompact Hausdorff space, 𝐺 is an abelian group, and 𝐺 is the cor-
responding constant sheaf on 𝑀 . Then for each 𝑘 ≥ 0, 𝐻𝑘(𝑀; 𝐺) is isomorphic
to 𝐻𝑘

Sing(𝑀; 𝐺). If 𝐺 is a real or complex vector space, then the isomorphism is
linear. The isomorphisms are natural in the following sense: if 𝐹 ∶ 𝐺 → 𝐻 is a
homomorphism of abelian groups (or a linear map between real or complex vec-
tor spaces) and 𝐹 ∶ 𝐺 → 𝐻 is the corresponding morphism between the constant
sheaves as in Example 5.5(d), then the following diagram commutes:

(6.21)

𝐻𝑘(𝑀; 𝐺) ≅
//

𝐹 ∗
��

𝐻𝑘
Sing(𝑀; 𝐺)

𝐹∗
��

𝐻𝑘(𝑀; 𝐻) ≅
// 𝐻𝑘

Sing(𝑀; 𝐻).

Proof. Let 𝐺 be fixed. For each 𝑘 ≥ 0, we define a presheaf Sing𝑘 on 𝑀 by 𝑈 ↦
Sing𝑘(𝑈; 𝐺), the group of singular 𝑘-cochains on 𝑈 , with restriction maps 𝑟𝑈

𝑉 given
by restricting cochains to singular chains in 𝑉 . Let Sing𝑘,+ be its sheafification.
Because the singular coboundary operator 𝛿 commutes with restrictions, it induces
a presheaf morphism 𝛿 ∶ Sing𝑘 → Sing𝑘+1 for each 𝑘, and corresponding sheaf
morphisms 𝛿+ ∶ Sing𝑘,+ → Sing𝑘+1,+.

Consider the following sequence of sheaves on 𝑀 :

(6.22) 0 → 𝐺 𝜄⟶ Sing0,+ 𝛿+
⟶ Sing1,+ 𝛿+

⟶ ⋯ ,

where 𝜄 is obtained from the presheaf morphism that maps a locally constant func-
tion 𝑓 ∶ 𝑈 → 𝐺 to the 0-cochain that assigns the value 𝑓(𝜎(0)) to each singular
0-simplex 𝜎 ∶ Δ0 → 𝑈 . We will show that this sequence is an acyclic resolution
of 𝐺.
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Exactness of the sequence at 𝐺 (i.e., injectivity of 𝜄) is immediate. To prove
exactness at Sing0,+, note that a singular 0-chain 𝑐 ∈ Sing0(𝑈; 𝐺) is an arbitrary
function from points in 𝑈 to 𝐺, and it satisfies 𝛿𝑐 = 0 if and only if 𝑐(𝑥) = 𝑐(𝑦) for
all 𝑥 and 𝑦 in the same path component of 𝑈 . Since we are assuming 𝑀 is locally
contractible, it is in particular locally path-connected, so this is the same as saying
𝑐 is locally constant. This means that a cochain 𝜑 ∈ Sing0(𝑈; 𝐺) satisfies 𝛿𝜑 = 0 if
and only if it is locally constant, so exactness already holds at Sing0 on the presheaf
level.

To see that the sequence is exact at Sing𝑘,+ for 𝑘 ≥ 1, observe first that 𝛿+∘𝛿+ =
0 because 𝛿 ∘ 𝛿 = 0. Suppose Φ ∈ Sing𝑘,+(𝑈; 𝐺) satisfies 𝛿+Φ = 0. For each
𝑥 ∈ 𝑈 , Φ(𝑥) is the germ of a 𝑘-cochain 𝜑 on a neighborhood 𝑉 of 𝑥 satisfying
𝛿𝜑 = 0. Since 𝑀 is locally contractible, we can shrink 𝑉 if necessary so that it
is contractible. Since 𝐻𝑘

Sing(𝑉 ; 𝐺) = 0, it follows that 𝜑 is equal to 𝛿𝛽 for some
𝛽 ∈ Sing𝑘−1(𝑉 ; 𝐺); so the sheaf sequence is exact by Lemma 5.20.

To see that the sheaves Sing𝑘,+ are acyclic, we will show they are fine. Let
𝒰 = {𝑈𝛼}𝛼∈𝐴 be any locally finite open cover of 𝑀 , and let {𝜓𝛼} be a sub-
ordinate topological partition of unity. Define another (discontinuous) partition
of unity {Ψ𝛼} subordinate to 𝒰 by choosing a well-ordering of the index set 𝐴
and letting Ψ𝛼(𝑥) = 1 if 𝛼 is the least index for which 𝜓𝛼(𝑥) > 0, and otherwise
Ψ𝛼(𝑥) = 0. Note that the support of Ψ𝛼 is contained in that of 𝜓𝛼 and thus in 𝑈𝛼 , and
∑𝛼 Ψ𝛼(𝑥) = 1 for all 𝑥 because exactly one term in the sum is equal to 1 and the rest
are zero. Then we define a collection of presheaf morphisms 𝜂𝛼 ∶ Sing𝑘 → Sing𝑘

by

𝜂𝛼(𝜑)(𝜎) = Ψ𝛼(𝜎(0))𝜑(𝜎)

for any 𝜑 ∈ Sing𝑘(𝑈; 𝐺) and any singular 𝑘-simplex 𝜎 ∶ Δ𝑘 → 𝑈 ; here 𝜎(0) is the
image of 0 ∈ Δ𝑘 under themap 𝜎. The associated sheafmorphisms 𝜂+

𝛼 ∶ Sing𝑘,+ →
Sing𝑘,+ form a sheaf partition of unity subordinate to 𝒰 , so Sing𝑘,+ is fine.

It follows from the de Rham–Weil theorem that for each 𝑘 ≥ 1,

𝐻𝑘(𝑀; 𝐺) ≅
Ker (𝛿+ ∶ Sing𝑘,+(𝑀; 𝐺) → Sing𝑘+1,+(𝑀; 𝐺))
Im (𝛿+ ∶ Sing𝑘−1,+(𝑀; 𝐺) → Sing𝑘,+(𝑀; 𝐺))

.

Let 𝐻𝑘
Sing+(𝑀; 𝐺) denote the quotient group on the right-hand side of this equa-

tion. The last step of the proof is to show that 𝐻𝑘
Sing+𝑀; 𝐺) is isomorphic to

𝐻𝑘
Sing(𝑀; 𝐺), which is given by the same formula but with Sing∗ and 𝛿 in place

of Sing∗,+ and 𝛿+.
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Consider the following commutative diagram of group homomorphisms:

(6.23)

0

��

0

��

0

��

0 // Sing0
0(𝑀; 𝐺)

𝛿
��

� � // Sing0(𝑀; 𝐺)

𝛿
��

𝜃
// Sing0,+(𝑀; 𝐺)

𝛿+
��

// 0

0 // Sing1
0(𝑀; 𝐺)

𝛿
��

� � // Sing1(𝑀; 𝐺)

𝛿
��

𝜃
// Sing1,+(𝑀; 𝐺)

𝛿+
��

// 0

0 // Sing2
0(𝑀; 𝐺)

��

� � // Sing2(𝑀; 𝐺)

��

𝜃
// Sing2,+(𝑀; 𝐺)

��

// 0,

⋮ ⋮ ⋮

where for each 𝑘, Sing𝑘
0(𝑀; 𝐺) is the subgroup of cochains 𝜑 ∈ Sing𝑘(𝑀; 𝐺) that

are locally zero, meaning there is some open cover 𝒰 = {𝑈𝛼}𝛼∈𝐴 such that 𝜑|𝑈𝛼 =
0 for every 𝛼; and 𝜃 = 𝜃Sing𝑘 is the global section map associated with the canonical
presheaf morphism 𝜃Sing𝑘 ∶ Sing𝑘 → Sing𝑘,+ given by Theorem 5.9. We begin by
showing that each horizontal row is exact.

Exactness at Sing𝑘
0(𝑀; 𝐺) and Sing𝑘(𝑀; 𝐺) follows easily from the definitions.

To see that 𝜃 is surjective, suppose Φ ∈ Sing𝑘,+(𝑀; 𝐺) is arbitrary. By Lemma
5.8, there is an open cover 𝒰 = {𝑈𝛼}𝛼∈𝐴 of 𝑀 and for each 𝛼 a cochain 𝜑𝛼 ∈
Sing𝑘(𝑈𝛼; 𝐺) such that Φ|𝑈𝛼 = 𝜑+

𝛼 . By passing to a refinement, we may assume
the cover is locally finite. It is important to note that these cochains might not agree
on overlaps: since the presheaf Sing𝑘 does not satisfy the locality property, cochains
with the same germs at each point need not agree. Thus we need a more delicate
argument.

Let {𝜓𝛼}𝛼∈𝐴 be a topological partition of unity subordinate to the cover 𝒰 . For
each 𝑥 ∈ 𝑀 , we wish to choose a neighborhood 𝑉𝑥 of 𝑥 satisfying the following
properties:

(i) The set 𝐴(𝑥) = {𝛼 ∈ 𝐴 ∶ 𝑉𝑥 ∩ supp𝜓𝛼 ≠ ∅} is finite.
(ii) 𝑉𝑥 ⊆ 𝑈𝛼 for each 𝛼 ∈ 𝐴(𝑥).
(iii) The restrictions 𝜑𝛼|𝑉𝑥 are all equal for 𝛼 ∈ 𝐴(𝑥).
(iv) 𝑉𝑥 ∩ supp𝜓𝛽 = ∅ if 𝛽 ∉ 𝐴(𝑥).

To see that this is possible, note that the existence of a neighborhood 𝑉𝑥 satisfying
(i) is just a restatement of the local finiteness of the cover {supp𝜓𝛼}. Then we can
shrink 𝑉𝑥 successively to satisfy the other three conditions: (ii) because ⋂𝛼∈𝐴(𝑥) 𝑈𝛼
is an open set containing 𝑥; (iii) because the cochains 𝜑𝛼 all have the same germ at
𝑥 for 𝛼 ∈ 𝐴(𝑥); and (iv) because ⋃𝛽∉𝐴(𝑥) supp𝜓𝛽 is closed in 𝑀 by local finiteness
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[LeeTM, Lemma 4.75]. For each 𝑥 ∈ 𝑀 , let 𝜑̃𝑥 ∈ Sing𝑘(𝑉𝑥; 𝐺) be the cochain
that is the common value of 𝜑𝛼|𝑉𝑥 for all 𝛼 ∈ 𝐴(𝑥).

Now suppose 𝑥 and 𝑦 are points of 𝑀 such that 𝑉𝑥 ∩ 𝑉𝑦 ≠ ∅, and let 𝑧 be a
point in 𝑉𝑥 ∩ 𝑉𝑦. There is an index 𝛼 ∈ 𝐴 such that 𝑧 ∈ supp𝜓𝛼 , and then property
(iv) ensures that 𝛼 lies in both 𝐴(𝑥) and 𝐴(𝑦). This implies that

(6.24) 𝜑̃𝑥|𝑉𝑥∩𝑉𝑦 = 𝜑𝛼|𝑉𝑥∩𝑉𝑦 = 𝜑̃𝑦|𝑉𝑥∩𝑉𝑦 .

Thus we can define a global cochain 𝜑̃ ∈ Sing𝑘(𝑀; 𝐺) as follows: for each singular
𝑘-simplex 𝜎 in 𝑀 , we set

𝜑̃(𝜎) =
{

𝜑̃𝑥(𝜎) if 𝜎(Δ𝑘) ⊆ 𝑉𝑥 for some 𝑥 ∈ 𝑀 ,
0 if 𝜎(Δ𝑘) is not contained in any 𝑉𝑥,

and (6.24) ensures that this is well defined. It follows that 𝜃(𝜑̃) = Φ, showing that
𝜃 ∶ Sing𝑘(𝑀; 𝐺) → Sing𝑘,+(𝑀; 𝐺) is surjective for each 𝑘.

The zigzag lemma applied to (6.23) yields a long exact sequence which reads
in part

𝐻𝑘
0 (𝑀; 𝐺) → 𝐻𝑘

Sing(𝑀; 𝐺)
𝜃∗−−→ 𝐻𝑘

Sing+(𝑀; 𝐺) → 𝐻𝑘+1
0 (𝑀; 𝐺),

where 𝐻𝑘
0 (𝑀; 𝐺) denotes the 𝑘th cohomology group of the leftmost column of

(6.23). Thus to complete the proof, it suffices to show that 𝐻𝑘
0 (𝑀; 𝐺) = 0 for all 𝑘.

To that end, suppose 𝜑 ∈ Sing𝑘
0(𝑀; 𝐺) satisfies 𝛿𝜑 = 0. By definition of

Sing𝑘
0 , there is an open cover 𝒰 = {𝑈𝛼}𝛼∈𝐴 of 𝑀 such that 𝜑|𝑈𝛼 = 0 for each

𝛼. A singular simplex in 𝑀 is said to be 𝓤-small if its image is contained in
some 𝑈𝛼 , and a chain 𝑐 ∈ Sing𝑘(𝑀) is 𝒰-small if it can be written as a for-
mal linear combination of 𝒰-small simplices. Let Sing𝒰

𝑘 (𝑀) ⊆ Sing𝑘(𝑀) de-
note the subgroup consisting of 𝒰-small chains. The singular boundary operator
takes Sing𝒰

𝑘 (𝑀) to Sing𝒰
𝑘−1(𝑀), so we have a chain complex, which we denote

by Sing𝒰
∗ (𝑀). The inclusion maps 𝜄∶ Sing𝒰

𝑘 (𝑀) → Sing𝑘(𝑀) commute with
the boundary operators and thus define a chain map from Sing𝒰

∗ (𝑀) to Sing∗(𝑀)
(where Sing∗(𝑀) denotes the full singular chain complex), and a subdivision ar-
gument [LeeTM, Prop. 13.19] shows that this chain map induces isomorphisms
on all the homology groups. Let Sing𝑘,𝒰 (𝑀; 𝐺) = Hom (Sing𝒰

𝑘 (𝑀), 𝐺), and let
𝜄∗ ∶ Sing𝑘(𝑀; 𝐺) → Sing𝑘,𝒰 (𝑀; 𝐺) be the map dual to 𝜄; concretely, 𝜄∗(𝜑) is just
the restriction of a cochain 𝜑 to 𝒰-small chains. Because 𝜄 induces isomorphisms
on all homology groups, it follows from Proposition 6.17 that 𝜄∗ induces isomor-
phisms on cohomology.
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Let Sing𝑘,𝒰
0 (𝑀; 𝐺) ⊆ Sing𝑘(𝑀; 𝐺) denote the kernel of 𝜄∗; it is the group of

cochains that assign the value zero to every 𝒰-small simplex. We have a commu-
tative diagram

0

��

0

��

0

��

0 // Sing0,𝒰
0 (𝑀; 𝐺)

𝛿
��

� � // Sing0(𝑀; 𝐺)

𝛿
��

𝜄∗
// Sing0,𝒰 (𝑀; 𝐺)

𝛿
��

// 0

0 // Sing1,𝒰
0 (𝑀; 𝐺)

𝛿
��

� � // Sing1(𝑀; 𝐺)
𝛿
��

𝜄∗
// Sing1,𝒰 (𝑀; 𝐺)

𝛿
��

// 0,

⋮ ⋮ ⋮
in which the horizontal rows are exact. Thus the zigzag lemma yields a long exact
cohomology sequence, which reads in part

𝐻𝑘−1
Sing(𝑀; 𝐺) ≅⟶𝐻𝑘−1

Sing,𝒰 (𝑀; 𝐺) → 𝐻𝑘
Sing,𝒰,0(𝑀; 𝐺)

→ 𝐻𝑘
Sing(𝑀; 𝐺) ≅⟶ 𝐻𝑘

Sing,𝒰 (𝑀; 𝐺),

where the notations 𝐻𝑘
Sing,𝒰,0 and 𝐻𝑘

Sing,𝒰 have the obvious meanings. The fact
that the first and last maps are isomorphisms implies that 𝐻𝑘

Sing,𝒰,0(𝑀; 𝐺) = 0.
Therefore, there is a cochain 𝛽 ∈ Sing𝑘−1,𝒰

0 (𝑀; 𝐺) ⊆ Sing𝑘−1
0 (𝑀; 𝐺) such that

𝛿𝛽 = 𝜑. This completes the proof that 𝐻𝑘(𝑀; 𝐺) ≅ 𝐻𝑘
Sing(𝑀; 𝐺).

To prove the naturality statement, we note that the isomorphism 𝐻𝑘(𝑀; 𝐺) ≅
𝐻𝑘

Sing(𝑀; 𝐺) is the composition of two isomorphisms:

𝐻𝑘(𝑀; 𝐺) ≅ 𝐻𝑘
Sing+(𝑀; 𝐺) ≅ 𝐻𝑘

Sing(𝑀; 𝐺).

The first isomorphism was obtained by applying the de Rham–Weil theorem to
the sequence (6.22), so it is natural with respect to group homomorphisms by the
naturality statement of the de Rham–Weil theorem. The second isomorphism is
induced by the map 𝜃 ∶ Sing𝑘(𝑀; 𝐺) → Sing𝑘,+(𝑀; 𝐺), which just maps a cochain
𝜑 to the section 𝜑+ of the sheafification defined by (5.6); and it is straightforward
to check that this map is also natural with respect to group homomorphisms. □

We have proved the preceding theorem for locally contractible paracompact
Hausdorff spaces, which includes all topological manifolds with or without bound-
ary and is more than adequate for our purposes. But the conclusion is true for
somewhat more general spaces: an unpublished 2016 paper by Yehonatan Sella
[Sel16] (see also [Pet22]) shows that it is true for constant sheaves over any space
𝑀 that is semilocally contractible, meaning that each open subset 𝑈 ⊆ 𝑀 has an
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open cover by sets whose inclusions into 𝑈 are homotopic to constant maps, with-
out any paracompactness requirement. Some topological restriction is necessary,
however: for example, if 𝑀 is a paracompact Hausdorff space that is connected but
not path-connected, then 𝐻0(𝑀; ℤ) ≅ ℤ, while 𝐻0

Sing(𝑀; ℤ) is a direct product of
copies of ℤ, one for each path component.

Applications of Sheaf Cohomology
In this section, we describe several applications of sheaf cohomology to complex
manifolds.

The Dolbeault Theorem

Our first application is central to complex manifold theory. This theorem was
first proved in the 1950s by Pierre Dolbeault [Dol53,Dol56].
Theorem 6.19 (The Dolbeault Theorem). Suppose 𝑀 is a complex manifold and
Ω𝑝 is its sheaf of holomorphic 𝑝-forms. For each 𝑞 ≥ 0,
(6.25) 𝐻𝑝,𝑞(𝑀) ≅ 𝐻𝑞(𝑀; Ω𝑝).
More generally, if 𝐸 → 𝑀 is a holomorphic vector bundle, then

(6.26) 𝐻𝑝,𝑞(𝑀; 𝐸) ≅ 𝐻𝑞(𝑀; Ω𝑝(𝐸)).

Proof. The isomorphism (6.25) is just the special case of (6.26) in which 𝐸 is the
trivial line bundle 𝑀 × ℂ → 𝑀 , so we just need to prove (6.26). Example 5.23(c)
showed that the sheaves of smooth 𝐸-valued forms ℰ𝑝,𝑞(𝐸) give a resolution of
Ω𝑝(𝐸). Because each sheaf ℰ𝑝,𝑞(𝐸) is a sheaf of ℰ -modules, it is fine and therefore
acyclic. The theorem follows from the de Rham–Weil theorem. □

The de Rham Theorem

Aswementioned above, the de Rham–Weil theorem can be used to give a quick
sheaf-theoretic proof of the following version of the de Rham theorem.

Theorem 6.20 (De Rham Theorem, Sheaf-Theoretic Version). Suppose 𝑀 is a
smooth manifold. For each 𝑘 ≥ 0,
(6.27) 𝐻𝑘

dR(𝑀; ℂ) ≅ 𝐻𝑘(𝑀; ℂ).
The analogous statement is true for real de Rham cohomology.

Proof. For each nonnegative integer 𝑘, let ℰ𝑘 be the sheaf of smooth complex-
valued 𝑘-forms on 𝑀 . Consider the following sheaf sequence:

(6.28) 0 → ℂ ↪ ℰ0 𝑑−→ ℰ1 𝑑−→ ℰ2 𝑑−→ ⋯ .
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We observed in Example 5.23(a) that this sequence is exact, and since the sheaves
ℰ𝑘 are fine, it is an acyclic resolution of the constant sheaf ℂ. Thus the cohomology
groups of its global section sequence (which are the complex de Rham cohomology
groups) are isomorphic to the sheaf cohomology groups of ℂ by the de Rham–Weil
theorem. The same argument applies with real coefficients. □

The naturality statement of the de Rham–Weil theorem leads to the following
relationship between the de Rham and Dolbeault cohomology groups on a complex
manifold.

Proposition 6.21. Let 𝑀 be a complex manifold. For each integer 𝑞 ≥ 0, the pro-
jection 𝜋0,𝑞 ∶ ℰ 𝑞(𝑀) → ℰ0,𝑞(𝑀) descends to a linear map 𝜋0,𝑞

∗ ∶ 𝐻𝑞
dR(𝑀; ℂ) →

𝐻0,𝑞(𝑀), such that the following diagram commutes:

(6.29)

𝐻𝑞
dR(𝑀; ℂ)

𝜋0,𝑞
∗

��

ℛ
// 𝐻𝑞(𝑀; ℂ)

𝑖∗
��

𝐻0,𝑞(𝑀) 𝒟
// 𝐻𝑞(𝑀; 𝒪),

where ℛ and 𝒟 are the isomorphisms given by Theorems 6.20 and 6.19, respec-
tively, and 𝑖∗ is induced by the sheaf inclusion 𝑖∶ ℂ ↪ 𝒪 .

Proof. Consider the following diagram of sheaf morphisms:

0 // ℂ //

𝑖
��

ℰ0 𝑑
//

=
��

ℰ1 𝑑
//

𝜋0,1
��

ℰ2 //

𝜋0,2
��

⋯

0 // 𝒪 // ℰ0,0 𝜕
// ℰ0,1 𝜕

// ℰ0,2 // ⋯ .
For 𝜂 ∈ ℰ 𝑞(𝑈) on some open subset 𝑈 ⊆ 𝑀 , we have a decomposition

𝜂 = 𝜂𝑞,0 + 𝜂𝑞−1,1 + ⋯ + 𝜂1,𝑞−1 + 𝜂0,𝑞 .

The only part of 𝜂 that can contribute to the (0, 𝑞 + 1)-part of 𝑑𝜂 is 𝜂0,𝑞 , so
𝜋0,𝑞+1𝑑𝜂 = 𝜕𝜋0,𝑞𝜂. Thus the above sheaf diagram commutes, and it follows that
𝜋0,𝑞 descends to a well-defined linear map from 𝐻𝑞

dR(𝑀; ℂ) to 𝐻0,𝑞(𝑀). Commu-
tativity of (6.29) is an immediate consequence of the naturality statement of the de
Rham–Weil theorem. □

It is important to note that the above proof does not apply to 𝜋𝑝,𝑞 for 𝑝 ≠ 0, be-
cause the (𝑝, 𝑞 +1)-part of 𝑑𝜂 can involve contributions from both 𝜂𝑝,𝑞 and 𝜂𝑝−1,𝑞+1.
Later wewill see that for a restricted class ofmanifolds (compact Kählermanifolds),
there are well-defined projections 𝜋𝑝,𝑞

∗ ∶ 𝐻𝑝+𝑞(𝑀; ℂ) → 𝐻𝑝,𝑞(𝑀), but the proof is
considerably more complicated (see Thm. 9.44).
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By combining the isomorphism 𝐻𝑘
dR(𝑀; ℝ) ≅ 𝐻𝑘(𝑀; ℝ) of Theorem 6.20

with the isomorphism 𝐻𝑘(𝑀; ℝ) ≅ 𝐻𝑘
Sing(𝑀; ℝ) of Theorem 6.18, we obtain the

classical de Rham isomorphism 𝐻𝑘
dR(𝑀; ℝ) ≅ 𝐻𝑘

Sing(𝑀; ℝ) and its complex ana-
logue. But we need a more precise version of this, which says explicitly that the
isomorphism is given by integration of differential forms. For that purpose, we
introduce a modified version of singular cohomology.

Here is the setup. Suppose 𝑀 is a smooth manifold and 𝑘 is a nonnegative
integer. A singular 𝑘-simplex 𝜎 ∶ Δ𝑘 → 𝑀 is called a smooth singular simplex if
it is smooth in the sense that it can be extended to a smooth map defined on a neigh-
borhood of Δ𝑘 in ℝ𝑘. A chain 𝑐 ∈ Sing𝑘(𝑀) is called a smooth (singular) chain if
it can be written as a formal linear combination of smooth singular simplices. Let
Sing∞

𝑘 (𝑀) ⊆ Sing𝑘(𝑀) denote the subgroup consisting of smooth singular chains
in 𝑀 . Since the singular boundary operator maps smooth chains to smooth chains,
the sequence

⋯ → Sing∞
𝑘+1(𝑀) 𝜕→ Sing∞

𝑘 (𝑀) 𝜕→ Sing∞
𝑘−1(𝑀) → ⋯

is a chain complex, whose homology groups are called smooth singular homology
groups and denoted by 𝐻∞

𝑘 (𝑀).
The fundamental fact about smooth singular homology is the following theo-

rem, whose proof can be found in [LeeSM, Thm. 18.7].
Theorem 6.22 (Smooth Singular vs. Singular Homology). For every smooth
manifold 𝑀 and nonnegative integer 𝑘, the map 𝑖∗ ∶ 𝐻∞

𝑘 (𝑀) → 𝐻𝑘(𝑀) induced
by inclusion 𝑖∶ Sing∞

𝑘 (𝑀) ↪ Sing𝑘(𝑀) is an isomorphism.
Now let 𝐺 be an abelian group and let

Sing𝑘,∞(𝑀; 𝐺) = Hom (Sing∞
𝑘 (𝑀), 𝐺).

The singular coboundary maps 𝛿 ∶ Sing𝑘,∞(𝑀; 𝐺) → Sing𝑘+1,∞(𝑀; 𝐺) are de-
fined just as in the case of continuous cochains, and they satisfy 𝛿 ∘ 𝛿 = 0. Thus we
have a cochain complex

⋯ → Sing𝑘−1,∞(𝑀; 𝐺) 𝛿→ Sing𝑘,∞(𝑀; 𝐺) 𝛿→ Sing𝑘+1,∞(𝑀; 𝐺) → ⋯ .
Its cohomology groups, which we denote by 𝐻𝑘

Sing,∞(𝑀; 𝐺), are called the smooth
singular cohomology groups of 𝑴 with coefficients in 𝑮,

The dual of the inclusion map 𝑖∶ Sing∞
𝑘 (𝑀) ↪ Sing𝑘(𝑀) is a homomor-

phism 𝑅∶ Sing𝑘(𝑀; 𝐺) → Sing𝑘,∞(𝑀; 𝐺), which is just restriction: if 𝜑 is a
singular 𝑘-cochain on 𝑀 , then 𝑅(𝜑) is just the restriction of 𝜑 to smooth singular
chains. It commutes with the coboundary operators and thus descends to a linear
map 𝑅∗ ∶ 𝐻𝑘

Sing(𝑀; 𝐺) → 𝐻𝑘
Sing,∞(𝑀; 𝐺). Because inclusion of smooth chains

induces isomorphisms in homology, the next corollary follows immediately from
Proposition 6.17.
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Corollary 6.23 (Smooth Singular vs. Singular Cohomology). Suppose 𝑀 is a
smooth manifold and 𝐺 is an abelian group or a real or complex vector space. The
map 𝑅∗ ∶ 𝐻𝑘

Sing(𝑀; 𝐺) → 𝐻𝑘
Sing,∞(𝑀; 𝐺) is an isomorphism for each nonnegative

integer 𝑘. □

Let ℰ𝑘(𝑀) denote the space of smooth complex-valued 𝑘-forms on 𝑀 . If
𝜂 ∈ ℰ𝑘(𝑀) and 𝑐 = ∑𝑗 𝑎𝑗𝜎𝑗 is a smooth singular 𝑘-chain, we define the integral
of 𝜼 over 𝒄 by

∫𝑐
𝜂 = ∑

𝑗
𝑎𝑗 ∫Δ𝑘

𝜎∗
𝑗 𝜂.

Define a linear map 𝐼 ∶ ℰ𝑘(𝑀) → Sing𝑘,∞(𝑀; ℂ) by

𝐼(𝜂)(𝑐) = ∫𝑐
𝜂

for every smooth 𝑘-form 𝜂 and smooth chain 𝑐. A version of Stokes’s theorem for
smooth singular chains [LeeSM, Thm. 18.12] shows that

(6.30) ∫𝑐
𝑑𝜂 = ∫𝜕𝑐

𝜂.

This implies

𝛿(𝐼(𝜂))(𝑐) = 𝐼(𝜂)(𝜕𝑐) = ∫𝜕𝑐
𝜂 = ∫𝑐

𝑑𝜂 = 𝐼(𝑑𝜂)(𝑐),

which is to say that

(6.31) 𝛿 ∘ 𝐼 = 𝐼 ∘ 𝑑.

Thus 𝐼 descends to a linear map 𝐼∗ ∶ 𝐻𝑘
dR(𝑀; ℂ) → 𝐻𝑘

Sing,∞(𝑀; ℂ).
Here is the theorem that describes the detailed relationship between de Rham

and singular cohomology. (For a different proof, see [LeeSM, Thm. 18.14].)

Theorem 6.24 (De Rham Theorem, Integration Version). For every smooth
manifold 𝑀 and every integer 𝑘 ≥ 0, the map 𝐼∗ ∶ 𝐻𝑘

dR(𝑀; ℂ) → 𝐻𝑘
Sing,∞(𝑀; ℂ)

is an isomorphism. The analogous statement holds for real de Rham cohomology.

Proof. The proofs for real and complex coefficients are essentially identical, so we
just treat the complex case. Let 𝑀 be a smooth manifold. For each nonnegative
integer 𝑘, the assignment 𝑈 ↦ Sing𝑘,∞(𝑈; ℂ) is a presheaf on 𝑀 , and there is a
presheaf morphism 𝐼 ∶ ℰ𝑘 → Sing𝑘,∞, with 𝐼 ∶ ℰ𝑘(𝑈) → Sing𝑘,∞(𝑈; ℂ) defined
by integration over smooth chains in 𝑈 as above. Let Sing𝑘,∞+ be the sheafification
of the presheaf Sing𝑘,∞, and let 𝐼+ ∶ ℰ𝑘 → Sing𝑘,∞+ be the sheafification of 𝐼
(where we identify the sheaf ℰ𝑘 with its sheafification). Consider the following
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diagram of sheaf morphisms:

(6.32)

0 // ℂ //

=
��

ℰ0 𝑑
//

𝐼+
��

ℰ1 𝑑
//

𝐼+
��

ℰ2 𝑑
//

𝐼+
��

⋯

0 // ℂ // Sing0,∞+
𝛿+

// Sing1,∞+
𝛿+

// Sing2,∞+
𝛿+

// ⋯ .

It commutes by virtue of (6.31) and the functoriality of sheafification. The top row
is an acyclic resolution of ℂ. The proof of Theorem 6.18 showed that the analogue
of the second row, with Sing𝑘,+ in place of Sing𝑘,∞+, is also an acyclic resolution;
the same proof applies in this case, once we observe that the smooth singular coho-
mology groups of a contractible open set are trivial by virtue of Theorem 6.22 and
the universal coefficient theorem.

Applying the naturality statement of the de Rham–Weil theorem to (6.32), we
find that the following diagram commutes for each 𝑘:

𝐻𝑘(𝑀; ℂ) ≅
//

=
��

𝐻𝑘
dR(𝑀; ℂ)

(𝐼+)∗
��

𝐻𝑘(𝑀; ℂ) ≅
// 𝐻𝑘

Sing,∞+(𝑀; ℂ).

Thus (𝐼+)∗ is an isomorphism. On the other hand, Theorem 5.9 shows there is a
commutative sheaf diagram

ℰ𝑘 𝐼 //

=
��

Sing𝑘,∞

𝜃
��

ℰ𝑘
𝐼+

// Sing𝑘,∞+

(still identifying ℰ𝑘 with its sheafification), and passing to induced cohomology
maps, we find that the isomorphism (𝐼+)∗ is equal to the composition

(6.33) 𝐻𝑘
dR(𝑀; ℂ)

𝐼∗−−→ 𝐻𝑘
Sing,∞(𝑀; ℂ)

𝜃∗−−→ 𝐻𝑘
Sing,∞+(𝑀; ℂ).

Thus to show that 𝐼∗ is an isomorphism, we need to show that the map 𝜃∗ above
is an isomorphism. The proof of Theorem 6.18 showed that the analogous map
𝜃∗ ∶ 𝐻𝑘

Sing(𝑀; ℂ) → 𝐻𝑘
Sing,+(𝑀; ℂ) is an isomorphism. The same proof applies

here; the only additional observation that needs to be made is that when the subdivi-
sion operators of [LeeTM, Prop. 13.19] are applied to smooth chains, they produce
smooth chains, because the new singular simplices are defined as compositions
of the original smooth simplices with affine maps between subsets of Euclidean
spaces. □
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The next corollary is an immediate consequence of Corollary 6.23 and Theorem
6.24.
Corollary 6.25. For a smooth manifold 𝑀 and a nonnegative integer 𝑘, define
ℐ ∶ 𝐻𝑘

dR(𝑀; ℂ) → 𝐻𝑘
Sing(𝑀; ℂ) by ℐ = 𝑅−1

∗ ∘𝐼∗, where 𝐼∗ is the map of Theorem
6.24 and 𝑅∗ is the map of Corollary 6.23. Then ℐ is an isomorphism. □
Corollary 6.26. Let 𝑀 be a smooth manifold. For any closed 𝑘-form 𝜂 and
singular 𝑘-cycle 𝑐, the Kronecker pairing between ℐ [𝜂] ∈ 𝐻𝑘

Sing(𝑀; ℂ) and
[𝑐] ∈ 𝐻𝑘(𝑀) is given by

⟨ℐ [𝜂], [𝑐]⟩ = ∫̃𝑐
𝜂,

where ̃𝑐 is any smooth cycle cohomologous to 𝑐.

Proof. Let 𝜂 and 𝑐 be given. By definition, ℐ [𝜂] = 𝑅−1
∗ ∘ 𝐼∗[𝜂]. Thus there

is a singular cocycle 𝜑 ∈ Sing𝑘(𝑀; ℂ) such that 𝑅(𝜑) ∈ Sing𝑘,∞(𝑀; ℂ) is co-
homologous to 𝐼(𝜂), and ℐ [𝜂] = [𝜑]. By definition of the Kronecker pairing,
⟨ℐ [𝜂], [𝑐]⟩ = 𝜑(𝑐). Theorem 6.22 shows that there is a smooth cycle ̃𝑐 homol-
ogous to 𝑐, and since the cocycle 𝜑 gives the same value on homologous cycles,
the Kronecker pairing is also equal to 𝜑( ̃𝑐). Since ̃𝑐 is smooth, this is the same as
𝑅(𝜑)( ̃𝑐) = 𝐼(𝜂)( ̃𝑐) = ∫ ̃𝑐 𝜂. □

In Chapters 9 and 10, it will be important to know which closed forms rep-
resent integral cohomology classes in the following sense: If 𝑀 is a smooth
manifold, we say that a cohomology class in 𝐻𝑘

dR(𝑀; ℂ) (or either of the iso-
morphic groups 𝐻𝑘(𝑀; ℂ) or 𝐻𝑘

Sing(𝑀; ℂ)) is integral if it lies in the image of
the coefficient homomorphism 𝑖∗ ∶ 𝐻𝑘

Sing(𝑀; ℤ) → 𝐻𝑘
Sing(𝑀; ℂ) (or equivalently

𝐻𝑘(𝑀; ℤ) → 𝐻𝑘(𝑀; ℂ)) induced by inclusion 𝑖∶ ℤ ↪ ℂ.
The next lemma gives a simple criterion for detecting when a de Rham coho-

mology class is integral.
Lemma 6.27. Let 𝑀 be a smooth manifold and let 𝜂 be a closed 𝑘-form on 𝑀 .
Then 𝜂 represents an integral cohomology class if and only if ∫𝑐 𝜂 ∈ ℤ for every
smooth 𝑘-cycle 𝑐 in 𝑀 . If 𝐻𝑘(𝑀) is finitely generated, then the set of integral
classes is a free abelian subgroup of 𝐻𝑘

dR(𝑀; ℂ), a basis for which is also a basis
for 𝐻𝑘

dR(𝑀; ℂ) over ℂ and a basis for 𝐻𝑘
dR(𝑀; ℝ) over ℝ.

Proof. Consider the following commutative diagram of group homomorphisms:

𝐻𝑘
Sing(𝑀; ℤ)

𝜅ℤ //

𝑖∗
��

Hom(𝐻𝑘(𝑀), ℤ)

𝑖#
��

𝐻𝑘
dR(𝑀; ℂ) ℐ

// 𝐻𝑘
Sing(𝑀; ℂ) 𝜅ℂ

// Hom(𝐻𝑘(𝑀), ℂ),
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where 𝜅ℤ and 𝜅ℂ are the respective Kronecker homomorphisms and 𝑖# is post-
composition with 𝑖∶ ℤ ↪ ℂ. Corollary 6.26 shows that the composition 𝜅ℂ ∘ ℐ [𝜂]
is the homomorphism that sends [𝑐] ∈ 𝐻𝑘(𝑀) to ∫ ̃𝑐 𝜂 for a smooth cycle ̃𝑐 homol-
ogous to 𝑐.

On the one hand, if [𝜂] is integral, then there is a class 𝛾 ∈ 𝐻𝑘
Sing(𝑀; ℤ) such

that 𝑖∗𝛾 = ℐ [𝜂], which implies
𝜅ℂ ∘ ℐ [𝜂] = 𝜅ℂ ∘ 𝑖∗𝛾 = 𝑖# ∘ 𝜅ℤ𝛾,

and thus the homomorphism 𝜅ℂ ∘ ℐ [𝜂] takes only integer values.
Conversely, if 𝜅ℂ ∘ ℐ [𝜂] takes only integer values, then 𝜅ℂ ∘ ℐ [𝜂] = 𝑖#𝜑 for

𝜑 ∈ Hom(𝐻𝑘(𝑀); ℤ) (given by the same formula). Since 𝜅ℤ is surjective by
the universal coefficient theorem (Prop. 6.16), it follows that there is some 𝛾 ∈
𝐻𝑘

Sing(𝑀; ℤ) such that 𝜅ℤ𝛾 = 𝜑, which implies
𝜅ℂ ∘ ℐ [𝜂] = 𝑖# ∘ 𝜅ℤ𝛾 = 𝜅ℂ ∘ 𝑖∗𝛾.

Since 𝜅ℂ is an isomorphism, this implies ℐ [𝜂] = 𝑖∗𝛾 , so [𝜂] is integral.
To prove the last statement, assume 𝐻𝑘(𝑀) is finitely generated, and let 𝑇 ⊆

𝐻𝑘(𝑀) be its torsion subgroup (the subgroup of elements 𝑥 that satisfy 𝑛𝑥 = 0 for
some positive integer 𝑛). Then 𝐻𝑘(𝑀)/𝑇 ≅ ℤ𝑚 for some nonnegative integer 𝑚.
Let (𝛾1, … , 𝛾𝑚) be elements of 𝐻𝑘(𝑀) whose images in the quotient group form a
basis for 𝐻𝑘(𝑀)/𝑇 . Since every homomorphism to ℤ annihilates torsion elements,
Hom(𝐻𝑘(𝑀), ℤ) ≅ Hom(𝐻𝑘(𝑀)/𝑇 , ℤ), so it is a free abelian group with basis
(𝜑1, … , 𝜑𝑚), where 𝜑𝑖(𝛾𝑗) = 𝛿𝑖

𝑗 . These same elements are also a basis for the
vector space Hom(𝐻𝑘(𝑀), ℂ) ≅ Hom(𝐻𝑘(𝑀)/𝑇 , ℂ) over ℂ, and therefore their
images in the isomorphic space 𝐻𝑘

dR(𝑀; ℂ) are a basis over ℤ for the subgroup of
integral classes and also a basis over ℂ for 𝐻𝑘

dR(𝑀; ℂ) itself. The argument for
𝐻𝑘

dR(𝑀; ℝ) is the same. □

Chern Classes of Line Bundles

For our next application, suppose 𝑀 is a complex manifold and 𝒪∗ is its sheaf
of nonvanishing holomorphic functions. Let 𝒰 = {𝑈𝛼}𝛼∈𝐴 be an open cover of
𝑀 . The computations in Example 6.3 showed that a Čech 1-cocycle on 𝒰 with
coefficients in 𝒪∗ consists of a collection of nonvanishing holomorphic functions
𝜏𝛼𝛽 ∶ 𝑈𝛼 ∩ 𝑈𝛽 → ℂ that satisfy

𝜏𝛼𝛾 = 𝜏𝛼𝛽𝜏𝛽𝛾 on 𝑈𝛼 ∩ 𝑈𝛽 ∩ 𝑈𝛾 .
This is exactly the data for constructing a holomorphic line bundle, so we get a map

ℒ ∶ 𝑍1(𝒰; 𝒪∗) → Pic(𝑀)
where 𝑍1(𝒰; 𝒪∗) is the group of Čech cycles on 𝒰 with coefficients in 𝒪∗, and
Pic(𝑀) is the Picard group of 𝑀 (the group of isomorphism classes of holomorphic
line bundles under the tensor product).
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Proposition 6.28. Let 𝑀 be a complex manifold. The map ℒ defined above de-
scends to a group isomorphism

ℒ∗ ∶ 𝐻1(𝑀; 𝒪∗) ≅ Pic(𝑀).

Similarly, if 𝑀 is a smooth manifold, 𝐻1(𝑀; ℰ∗) is isomorphic to the group of
isomorphism classes of smooth complex line bundles on 𝑀; and if 𝑀 is any topo-
logical space, 𝐻1(𝑀; 𝒞 ∗) is isomorphic to the group of isomorphism classes of
topological complex line bundles.

Proof. We first note that for a fixed open cover 𝒰 of 𝑀 , the map ℒ is a group
homomorphism from 𝑍1(𝒰; 𝒪∗) to Pic(𝑀), because the transition functions for a
tensor product 𝐿 ⊗ 𝐿′ are the products of the ones for 𝐿 and the ones for 𝐿′.

Next we show that for a cocycle 𝜏 ∈ 𝑍1(𝒰; 𝒪∗), the isomorphism class of the
bundle ℒ(𝜏) depends only on the cohomology class of 𝜏. If 𝜏 and 𝜏′ are coho-
mologous, the computations in Example 6.3 show that there is a 0-cocycle 𝜓 such
that

𝜏𝛼𝛽 = 𝜏′
𝛼𝛽𝜓𝛽𝜓−1

𝛼 on 𝑈𝛼 ∩ 𝑈𝛽 ,

so Proposition 3.7 shows that the bundles ℒ(𝜏) and ℒ(𝜏′) are isomorphic. Thus
ℒ descends to a homomorphism from 𝐻1(𝒰; 𝒪∗) to Pic(𝑀).

If 𝒱 = {𝑉𝛽 ∶ 𝛽 ∈ 𝐵} is a refinement of 𝒰 and 𝜌 is a refining map, then we
obtain a trivialization of the bundle ℒ(𝜏) over each subset 𝑉𝛽 by restricting the one
over 𝑈𝜌(𝛽), and the transition maps between these trivializations are the restrictions
of those over 𝒰 , which is to say

𝜏𝛼𝛽 = 𝜏𝜌(𝛼)𝜌(𝛽)|𝑉𝛼∩𝑉𝛽
.

This implies that 𝒱 is a trivializing cover for both ℒ(𝜏) and ℒ(𝜌#𝜏) with the same
transition functions, so these two bundles are isomorphic. Therefore, ℒ passes to
the direct limit to define a homomorphism ℒ∗ ∶ 𝐻1(𝑀; 𝒪∗) → Pic(𝑀).

If 𝐿 → 𝑀 is any holomorphic line bundle, we can choose a trivializing cover
𝒰 , and the argument above shows that the transition functions determine a 1-
cocycle and therefore an element of 𝐻1(𝑀; 𝒪∗) whose image under ℒ∗ is the iso-
morphism class of 𝐿; thus ℒ∗ is surjective.

On the other hand, to show that ℒ∗ is injective, it suffices to show that its kernel
consists only of the zero cohomology class. Suppose ℒ∗(𝛾) is the equivalence class
of the trivial bundle for some 𝛾 ∈ 𝐻1(𝑀; 𝒪∗). If 𝜏 is a cocycle representing 𝛾 over
some open cover 𝒰 , then Corollary 3.9 shows there is a 0-cochain 𝜓 ∈ 𝐶0(𝒰; 𝒪∗)
such that 𝜏𝛼𝛽 = 𝜓𝛽𝜓−1

𝛼 on 𝑈𝛼 ∩ 𝑈𝛽 , which means 𝜏 = 𝛿𝜓 . Thus 𝜏 represents the
trivial cohomology class, which is to say 𝛾 = 0.

The analogous results for smooth and topological line bundles are proved in
exactly the same way, with only minor changes in notation. □
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Suppose 𝑀 is a smooth manifold. Consider the smooth exponential sheaf se-
quence on 𝑀 (Example 5.23(e)):

(6.34) 0 → ℤ ↪ ℰ 𝜀⟶ ℰ∗ → 0.
The connecting homomorphism of the associated long exact sequence is a group
homomorphism 𝛿∗ ∶ 𝐻1(𝑀; ℰ∗) → 𝐻2(𝑀; ℤ). By Proposition 6.28, 𝐻1(𝑀; ℰ∗)
is isomorphic to the group of isomorphism classes of smooth complex line bundles.
Given such a bundle 𝐿, we define the (sheaf-theoretic) Chern class of 𝑳 to be
𝑐(𝐿) = −𝛿∗([𝐿]) ∈ 𝐻2(𝑀; ℤ), or its image in𝐻2

Sing(𝑀; ℤ) under the isomorphism
given by Theorem 6.18. (The negative sign is a normalization constant that will be
explained later. Some authors define the sheaf-theoretic Chern class as 𝑐(𝐿) =
𝛿∗([𝐿]), without the negative sign; see the remark following the proof of Theorem
7.14 below.)
Theorem 6.29 (Classification of Smooth Line Bundles). Let𝑀 be a smooth man-
ifold. Smooth complex line bundles over 𝑀 are classified up to isomorphism by
their Chern classes: for every cohomology class 𝛾 ∈ 𝐻2(𝑀; ℤ), there is a smooth
complex line bundle 𝐿 with 𝑐(𝐿) = 𝛾 , and two smooth complex line bundles are
smoothly isomorphic if and only if their Chern classes are equal.

Proof. The long exact sequence associated with (6.34) contains the following seg-
ment:

𝐻1(𝑀; ℰ) → 𝐻1(𝑀; ℰ∗)
𝛿∗⟶ 𝐻2(𝑀; ℤ) → 𝐻2(𝑀; ℰ).

Because ℰ is a fine sheaf, the leftmost and rightmost groups are zero, so −𝑐 =
𝛿∗ ∶ 𝐻1(𝑀; ℰ∗) → 𝐻2(𝑀; ℤ) is an isomorphism. □

When we turn our attention to holomorphic line bundles, something different
happens. Let 𝑀 be a complex manifold, and consider the holomorphic version of
the exponential sequence:

(6.35) 0 → ℤ ↪ 𝒪 𝜀⟶ 𝒪∗ → 0.
Now the long exact sequence reads

(6.36) 𝐻1(𝑀; 𝒪) → 𝐻1(𝑀; 𝒪∗)
𝛿∗⟶ 𝐻2(𝑀; ℤ) → 𝐻2(𝑀; 𝒪).

By Proposition 6.28, 𝐻1(𝑀; 𝒪∗) is isomorphic to the Picard group of 𝑀 . Again,
we define the Chern class of a holomorphic line bundle 𝐿 by 𝑐(𝐿) = −𝛿∗([𝐿]). By
naturality of the long exact sequence applied to the following commutative diagram

0 // ℤ � � //

=
��

𝒪 𝜀
//

� _

��

𝒪∗ //
� _

��

0

0 // ℤ � � // ℰ 𝜀 // ℰ∗ // 0,
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the following diagram commutes:

𝐻1(𝑀; 𝒪∗)
𝛿∗ //

��

𝐻2(𝑀; ℤ)

=
��

𝐻1(𝑀; ℰ∗) 𝛿∗
// 𝐻2(𝑀; ℤ),

and therefore 𝑐(𝐿) depends only on the smooth isomorphism class of 𝐿.
By the previous theorem, two holomorphic line bundles are smoothly isomor-

phic if and only if their Chern classes are equal. However, since 𝒪 is not fine,
it need not be the case that the groups on the ends of (6.36) are zero, so the
map 𝑐 ∶ Pic(𝑀) → 𝐻2(𝑀; ℤ) might not be injective and/or surjective. Thus if
𝐻2(𝑀; 𝒪) ≠ 0, there might be smooth line bundles on 𝑀 that admit no holomor-
phic structures; and if 𝐻1(𝑀; 𝒪) ≠ 0, there might be smooth line bundles that
admit multiple nonisomorphic holomorphic structures.

The kernel of the Chern class homomorphism is called the Picard variety of
𝑴 and denoted by Pic0(𝑀). It is the group of isomorphism classes of holomorphic
line bundles with zero Chern class, or equivalently holomorphic structures on the
trivial smooth line bundle. In Chapter 9, we will see that for a large class of compact
complex manifolds, including all projective manifolds and all compact Riemann
surfaces, Pic0(𝑀) has the structure of a complex torus (see Thm. 9.66).

Line Bundles on Riemann Surfaces

For line bundles on compact Riemann surfaces, we can say more. Suppose
𝑀 is a connected compact Riemann surface. For any smooth complex line bundle
𝐿 → 𝑀 , the degree of 𝑳 is defined to be the integer

deg(𝐿) = ⟨𝑐(𝐿), [𝑀]⟩,

where 𝑐(𝐿) ∈ 𝐻2
Sing(𝑀; ℤ) is the Chern class of 𝐿, [𝑀] ∈ 𝐻2(𝑀) is the funda-

mental class of 𝑀 , and ⟨⋅, ⋅⟩ represents the Kronecker pairing.

Proposition 6.30. Let 𝑀 be a connected compact Riemann surface.

(a) The degree map descends to a surjective homomorphism from Pic(𝑀) to
ℤ.

(b) Two holomorphic line bundles on 𝑀 are smoothly isomorphic if and only
they have the same degree.

Proof. The fact that 𝑐(𝐿) depends only on the isomorphism class of 𝐿 implies
immediately that the degree map descends to Pic(𝑀).



Other Sheaf Cohomology Theories 183

Because 𝑀 has complex dimension 1, there are no nonzero (0, 2)-forms, so the
Dolbeault group 𝐻0,2(𝑀) is zero. Thus 𝐻2(𝑀; 𝒪) = 0 by the Dolbeault theorem,
so (6.36) implies that the map 𝛿∗ ∶ 𝐻2(𝑀; 𝒪∗) →∶ 𝐻2(𝑀; ℤ) is surjective, and
thus so is the Chern class map 𝑐 ∶ Pic(𝑀) → 𝐻2

Sing(𝑀; ℤ). Because 𝑀 is con-
nected, compact, and orientable, the classification theorem for compact surfaces
[LeeTM, Thms. 6.15 & 10.22] shows that it is homeomorphic either to 𝕊2 or to
a connected sum of one or more copies of the torus 𝕊1 × 𝕊1. Let 𝑔 be the genus
of 𝑀 , which is defined to be 0 if 𝑀 is homeomorphic to 𝕊2 and to be 𝑔 if it is
homeomorphic to a connected sum of 𝑔 ≥ 1 tori. The first singular homology
group of 𝑀 is isomorphic to the free abelian group ℤ2𝑔 [LeeTM, Cor. 13.15], and
therefore the universal coefficient theorem (Prop. 6.16) implies that the Kronecker
map 𝜅 ∶ 𝐻2

Sing(𝑀; ℤ) → Hom(𝐻2(𝑀); ℤ) is an isomorphism. On the other hand,
since 𝐻2(𝑀) is an infinite cyclic group generated by the fundamental class [𝑀]
(Prop. 6.15), it follows that the evaluation map 𝐸 ∶ Hom(𝐻2(𝑀); ℤ) → ℤ given
by 𝐸(𝜑) = 𝜑([𝑀]) is also an isomorphism.

The degree map can be written as the following composition:

Pic(𝑀) 𝑐⟶ 𝐻2
Sing(𝑀; ℤ) 𝜅⟶ Hom(𝐻2(𝑀), ℤ) 𝐸⟶ ℤ.

Since 𝑐 is a surjective homomorphism and 𝜅 and 𝐸 are both isomorphisms, claim
(a) follows. Then (b) follows immediately from Theorem 6.29. □

The degree homomorphism is surjective, but in most cases it is not injective.
Its kernel is the Picard variety Pic0(𝑀) defined above.

Later, we will develop some effective methods for computing the degrees of
line bundles on a Riemann surface.

Other Sheaf Cohomology Theories
The Čech construction of sheaf cohomology that we have described is convenient
for differential geometry because it makes the interconnections among holomorphic
line bundles, differential forms, and algebraic topology relatively transparent. But
as we noted earlier, its effectiveness is limited to paracompact Hausdorff spaces.
For some applications, this is an intolerable restriction. This is especially true in
algebraic geometry, because the Zariski topology is not Hausdorff.

There are other definitions of sheaf cohomology that are more general. Since
you might encounter those definitions in other books, for completeness we briefly
describe the most important ones here and show that they yield cohomology groups
that are isomorphic to the Čech groups when applied to paracompact Hausdorff
spaces. The material in the remainder of this chapter will not be used anywhere
else in the book, so you are free to ignore it if you wish.
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Most other approaches to sheaf cohomology groups are based on constructing
a certain acyclic resolution and defining the sheaf cohomology groups to be the
cohomology groups of the associated global section sequence. Of course, “acyclic”
does not make sense until the sheaf cohomology groups have been defined, so the
definitions proceed by defining a canonical resolution by a certain class of sheaves
that will turn out to be acyclic in the given theory.

There are two common approaches to defining sheaf cohomology in this way.
(A less common third approach is described in Problem 6-7.) The first, due to
Roger Godement [God73], uses a resolution by flasque sheaves: A sheaf ℱ on a
topological space 𝑀 is said to be flasque if for every open subset 𝑈 ⊆ 𝑀 , the
restriction map 𝑟𝑀

𝑈 ∶ ℱ (𝑀) → ℱ (𝑈) is surjective. It follows that every restriction
map 𝑟𝑈

𝑉 ∶ ℱ (𝑈) → ℱ (𝑉 ) is surjective because 𝑟𝑈
𝑉 ∘ 𝑟𝑀

𝑈 = 𝑟𝑀
𝑉 . (Some authors use

the term flabby, which is the English translation of the French word flasque.) Gode-
ment showed that every sheaf of abelian groups admits a canonical resolution by
flasque sheaves (the Godement resolution, described in Problem 6-6), and defined
the sheaf cohomology groups to be the cohomology groups of the associated global
section sequence of that resolution. The advantage of this definition is that short
exact sheaf sequences yield long exact cohomology sequences on any topological
space, not just a paracompact Hausdorff one.

The second common approach, due to Alexander Grothendieck [Gro57], uses
a resolution by injective sheaves: a sheaf 𝒮 on 𝑀 is injective if whenever ℬ is a
sheaf on 𝑀 and 𝒜 is a subsheaf of ℬ, every sheaf morphism 𝐹 ∶ 𝒜 → 𝒮 extends
to ℬ; that is, there is a sheaf morphism 𝐹 ∶ ℬ → 𝒮 making the following diagram
commute:

ℬ
𝐹
  
B

B
B

B

𝒜
?�

OO

𝐹
// 𝒮 .

Grothendieck showed that every sheaf of abelian groups admits a canonical resolu-
tion by injective sheaves, and defined sheaf cohomology groups as the cohomology
groups of the associated global section sequence. This is the most general defini-
tion of all, because it can be expressed in purely category-theoretic terms, and thus
makes sense for sheaves over objects even more general than topological spaces.

Both of these constructions lead to definitions of sheaf cohomology groups that
satisfy all the essential properties that we have proved for the Čech groups: they are
functorial; zero-degree cohomology is naturally isomorphic to the group of global
sections; and short exact sheaf sequences yield long exact cohomology sequences.
The details can be found, for example, in [Bre97, Chap. II]. In this section, we will
prove that both flasque sheaves and injective sheaves on a paracompact Hausdorff
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space are acyclic in Čech cohomology, so it follows from the de Rham–Weil the-
orem that the cohomology groups defined by either the Godement construction or
the Grothendieck construction are isomorphic to the ones we have defined.

We begin by describing the relationship between these two types of sheaves.

Theorem 6.31. On any topological space, every injective sheaf of abelian groups
is flasque.

Proof. Let 𝒮 be an injective sheaf of abelian groups on a topological space 𝑀 .
Suppose 𝑈 ⊆ 𝑀 is an open subset and 𝑠 ∈ 𝒮 (𝑈). Let ℤ be the constant sheaf on
𝑀 with coefficients in ℤ, and define a subsheaf ℤ𝑈 ⊆ ℤ by

ℤ𝑈 (𝑉 ) = {𝑘 ∈ ℤ(𝑉 ) ∶ 𝑘(𝑥) = 0 for 𝑥 ∈ 𝑉 ∖ 𝑈}.
(Recall that elements of ℤ(𝑉 ) are locally constant functions from 𝑉 to ℤ.) Because
𝒮 is a sheaf of ℤ-modules (see Example 5.4(c)), we can use the section 𝑠 to define
a sheaf morphism 𝐼 ∶ ℤ𝑈 → 𝒮 as follows: given an open subset 𝑉 ⊆ 𝑀 and a
section 𝑘 ∈ ℤ𝑈 (𝑉 ), let 𝐼(𝑘) ∈ 𝒮 (𝑉 ) be the section satisfying

𝐼(𝑘)|𝑉 ∩𝑈 = (𝑘|𝑉 ∩𝑈 )(𝑠|𝑉 ∩𝑈 ),
𝐼(𝑘)|𝑉 ∩𝑘−1(0) = 0.

The fact that 𝑘 is locally constant implies that 𝑘−1(0) is open, so the gluing and
locality properties of 𝒮 ensure that 𝐼(𝑘) is uniquely defined. Because 𝒮 is injective,
𝐼 extends to a morphism 𝐼 ∶ ℤ → 𝒮 . Define a section ̃𝑠 ∈ 𝒮 (𝑀) by ̃𝑠 = 𝐼(1),
where 1 ∈ ℤ(𝑀) is the constant function with value 1. It satisfies

̃𝑠|𝑈 = 𝐼(1)|𝑈 = 𝐼(1|𝑈 ) = 𝐼(1|𝑈 ) = 𝑠,
so 𝑟𝑀

𝑈 ( ̃𝑠) = 𝑠, showing that 𝑟𝑀
𝑈 is surjective. □

Problem 6-5 describes an example that shows the converse of this theorem is
not true.

Here are two essential properties of flasque sheaves.

Lemma 6.32 (Properties of Flasque Sheaves). Suppose ℛ, 𝒮 , and 𝒯 are sheaves
of abelian groups on a topological space 𝑀 , and the following sheaf sequence is
exact:

(6.37) 0 → ℛ 𝐹⟶ 𝒮 𝐺⟶ 𝒯 → 0.
(a) Ifℛ is flasque, then for every open subset𝑈 ⊆ 𝑀 , the following sequence

of abelian groups is exact:

(6.38) 0 → ℛ(𝑈)
𝐹𝑈⟶ 𝒮 (𝑈)

𝐺𝑈⟶ 𝒯 (𝑈) → 0.
(b) If ℛ and 𝒮 are flasque, then so is 𝒯 .
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Proof. Suppose first that ℛ is flasque. We know from Proposition 5.24 that the
sequence (6.38) is exact at ℛ(𝑈) and 𝒮 (𝑈), so we need only prove that the homo-
morphism 𝐺𝑈 ∶ 𝒮 (𝑈) → 𝒯 (𝑈) is surjective.

Let 𝑡 ∈ 𝒯 (𝑈) be arbitrary. The fact that the sheaf sequence (6.37) is exact
means that for each 𝑝 ∈ 𝑈 , there is a neighborhood 𝑉 of 𝑝 contained in 𝑈 and
a section 𝑠 ∈ 𝒮 (𝑉 ) such that 𝐺𝑉 (𝑠) = 𝑡|𝑉 . Let 𝑃 be the set of all pairs of the
form (𝑉 , 𝑠) where 𝑉 is an open subset of 𝑈 and 𝑠 ∈ 𝒮 (𝑉 ) satisfies 𝐺𝑉 (𝑠) = 𝑡|𝑉 .
Give 𝑃 a partial order by saying that (𝑉 , 𝑠) ≤ (𝑉 ′, 𝑠′) if 𝑉 ⊆ 𝑉 ′ and 𝑠′|𝑉 = 𝑠. If
𝑄 = {(𝑉𝛼 , 𝑠𝛼) ∶ 𝛼 ∈ 𝐴} is any totally ordered subset of 𝑃 , then the pair (𝑉∞, 𝑠∞) is
an upper bound for 𝑄, where 𝑉∞ = ⋃𝛼 𝑉𝛼 and 𝑠∞ ∈ 𝒮 (𝑉∞) is defined as follows:
the fact that 𝑄 is totally ordered guarantees that for any 𝛼, 𝛽 ∈ 𝐴, either 𝑉𝛼 ⊆ 𝑉𝛽
or vice versa, and in either case 𝑠𝛼|𝑉𝛼∩𝑉𝛽 = 𝑠𝛽|𝑉𝛼∩𝑉𝛽 , so by the gluing property
there exists 𝑠∞ ∈ 𝒮 (𝑉∞) whose restriction to each 𝑉𝛼 is equal to 𝑠𝛼 . It follows that
𝐺𝑉∞(𝑠∞) = 𝑡|𝑉∞ , so (𝑉∞, 𝑠∞) ∈ 𝑃 . By Zorn’s lemma, there is a maximal element
(𝑉 , 𝑠) ∈ 𝑃 .

We will show that 𝑉 = 𝑈 , which means that 𝐺𝑈 (𝑠) = 𝑡, proving that 𝐺𝑈 is
surjective. Assume for contradiction that 𝑉 ≠ 𝑈 , and let 𝑝 be a point of 𝑈 ∖ 𝑉 .
Then there exist a neighborhood 𝑊 of 𝑝 in 𝑈 and a section 𝜎 ∈ 𝒮 (𝑊 ) such that
𝐺𝑊 (𝜎) = 𝑡|𝑊 . Since 𝐺𝑉 ∩𝑊 (𝜎|𝑉 ∩𝑊 ) = 𝑡|𝑉 ∩𝑊 = 𝐺𝑉 ∩𝑊 (𝑠|𝑉 ∩𝑊 ), the fact that
0 → ℛ(𝑉 ∩ 𝑊 ) → 𝒮 (𝑉 ∩ 𝑊 ) → 𝒯 (𝑉 ∩ 𝑊 ) is exact implies there exists 𝑟 ∈
ℛ(𝑉 ∩ 𝑊 ) such that
(6.39) 𝑠|𝑉 ∩𝑊 − 𝜎|𝑉 ∩𝑊 = 𝐹𝑉 ∩𝑊 (𝑟).
Because ℛ is flasque, there is a section ̃𝑟 ∈ ℛ(𝑊 ) that restricts to 𝑟 on 𝑉 ∩ 𝑊 .
Let 𝜎 = 𝜎 + 𝐹𝑊 ( ̃𝑟) ∈ 𝒮 (𝑊 ). It follows from (6.39) that the restrictions of 𝑠 and 𝜎
agree on 𝑉 ∩ 𝑊 , so there is a section ̃𝑠 ∈ 𝒮 (𝑉 ∪ 𝑊 ) that satisfies

̃𝑠|𝑉 = 𝑠, ̃𝑠|𝑊 = 𝜎.
Then 𝐺𝑉 ∪𝑊 ( ̃𝑠) agrees with 𝐺𝑉 (𝑠) on 𝑉 and with 𝐺𝑊 (𝜎) = 𝐺𝑊 (𝜎) on 𝑊 , so by
the locality property 𝐺𝑉 ∪𝑊 ( ̃𝑠) = 𝑡|𝑉 ∪𝑊 , showing that (𝑉 ∪ 𝑊 , ̃𝑠) ∈ 𝑃 . Since it
is strictly larger than (𝑉 , 𝑠), this contradicts the maximality of (𝑉 , 𝑠), thus proving
(a).

To prove (b), assume in addition that 𝒮 is flasque, and suppose 𝑈 ⊆ 𝑀 is open
and 𝑡 ∈ 𝒯 (𝑈). By the result of part (a), there is a section 𝑠 ∈ 𝒮 (𝑈) such that
𝐺𝑈 (𝑠) = 𝑡. Since 𝒮 is flasque, there is a section ̃𝑠 ∈ 𝒮 (𝑀) such that ̃𝑠|𝑈 = 𝑠, and
then ̃𝑡 = 𝐺𝑀 ( ̃𝑠) ∈ 𝒯 (𝑀) satisfies

̃𝑡|𝑈 = 𝐺𝑀 ( ̃𝑠)|𝑈 = 𝐺𝑈 ( ̃𝑠|𝑈 ) = 𝐺𝑈 (𝑠) = 𝑡,
showing that 𝒯 is flasque. □

The principal source of flasque sheaves is the following construction. For any
sheaf 𝒮 , we define the sheaf of rough sections of𝓢, denoted by 𝒮 , by letting 𝒮 (𝑈)
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be the set of all functions 𝜎 ∶ 𝑈 → Et(𝒮 ) satisfying 𝜋 ∘ 𝜎 = Id𝑈 ; it is a sheaf by
the result of Exercise 5.1(c). If 𝒮 is a sheaf of abelian groups, then so is 𝒮 with
addition defined pointwise, because each stalk of Et(𝒮 ) inherits an abelian group
structure from 𝒮 . (In the literature, 𝒮 is often called the “sheaf of discontinuous
sections of 𝒮 ”; but of course not all of the sections in 𝒮 (𝑈) are discontinuous.)
Lemma 6.33 (Properties of the Sheaf of Rough Sections). Suppose 𝒮 is a sheaf
of abelian groups on a topological space 𝑀 , and 𝒮 is its sheaf of rough sections.

(a) 𝒮 is flasque.
(b) There is a canonical injective sheaf morphism 𝜄𝒮 ∶ 𝒮 ↪ 𝒮 .
(c) Given a sheaf morphism 𝐹 ∶ 𝒮 → 𝒯 , there is a unique sheaf morphism

𝐹 ∶ 𝒮 → 𝒯 making the following diagram commute:

(6.40)
𝒮 𝐹 //

𝜄𝒮
��

𝒯
𝜄𝒯
��

𝒮 𝐹 // 𝒯 .
(d) If 𝑀 is a paracompact Hausdorff space, then 𝒮 is fine.

Proof. Every section in 𝒮 (𝑈) extends to a section in 𝒮 (𝑀) by defining it to be
zero outside of 𝑈 , so 𝒮 is flasque.

The morphism 𝜄𝒮 ∶ 𝒮 → 𝒮 is defined by sending 𝑠 ∈ 𝒮 (𝑈) to the (continuous)
section 𝑠+ ∈ 𝒮 (𝑈) defined by (5.6). Since two elements of 𝒮 (𝑈) that have the same
germ at every point are equal by the locality property, 𝜄𝒮 is injective.

If 𝐹 ∶ 𝒮 → 𝒯 is a sheaf morphism, the morphism 𝐹 ∶ 𝒮 → 𝒯 is defined by
𝐹 𝑈 (𝜎)(𝑝) = 𝐹𝑝(𝜎(𝑝))

for 𝜎 ∈ 𝒮 (𝑈), where 𝐹𝑝 is the stalk homomorphism determined by 𝐹 . Since 𝐹 𝑈 is
defined pointwise, it commutes with restrictions and thus defines a sheaf morphism;
and 𝐹 respects the group structure on stalks because each 𝐹𝑝 does. For any section
𝑠 ∈ 𝒮 (𝑈),

𝐹 𝑈 ∘ 𝜄𝒮 (𝑠)(𝑝) = 𝐹𝑝(𝑠+(𝑝)) = 𝐹𝑝([𝑠]𝑝) = [𝐹𝑈 (𝑠)]𝑝
= (𝐹𝑈 (𝑠))+(𝑝) = 𝜄𝒯 ∘ 𝐹𝑈 (𝑠)(𝑝),

showing that (6.40) commutes. For every section 𝜎 ∈ 𝒮 (𝑈), the value 𝜎(𝑝) at each
𝑝 ∈ 𝑈 is the germ at 𝑝 of some section 𝑠 ∈ 𝒮 (𝑉 ) on some neighborhood 𝑉 of 𝑝,
and

𝐹 𝑈 (𝜎)(𝑝) = 𝐹𝑝([𝑠]𝑝) = [𝐹𝑉 (𝑠)]𝑝.
This shows that 𝐹 is completely determined by 𝐹 , thus proving uniqueness.

Now suppose 𝑀 is a paracompact Hausdorff space. To see that 𝒮 is fine, sup-
pose {𝑈𝛽}𝛽∈𝐵 is a locally finite open cover of 𝑀 , and let {𝜓𝛽}𝛽∈𝐵 be a subordinate
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topological partition of unity. Choose a well-ordering of the index set 𝐵, and for
each 𝛽 ∈ 𝐵 define a morphism 𝜂𝛽 ∶ 𝒮 → 𝒮 on the stalk level by

(𝜂𝛽𝜎)(𝑥) =
{

𝜎(𝑥) if 𝛽 is the smallest index for which 𝜓𝛽(𝑥) > 0,
0 otherwise.

The support of 𝜂𝛽 is contained in that of 𝜓𝛽 and therefore in 𝑈𝛽 , and it is straight-
forward to check that the collection {𝜂𝛽}𝛽∈𝐵 is a sheaf partition of unity. □

For convenience, we will indulge in a slight abuse of notation and consider 𝒮
to be a subsheaf of 𝒮 by identifying it with the image of the morphism 𝜄𝒮 , which
is exactly the sheafification 𝒮 +.

Theorem 6.34. Let 𝑀 be a paracompact Hausdorff space. Every flasque sheaf of
abelian groups on 𝑀 is acyclic in Čech cohomology.

Proof. Wewill prove by induction on 𝑞 that for every 𝑞 ≥ 1 and every flasque sheaf
𝒮 on 𝑀 , we have 𝐻𝑞(𝑀; 𝒮 ) = 0.

Suppose 𝒮 is a flasque sheaf on 𝑀 , and let 𝒮 be its sheaf of rough sections.
We have an exact sheaf sequence
(6.41) 0 → 𝒮 ↪ 𝒮 → 𝒮 /𝒮 → 0.
The corresponding long exact sequence in Čech cohomology contains the segment
(6.42) 𝐻0(𝑀; 𝒮 ) → 𝐻0(𝑀; 𝒮 /𝒮 ) → 𝐻1(𝑀; 𝒮 ) → 𝐻1(𝑀; 𝒮 ).
Since 𝒮 is fine, the rightmost group in (6.42) is trivial. By Theorem 6.7, the first
map is equivalent to the global section map 𝒮 (𝑀) → (𝒮 /𝒮 )(𝑀), which is surjec-
tive by Lemma 6.32; thus 𝐻1(𝑀; 𝒮 ) = 0 for every flasque sheaf 𝒮 .

Now let 𝑞 ≥ 1, and assume we have proved that 𝐻𝑞(𝑀; 𝒮 ) = 0 for every
flasque sheaf 𝒮 . Suppose 𝒮 is flasque, and consider the following portion of the
long exact sequence associated with (6.41):

𝐻𝑞(𝑀; 𝒮 ) → 𝐻𝑞(𝑀; 𝒮 /𝒮 ) → 𝐻𝑞+1(𝑀; 𝒮 ) → 𝐻𝑞+1(𝑀; 𝒮 ).
The first and last groups above are zero because 𝒮 is fine. It follows from Lemma
6.32 that 𝒮 /𝒮 is flasque, so the inductive hypothesis implies 𝐻𝑞+1(𝑀; 𝒮 ) ≅
𝐻𝑞(𝑀; 𝒮 /𝒮 ) = 0, thus completing the induction. □

Corollary 6.35. On a paracompact Hausdorff space, the sheaf cohomology groups
defined by either the Godement construction or the Grothendieck construction are
isomorphic to those defined by the Čech construction.

Proof. Either construction starts with a resolution by sheaves that are acyclic in
Čech cohomology by Theorems 6.31 and 6.34, so the result follows from the de
Rham–Weil theorem. □
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Problems
6-1. Suppose 𝑀 is a positive-dimensional complex manifold. Show that the

sheaf 𝒪 of holomorphic functions on 𝑀 and the constant sheaf ℂ on 𝑀
are not fine. [Hint: Let 𝑈, 𝑉 be proper open subsets of 𝑀 whose union
is 𝑀 and whose intersection is nonempty, and show that there is no sheaf
partition of unity subordinate to the cover 𝒰 = {𝑈, 𝑉 }.]

6-2. Let 𝑀 be a paracompact Hausdorff space and ℛ a fine sheaf of commu-
tative rings on 𝑀 . Show that every sheaf of ℛ-modules on 𝑀 is fine.

6-3. Let 𝑀 be a smooth manifold, and let 𝒰 = {𝑈𝛼}𝛼∈𝐴 be an indexed open
cover of 𝑀 such that each nonempty finite intersection 𝑈𝛼0 ∩ ⋯ ∩ 𝑈𝛼𝑝 is
contractible. (Such a cover can be constructed by choosing a Riemann-
ian metric on 𝑀 and choosing a geodesically convex neighborhood of
each point [LeeRM, Thm. 6.17], and noting that intersections of geodesi-
cally convex sets are geodesically convex and therefore contractible.) By
following through the proof of the de Rham–Weil theorem, show that
the de Rham–Weil isomorphisms ℛ1 ∶ 𝐻1

dR(𝑀; ℂ) → 𝐻1(𝑀; ℂ) and
ℛ2 ∶ 𝐻2

dR(𝑀; ℂ) → 𝐻2(𝑀; ℂ) can be described as follows.
(a) Let 𝜂 be a closed 1-form on 𝑀 . For each 𝛼, there is a smooth function

𝑢𝛼 on 𝑈𝛼 such that 𝜂|𝑈𝛼
= 𝑑𝑢𝛼 . Then

𝑎𝛼𝛽 = 𝑢𝛽|𝑈𝛼∩𝑈𝛽
− 𝑢𝛼|𝑈𝛼∩𝑈𝛽

defines a 1-cocycle 𝑎 on 𝒰 with coefficients in ℂ, and ℛ1[𝜂] = [[𝑎]].
(b) Let 𝜂 be a closed 2-form on 𝑀 . For each 𝛼, there is a smooth 1-

form 𝜑𝛼 on 𝑈𝛼 such that 𝜂|𝑈𝛼 = 𝑑𝜑𝛼; and for each 𝛼 and 𝛽 such that
𝑈𝛼 ∩ 𝑈𝛽 ≠ ∅, there is a smooth function 𝑢𝛼𝛽 on 𝑈𝛼 ∩ 𝑈𝛽 such that
𝜑𝛽|𝑈𝛼∩𝑈𝛽

− 𝜑𝛼|𝑈𝛼∩𝑈𝛽
= 𝑑𝑢𝛼𝛽 . Then

𝑎𝛼𝛽𝛾 = (𝑢𝛽𝛾 − 𝑢𝛼𝛾 + 𝑢𝛼𝛽)|𝑈𝛼∩𝑈𝛽 ∩𝑈𝛾

defines a 2-cocycle on 𝒰 with coefficients in ℂ, and ℛ2[𝜂] = [[𝑎]].
6-4. Let 𝑀 be a complex manifold. Let 𝒫 denote the sheaf of pluriharmonic

functions on𝑀 (see Problem 4-7), andℰℝ the sheaf of smooth real-valued
functions. For each 𝑞 ≥ 1, let ℱ 𝑞 denote the sheaf of smooth real (𝑞 + 1)-
forms whose (𝑞 + 1, 0) and (0, 𝑞 + 1)-parts are zero; in other words, ℱ 𝑞

is the sheaf of smooth real-valued forms taking values in Λ𝑞,1𝑀 ⊕ ⋯ ⊕
Λ1,𝑞𝑀 . Show that the following sheaf sequence is a fine resolution of 𝒫 :

0 → 𝒫 ↪ ℰℝ
𝑖𝜕𝜕⟶ ℱ 1 𝑑→ ℱ 2 𝑑→ ⋯ 𝑑→ ℱ 𝑞 𝑑→ ⋯ .
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Conclude that for 𝑞 ≥ 2,

𝐻𝑞(𝑀; 𝒫 ) ≅
Ker (𝑑 ∶ ℱ 𝑞(𝑀) → ℱ 𝑞+1(𝑀))
Im (𝑑 ∶ ℱ 𝑞−1(𝑀) → ℱ 𝑞(𝑀))

.

State the analogous result for 𝑞 = 1. [Hint: For the proof of exactness at
ℱ 𝑞 , if 𝛽 is a local section of ℱ 𝑞 and 𝛽 = 𝑑𝛼, write 𝛼 = 𝛼(𝑞,0) + 𝛼 + 𝛼(0,𝑞)

with 𝛼 a section of ℱ 𝑞−1, and show that locally 𝑑𝛼(𝑞,0) = 𝑑𝜕𝜎 for some
(𝑞 − 1, 0) form 𝜎.]

6-5. Let 𝑀 be any nonempty topological space, and let ℤ𝑝 and ℝ𝑝 be the
skyscraper sheaves at a point 𝑝 ∈ 𝑀 with values in ℤ and ℝ, respec-
tively, so ℤ𝑝 is a subsheaf of ℝ𝑝. Show that ℤ𝑝 is flasque but not injec-
tive, by showing that the identity morphism ℤ𝑝 → ℤ𝑝 does not extend to
a morphism ℝ𝑝 → ℤ𝑝.

6-6. This problem describes how to construct the Godement resolution of a
sheaf. Let 𝒮 be a sheaf of abelian groups on a topological space 𝑀 .
Define 𝒮 0 = 𝒮 (the sheaf of rough sections of 𝒮 ). Next, let 𝒬1 = 𝒮 0/𝒮 ,
where we identify 𝒮 with a subsheaf of 𝒮 via the canonical injection 𝜄𝒮
given by Lemma 6.33; and let 𝒮 1 = 𝒬1. Let 𝑑0 ∶ 𝒮 0 → 𝒮 1 be the
composition

𝒮 0 Π−→ 𝒬1 𝜄𝒬1
−−→ 𝒬1,

where the first map is given by Proposition 5.22 and the second by Lemma
6.33. Then by induction define 𝒬𝑗+1 = 𝒬𝑗 /𝒬𝑗 and 𝒮 𝑗+1 = 𝒬𝑗+1, with the
morphism 𝑑𝑗 ∶ 𝒮 𝑗 → 𝒮 𝑗+1 defined as above. The Godement resolution
of 𝓢 is the following sequence of sheaf morphisms

0 → 𝒮
𝜄𝒮−−→ 𝒮 0 𝑑0−−→ 𝒮 1 𝑑1−−→ 𝒮 2 → ⋯ .

Prove that this is a flasque resolution.
6-7. Another approach that is sometimes used to define sheaf cohomology

groups (e.g., in [Wel08, Chap. 2]) is based on resolutions by soft sheaves,
defined as follows. If 𝒮 is a sheaf of abelian groups on a space 𝑀 and
𝐾 ⊆ 𝑀 is a closed subset, let 𝒮 (𝐾) denote the group of continuous sec-
tions of the étalé space Et(𝒮 ) over 𝐾 . (This can be naturally identified
with the inverse image sheaf 𝑖−1(𝒮 ), where 𝑖∶ 𝐾 → 𝑀 is inclusion. See
Problem 5-13). We define a restriction operator 𝑟𝑀

𝐾 ∶ 𝒮 (𝑀) → 𝒮 (𝐾) by
letting 𝑟𝑀

𝐾 (𝑠) be the restriction to 𝐾 of the continuous function 𝑠+ ∶ 𝑀 →
Et(𝒮 ) defined by (5.6). The sheaf 𝒮 is said to be soft if for every closed
subset 𝐾 ⊆ 𝑀 , the restriction map 𝑟𝑀

𝐾 is surjective.
(a) Let 𝑀 be a paracompact Hausdorff space. Prove that both conclu-

sions of Lemma 6.32 hold if “flasque” is replaced by “soft.”
(b) For every sheaf 𝒮 , prove that the sheaf of rough sections 𝒮 is soft.
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(c) Prove that every soft sheaf on a paracompact Hausdorff space is
acyclic in Čech cohomology.

(d) Let 𝒮 be a sheaf of abelian groups on a paracompact Hausdorff space,
and supposewe are given a resolution of𝒮 by soft sheaves. Prove that
the cohomology groups of the corresponding global section sequence
are isomorphic to the Čech cohomology groups of 𝒮 .

6-8. Prove that every fine sheaf on a paracompact Hausdorff space is soft.
6-9. Let 𝒮 be a sheaf of abelian groups on a paracompact Hausdorff space 𝑀 .

Show that the following are equivalent:
(a) 𝒮 is fine.
(b) The sheaf ℋom(𝒮 , 𝒮 ) is soft (see Problems 5-7 and 6-7).
(c) For each pair of disjoint closed subsets 𝐾, 𝐿 ⊆ 𝑀 , there is a sheaf

morphism 𝐹 ∶ 𝒮 → 𝒮 that restricts to the identity on a neighborhood
of 𝐾 and to the zero morphism on a neighborhood of 𝐿.

[Hint: For (b) ⇒ (a), let {𝑈𝛼}𝛼∈𝐴 be a locally finite open cover of 𝑀 , and
choose another open cover {𝑉𝛼}𝛼∈𝐴 satisfying 𝑉𝛼 ⊆ 𝑉 𝛼 ⊆ 𝑈𝛼 . Let Ψ be
the set of collections {𝜓𝛽}𝛽∈𝐵 where 𝐵 ⊆ 𝐴, each 𝜓𝛽 is a sheaf morphism
𝒮 → 𝒮 satisfying supp𝜓𝛽 ⊆ 𝑈𝛽 , and ∑𝛽∈𝐵 𝜓𝛽 restricts to the identity
on ⋃𝛽∈𝐵 𝑉 𝛽 . Give Ψ a partial order by saying {𝜓𝛽}𝛽∈𝐵 ≤ {𝜓′

𝛽}𝛽∈𝐵′ if
𝐵 ⊆ 𝐵′ and 𝜓𝛽 = 𝜓′

𝛽 for 𝛽 ∈ 𝐵, and use Zorn’s lemma.]
6-10. This problem requires some knowledge of simplicial cohomology. (See

[Mun84, Chap. 5] or [Hat02, Chap. 3].) Suppose 𝐾 is a simplicial com-
plex and |𝐾| is its underlying topological space. For each vertex 𝑣 of 𝐾 ,
the star of 𝒗, denoted by St 𝑣, is the union of the interiors of all simplices
that have 𝑣 as a vertex. If 𝑣0, … , 𝑣𝑝 are the vertices of a simplex 𝜎 of 𝐾 ,
then St 𝑣0 ∩ ⋯ ∩ St 𝑣𝑝 is a neighborhood of 𝜎 in |𝐾|. Let 𝐺 be an abelian
group and let 𝒰 be the open cover of |𝐾| consisting of the stars of all the
vertices.
(a) Show that 𝐻𝑝(𝒰; 𝐺) is isomorphic to the simplicial cohomology

group 𝐻𝑝(𝐾; 𝐺).
(b) If 𝒱 is a refinement of 𝒰 , show that there is a subdivision of 𝐾 whose

covering by open stars provides a further refinement of 𝒱 , and then
use the isomorphism between singular and simplicial cohomology to
provide another proof that 𝐻𝑝

Sing(𝑀; 𝐺) ≅ 𝐻𝑝(𝑀; 𝐺) for a triangu-
lable topological space 𝑀 .





Chapter 7

Connections

Among the main tools in Riemannian geometry are connections, or covariant differ-
entiation operators, on vector bundles. Connections play an equally important role
in complex geometry, and this chapter is dedicated to exploring their fundamental
properties.

We begin with the definition of a connection on a smooth complex vector bun-
dle, and show how to construct connections and how to do computations with them.
Next we describe the curvature of a connection, which can be thought of as an ob-
struction to the existence of parallel local frames. We then show how a connection
can be used to construct a cohomology class associated with every smooth complex
vector bundle, called the first real Chern class; for line bundles, it is closely related
to the sheaf-theoretic Chern class defined in Chapter 3.

The last part of the chapter focuses on holomorphic vector bundles. If we en-
dow such a bundle with a Hermitian fiber metric, there are many connections on the
bundle that are compatible with the metric. But for holomorphic Hermitian vector
bundles, there is an additional condition, called compatibility with the holomorphic
structure, that allows us to single out a unique connection, called the Chern con-
nection. Here we introduce the Chern connection and study some of its properties.

Connections on Complex Vector Bundles
Let 𝐸 be a smooth complex vector bundle of rank 𝑚 on a smooth manifold 𝑀 . A
connection on 𝐸 is a map ∇∶ Γ(𝑇 𝑀) × Γ(𝐸) → Γ(𝐸), written (𝑋, 𝜎) ↦ ∇𝑋𝜎,
that is linear over 𝐶∞(𝑀) in 𝑋, linear over ℂ in 𝜎, and satisfies the product rule
∇𝑋(𝑓𝜎) = 𝑓∇𝑋𝜎 + (𝑋𝑓)𝜎 for every smooth complex-valued function 𝑓 . The
expression ∇𝑋𝜎 is called the covariant derivative of 𝝈 in the direction 𝑿. The
value of ∇𝑋𝜎 at a point 𝑝 ∈ 𝑀 depends only on the value of 𝑋 at 𝑝 and the value
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of 𝜎 in an arbitrarily small neighborhood of 𝑝 (see [LeeRM, Lemma 4.5], where this
is proved for real vector bundles; the proof for complex bundles is just the same).
Consequently any connection ∇ on 𝐸 determines a connection, still denoted by ∇,
on the restriction of 𝐸 to any open subset of 𝑀 [LeeRM, Prop. 4.3]. We will often
make use of this fact without further comment.

In addition to determining covariant derivatives with respect to specific vector
fields, a connection also determines a total covariant derivative of each smooth
section 𝜎: this is the section ∇𝜎 of the bundle 𝑇 ∗𝑀 ⊗ 𝐸, which is canonically
isomorphic to Hom(𝑇 𝑀, 𝐸), defined by (∇𝜎)(𝑋) = ∇𝑋𝜎.

We extend our connections by complex linearity to accept complex vector fields
as well as real ones: if ∇ is a connection on 𝐸 and 𝑍 = 𝑋 +𝑖𝑌 is a smooth complex
vector field on 𝑀 , we set

∇𝑍𝜎 = ∇𝑋𝜎 + 𝑖∇𝑌 𝜎.

This operation is easily seen to be linear over 𝐶∞(𝑀; ℂ) in 𝑍, and it allows us
to regard the total covariant derivative of 𝜎 (still denoted by ∇𝜎) as a section of
𝑇 ∗

ℂ𝑀 ⊗ 𝐸 ≅ Hom(𝑇ℂ𝑀, 𝐸).
Because connections are determined locally, we can carry out most computa-

tions related to them in terms of local frames. Thus suppose (𝑠𝑗) = (𝑠1, … , 𝑠𝑚) is
a smooth local frame for 𝐸 over a subset 𝑈 ⊆ 𝑀 . For a given vector field 𝑋 on 𝑈 ,
we can express each of the covariant derivatives ∇𝑋(𝑠𝑗) in terms of the same frame
(using the summation convention) as

(7.1) ∇𝑋𝑠𝑗 = 𝜃𝑘
𝑗 (𝑋)𝑠𝑘

for some smooth coefficients 𝜃𝑘
𝑗 (𝑋). Formula (7.1) determines the covariant deriv-

ative of an arbitrary section 𝜎 = 𝜎𝑗𝑠𝑗 by

(7.2) ∇𝑋(𝜎𝑗𝑠𝑗) = (𝑋𝜎𝑗)𝑠𝑗 + 𝜎𝑗𝜃𝑘
𝑗 (𝑋)𝑠𝑘.

Because ∇ is linear over 𝐶∞(𝑀) in 𝑋, the coefficients 𝜃𝑘
𝑗 define a matrix of

complex 1-forms, called the connection forms with respect to this frame. They
are smooth because their action on any smooth vector field 𝑋 can be written as
𝜃𝑘

𝑗 (𝑋) = 𝜀𝑘(∇𝑋𝑠𝑗), where (𝜀𝑘) is the frame for 𝐸∗ dual to (𝑠𝑗). In terms of these
forms, we can write the total covariant derivative as

∇𝑠𝑗 = 𝜃𝑘
𝑗 ⊗ 𝑠𝑘,(7.3)

∇(𝜎𝑗𝑠𝑗) = 𝑑𝜎𝑗 ⊗ 𝑠𝑗 + 𝜎𝑗𝜃𝑘
𝑗 ⊗ 𝑠𝑘.(7.4)

Conversely, given an arbitrary matrix of smooth complex 1-forms 𝜃𝑘
𝑗 on the do-

main 𝑈 of a smooth local frame for 𝐸, formula (7.2) determines a connection on 𝐸
over 𝑈 .
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If we have another local frame ( ̃𝑠𝑘), then where they overlap we can write

̃𝑠𝑘 = 𝜏𝑗
𝑘𝑠𝑗 ,

for a GL(𝑚, ℂ)-valued transition function 𝜏 = (𝜏𝑗
𝑘). To see how the connection

forms change, we compute

∇ ̃𝑠𝑘 = 𝑑𝜏𝑗
𝑘 ⊗ 𝑠𝑗 + 𝜏𝑗

𝑘𝜃𝑙
𝑗 ⊗ 𝑠𝑙 = 𝑑𝜏𝑗

𝑘 ⊗ (𝜏−1)𝑝
𝑗 ̃𝑠𝑝 + 𝜏𝑗

𝑘𝜃𝑙
𝑗 ⊗ (𝜏−1)𝑝

𝑙 ̃𝑠𝑝.

Comparing this with ∇ ̃𝑠𝑘 = ̃𝜃𝑝
𝑘 ⊗ ̃𝑠𝑝, we find that

̃𝜃𝑝
𝑘 = (𝜏−1)𝑝

𝑗 𝑑𝜏𝑗
𝑘 + (𝜏−1)𝑝

𝑙 𝜃𝑙
𝑗𝜏𝑗

𝑘,

or in matrix notation,

(7.5) ̃𝜃 = 𝜏−1𝑑𝜏 + 𝜏−1𝜃𝜏.

(Note that the 𝑑𝜏 and 𝜃 factors above are matrices of complex 1-forms, while the
other factors on the right-hand side are matrices of complex-valued functions. It
is important to observe the order of factors because matrix multiplication does not
commute in general.)

Now suppose 𝐸 is endowed with a Hermitian fiber metric. A connection ∇ on
𝐸 is compatible with the metric, or a metric connection, if the following identity
holds for all 𝑋 ∈ Γ(𝑇 𝑀) and 𝜎, 𝜏 ∈ Γ(𝐸):

(7.6) 𝑋⟨𝜎, 𝜏⟩ = ⟨∇𝑋𝜎, 𝜏⟩ + ⟨𝜎, ∇𝑋𝜏⟩.

When we apply this to a complex vector field 𝑍, the equation for compatibility with
the metric reads

(7.7) 𝑍⟨𝜎, 𝜏⟩ = ⟨∇𝑍𝜎, 𝜏⟩ + ⟨𝜎, ∇𝑍𝜏⟩,

because of the conjugate linearity of the Hermitian inner product in its second ar-
gument.

The next proposition gives an important property of the connection forms for a
metric connection.

Proposition 7.1. Suppose 𝐸 → 𝑀 is a smooth complex vector bundle with a Her-
mitian fiber metric and ∇ is a metric connection on 𝐸. The matrix of connection
1-forms with respect to any local orthonormal frame is skew-Hermitian:

𝜃𝑘
𝑗 = −𝜃𝑗

𝑘.

Proof. Let (𝑠𝑗) be a local orthonormal frame for 𝐸, and let 𝜃𝑘
𝑗 be the corresponding

connection 1-forms. For every local complex vector field 𝑍, compatibility with the
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metric implies
0 = 𝑍(𝛿𝑗𝑘) = 𝑍⟨𝑠𝑗 , 𝑠𝑘⟩ = ⟨∇𝑍𝑠𝑗 , 𝑠𝑘⟩ + ⟨𝑠𝑗 , ∇𝑍𝑠𝑘⟩

= ⟨𝜃𝑙
𝑗(𝑍)𝑠𝑙, 𝑠𝑘⟩ + ⟨𝑠𝑗 , 𝜃𝑙

𝑘(𝑍)𝑠𝑙⟩ = 𝜃𝑙
𝑗(𝑍)𝛿𝑙𝑘 + 𝜃𝑙

𝑘(𝑍)𝛿𝑗𝑙

= 𝜃𝑘
𝑗 (𝑍) + 𝜃𝑗

𝑘(𝑍). □

There are always plenty of connections compatible with a given metric: For
example, we can choose an open cover of 𝑀 by domains 𝑈𝛼 on each of which there
exists a local orthonormal frame for 𝐸, together with a smooth partition of unity
{𝜓𝛼} subordinate to this cover; then define a connection ∇𝛼 on 𝐸|𝑈𝛼 by setting all
of the connection 1-forms to be zero, and define a global connection ∇ on 𝐸 by
blending these together with the partition of unity:
(7.8) ∇𝑋𝜎 = ∑𝛼

𝜓𝛼∇𝛼
𝑋𝜎.

► Exercise 7.2. Prove that (7.8) defines a metric connection on 𝐸.

The following lemma is a useful technical result about metric connections that
can simplify some computations. We will use it in Chapter 10.
Lemma 7.3. Suppose 𝐸 → 𝑀 is a smooth Hermitian vector bundle and ∇ is a
metric connection on 𝐸. In a neighborhood of each 𝑥0 ∈ 𝑀 , there is a smooth
orthonormal frame (𝑠𝑗) for 𝐸 that satisfies ∇𝑠𝑗 = 0 at 𝑥0.

Proof. Start with any orthonormal frame (𝑠𝑗), and let 𝜃𝑘
𝑗 be the corresponding

connection forms. Proposition 7.1 shows that the matrix (𝜃𝑘
𝑗 ) is skew-Hermitian.

Choose any smooth coordinates (𝑥𝑎) centered at 𝑥0 on an open set 𝑈 ⊆ 𝑀 , and
write

𝜃𝑘
𝑗 |𝑥0

= 𝐴𝑘
𝑗𝑎𝑑𝑥𝑎|𝑥0

for some constants 𝐴𝑘
𝑗𝑎. Let M(𝑟, ℂ) denote the space of all complex 𝑟 × 𝑟 matrices

(where 𝑟 is the rank of 𝐸), and let 𝐹 ∶ 𝑈 → M(𝑟, ℂ) be the matrix-valued function
𝐹 𝑘

𝑗 (𝑥) = 𝐴𝑘
𝑗𝑎𝑥𝑎.

Then the fact that (𝜃𝑘
𝑗 ) is skew-Hermitian implies that 𝐹 (𝑥) is skew-Hermitian for

all 𝑥. Define another matrix-valued function 𝐵(𝑥) = 𝑒−𝐹 (𝑥); it satisfies
𝐵𝑘

𝑗 (𝑥0) = 𝛿𝑘
𝑗 ; 𝜕𝑎𝐵𝑘

𝑗 (𝑥0) = −𝜕𝑎𝐹 𝑘
𝑗 (𝑥0) = −𝐴𝑘

𝑗𝑎.

Since the space of skew-Hermitian matrices is the Lie algebra of the unitary
group, it follows that 𝐵(𝑥) is unitary for each 𝑥. Thus the local frame ( ̃𝑠𝑘) defined
by

̃𝑠𝑘(𝑥) = 𝐵𝑗
𝑘(𝑥)𝑠𝑗(𝑥)
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is orthonormal. At 𝑥0, ̃𝑠𝑘 = 𝑠𝑘, and

∇𝜕𝑎 ̃𝑠𝑘 = 𝜕𝑎𝐵𝑗
𝑘(𝑥0)𝑠𝑗 + 𝛿𝑗

𝑘𝐴𝑙
𝑗𝑎𝑠𝑙 = 0.

Thus ( ̃𝑠𝑘) satisfies the conclusion of the lemma. □

Covariant Derivatives Along Curves

A familiar construction in Riemannian geometry is to use a connection on the
tangent bundle to define a covariant derivative operator acting on vector fields along
curves (see [LeeRM, Thm. 4.24]). The same construction can be carried out for
arbitrary vector bundles; here we briefly describe how that works.

Suppose 𝐸 → 𝑀 is a smooth complex vector bundle and 𝛾 ∶ 𝐼 → 𝑀 is a
smooth curve (here 𝐼 ⊆ ℝ is some interval). A section of𝑬 along 𝜸 is a continuous
map 𝜎 ∶ 𝐼 → 𝐸 satisfying 𝜎(𝑡) ∈ 𝐸𝛾(𝑡) for each 𝑡 ∈ 𝐼 . A section along 𝛾 is said to
be extendible if there is a section 𝜎 of 𝐸 on an open set containing the image of 𝛾
such that 𝜎(𝑡) = 𝜎(𝛾(𝑡)) for each 𝑡 ∈ 𝐼 .

Proposition 7.4 (Covariant Derivative Along a Curve). Suppose 𝐸 → 𝑀 is a
smooth complex vector bundle and ∇ is a connection on 𝐸. For each smooth curve
𝛾 ∶ 𝐼 → 𝑀 , there is a unique operator 𝐷𝑡 that takes smooth sections of 𝐸 along 𝛾
to smooth sections along 𝛾 , satisfying

(i) LINEARITY OVER ℝ: 𝐷𝑡(𝑎𝜎 + 𝑏𝜏) = 𝑎𝐷𝑡𝜎 + 𝑏𝐷𝑡𝜏 for 𝑎, 𝑏 ∈ ℝ.
(ii) PRODUCT RULE: 𝐷𝑡(𝑓𝜎) = 𝑓 ′𝜎 + 𝑓𝐷𝑡𝜎 for 𝑓 ∈ 𝐶∞(𝐼).
(iii) If 𝜎 is an extendible smooth section along 𝛾 , then for every smooth exten-

sion 𝜎 of 𝜎, we have 𝐷𝑡𝜎(𝑡) = ∇𝛾′(𝑡)𝜎.

► Exercise 7.5. Show how to adapt the proof of [LeeRM, Thm. 4.24] to prove
this proposition.

For a smooth vector bundle 𝐸 → 𝑀 with a connection ∇, a smooth section 𝜎
of 𝐸 along a smooth curve 𝛾 ∶ 𝐼 → 𝑀 is said to be parallel along 𝜸 if 𝐷𝑡𝜎 ≡ 0.

Proposition 7.6 (Existence and Uniqueness of Parallel Transport). Let 𝐸 → 𝑀
be a smooth vector bundle endowed with a connection ∇, and let 𝛾 ∶ 𝐼 → 𝑀 be a
smooth curve. Given 𝑡0 ∈ 𝐼 and an element 𝜎0 ∈ 𝐸𝛾(𝑡0), there is a unique parallel
section 𝜎 along 𝛾 such that 𝜎(𝑡0) = 𝜎0, called the parallel transport of 𝝈0 along 𝜸.

Proof. First assume the image of 𝛾 is contained in the domain of a smooth local
frame (𝑠1, … , 𝑠𝑚) for 𝐸, and let 𝜃𝑘

𝑗 be the connection 1-forms for this frame. We
can write 𝜎(𝑡) = 𝑓 𝑗(𝑡)𝑠𝑗(𝛾(𝑡)) (using the summation convention) for some smooth
functions 𝑓 1, … , 𝑓 𝑚 ∶ 𝐼 → ℂ. Since the sections 𝑠𝑗 are extendible, Proposition
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7.4 implies
𝐷𝑡𝜎(𝑡) = ̇𝑓 𝑗(𝑡)𝑠𝑗(𝛾(𝑡)) + 𝑓 𝑗(𝑡)∇𝛾′(𝑡)𝑠𝑗

= ̇𝑓 𝑗(𝑡)𝑠𝑗(𝛾(𝑡)) + 𝑓 𝑗(𝑡)𝜃𝑘
𝑗 (𝛾′(𝑡))𝑠𝑘(𝛾(𝑡))

= ( ̇𝑓 𝑘(𝑡) + 𝑓 𝑗(𝑡)𝜃𝑘
𝑗 (𝛾′(𝑡)))𝑠𝑘(𝛾(𝑡))

(where dots represent derivatives with respect to 𝑡). Thus 𝜎 is parallel if and only
if its component functions satisfy the following system of linear ODEs on 𝐼 :

̇𝑓 𝑘(𝑡) = −𝑓 𝑗(𝑡)𝜃𝑘
𝑗 (𝛾′(𝑡)).

It follows from [LeeRM, Thm. 4.31] that this system has a unique solution on all
of 𝐼 satisfying the initial conditions 𝑓 𝑗(𝑡0) = 𝜎𝑗

0, where 𝜎0 = 𝜎𝑗
0𝑠𝑗(𝛾(𝑡0)).

For the general case, we can let 𝛽 be the supremum of all 𝑏 > 𝑡0 such that a
unique parallel transport 𝜎 exists on [0, 𝑏]. If 𝛽 < sup 𝐼 , we can choose a local frame
on an open set containing 𝛾(𝛽 − 𝛿, 𝛽 + 𝛿) for some small 𝛿 > 0, and find a parallel
section 𝜎 on that interval with initial value 𝜎(𝛽 − 𝛿/2) = 𝜎(𝛽 − 𝛿/2); by uniqueness,
𝜎 agrees with 𝜎 on their common domain, so 𝜎 provides a parallel extension of 𝜎
past 𝛽, which is a contradiction. The same argument works for 𝑡 < 𝑡0. □

A local section 𝜎 ∶ 𝑈 → 𝐸 defined on an open subset 𝑈 ⊆ 𝑀 is said to be
parallel if it is parallel along every smooth curve in 𝑈 . We end this section with
two properties of parallel transport whose proofs are left as exercises.
Proposition 7.7. If 𝐸 → 𝑀 is a smooth vector bundle endowed with a connection
∇, a local section 𝜎 ∶ 𝑈 → 𝐸 is parallel if and only if ∇𝜎 ≡ 0.
Proposition 7.8. Suppose 𝐸 → 𝑀 is a smooth Hermitian vector bundle and ∇ is
a metric connection on 𝐸.

(a) If 𝜎 and 𝜏 are parallel sections of 𝐸 along a smooth curve 𝛾 , then ⟨𝜎, 𝜏⟩
is constant along 𝛾 .

(b) If 𝜎 is a parallel section of 𝐸 (that is, ∇𝐸 ≡ 0) on a connected open subset
𝑈 ⊆ 𝑀 , then |𝜎| is constant.

► Exercise 7.9. Prove the two preceding propositions.

Curvature
A fundamental local invariant of a Riemannian metric is the curvature of its Levi-
Civita connection. For connections on complex vector bundles, there is an analo-
gous local invariant, defined in essentially the same way.

Suppose 𝐸 → 𝑀 is a smooth complex vector bundle and ∇ is a connection on
𝐸. We define a map Θ∶ Γ(𝑇ℂ𝑀) × Γ(𝑇ℂ𝑀) × Γ(𝐸) → Γ(𝐸), called the curvature
of ∇, by

Θ(𝑋, 𝑌 )𝜎 = ∇𝑋∇𝑌 𝜎 − ∇𝑌 ∇𝑋𝜎 − ∇[𝑋,𝑌 ]𝜎.
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The same argument as in the Riemannian case [LeeRM, Prop. 7.3] shows that Θ
is linear over 𝐶∞(𝑀; ℂ) in all three arguments 𝑋, 𝑌 , 𝜎, and thus defines a smooth
section of the bundle 𝑇 ∗

ℂ𝑀 ⊗𝑇 ∗
ℂ𝑀 ⊗𝐸∗⊗𝐸. Moreover, Θ is clearly antisymmetric

in 𝑋 and 𝑌 , and 𝐸∗ ⊗𝐸 ≅ 𝐸 ⊗𝐸∗ is canonically isomorphic to the bundle End(𝐸);
so Θ can be viewed as an element of Γ(Λ2

ℂ𝑀 ⊗ End(𝐸)) = ℰ2(𝑀;End(𝐸)). A
connection ∇ is said to be flat if its curvature is identically zero.

To study the curvature more deeply, let us choose a smooth local frame (𝑠𝑗)
for 𝐸, and let 𝜃𝑘

𝑗 be the corresponding matrix of connection forms. To compute
the curvature, it suffices to compute its action on each basis section 𝑠𝑗 for arbitrary
𝑋, 𝑌 :

Θ(𝑋, 𝑌 )𝑠𝑗 = ∇𝑋(𝜃𝑘
𝑗 (𝑌 )𝑠𝑘) − ∇𝑌 (𝜃𝑘

𝑗 (𝑋)𝑠𝑘) − 𝜃𝑘
𝑗 ([𝑋, 𝑌 ])𝑠𝑘

= 𝑋(𝜃𝑘
𝑗 (𝑌 ))𝑠𝑘 + 𝜃𝑘

𝑗 (𝑌 )𝜃𝑙
𝑘(𝑋)𝑠𝑙 − 𝑌 (𝜃𝑘

𝑗 (𝑋))𝑠𝑘 − 𝜃𝑘
𝑗 (𝑋)𝜃𝑙

𝑘(𝑌 )𝑠𝑙

− 𝜃𝑘
𝑗 ([𝑋, 𝑌 ])𝑠𝑘

= (𝑑𝜃𝑙
𝑗(𝑋, 𝑌 ) + (𝜃𝑙

𝑘 ∧ 𝜃𝑘
𝑗 )(𝑋, 𝑌 ))𝑠𝑙,

where in the last line we have used the invariant formula for the exterior derivative
of a 1-form [LeeSM, Prop. 14.29]. Thus Θ is represented locally by the matrix
(Θ𝑙

𝑗) of 2-forms, called the curvature forms of ∇ with respect to this frame, given
by
(7.9) Θ𝑙

𝑗 = 𝑑𝜃𝑙
𝑗 + 𝜃𝑙

𝑘 ∧ 𝜃𝑘
𝑗 .

If we interpret 𝜃𝑙
𝑗 and Θ𝑙

𝑗 as the local expressions for End(𝐸)-valued forms, we can
use the wedge product of endomorphism-valued forms defined by (4.18) to write
(7.9) in the form

Θ = 𝑑𝜃 + 𝜃 ∧ 𝜃.
There are a couple of caveats that need to be observed about this formula. First,

since 𝜃 is a matrix-valued 1-form, the wedge product 𝜃 ∧ 𝜃 need not be zero, as
it would be if 𝜃 were a scalar-valued 1-form. Second, although Θ is a globally
defined End(𝐸)-valued 2-form as described above, we can only interpret 𝜃 as an
endomorphism-valued form in the domain of a particular frame. If it were the local
matrix representation for a global End(𝐸)-valued 1-form, then its transformation
law under a change of frames would be ̃𝜃 = 𝜏−1𝑑𝜏 instead of the more complicated
formula (7.5). Even so, the definition of wedge products involving 𝜃 works the
same as for a globally defined form.

The next proposition gives a qualitative interpretation of the curvature of a con-
nection: it is the obstruction to the existence of parallel local frames. (A local frame
(𝑠1, … , 𝑠𝑘) for 𝐸 is said to be parallel if each of the sections 𝑠𝑗 is parallel.)
Proposition 7.10. Let 𝐸 → 𝑀 be a smooth complex vector bundle endowed with
a connection ∇. Then ∇ is flat if and only if every point of 𝑀 has a neighborhood
on which there exists a parallel local frame for 𝐸.
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Proof. One direction is easy: if (𝑠1, … , 𝑠𝑘) is a parallel local frame, then the con-
nection forms 𝜃𝑘

𝑗 are all identically zero, so the curvature forms Θ𝑘
𝑗 are zero as well.

Conversely, suppose Θ ≡ 0. Given 𝑝 ∈ 𝑀 , we begin by showing that every
element 𝜎0 ∈ 𝐸𝑝 has a parallel extension to a neighborhood of 𝑝. The proof is an
adaptation of [LeeRM, Lemma 7.8]. Choose smooth coordinates (𝑥1, … , 𝑥𝑁 ) on
some neighborhood 𝑈 of 𝑝, such that 𝑝 has coordinates (0, … , 0) and the image of
the coordinate map is a cube in ℝ𝑁 . We define 𝜎 on 𝑈 as follows: first parallel
transport 𝜎0 along the 𝑥1-axis; then from each point on the 𝑥1-axis, parallel trans-
port 𝜎 along the 𝑥2-curve through that point; and continue by induction to obtain
a section 𝜎 defined on all of 𝑈 . It is smooth because solutions to ODEs depend
smoothly on their initial conditions.

For each 𝑖 = 1, … , 𝑁 let 𝑀𝑖 ⊆ 𝑈 be the slice defined by 𝑥𝑖+1 = ⋯ = 𝑥𝑁 = 0.
We will prove by induction on 𝑗 that

(7.10) ∇𝜕1𝜎 = ⋯ = ∇𝜕𝑗𝜎 = 0 on 𝑀𝑗 .

For 𝑗 = 1, this is true by construction, and for 𝑗 = 𝑁 , it is the statement that 𝜎 is
parallel on 𝑈 . Assuming (7.10) is true for some 𝑗 ≥ 1, we also have ∇𝜕𝑗+1𝜎 ≡ 0 on
𝑀𝑗+1 by construction. For 1 ≤ 𝑖 ≤ 𝑗, since ∇𝜕𝑖𝜎 = 0 on 𝑀𝑗 , if we can show that
∇𝜕𝑗+1(∇𝜕𝑖𝜎) = 0 on 𝑀𝑗+1, it will follow from uniqueness of parallel transport that
∇𝜕𝑖𝜎 = 0 on all of 𝑀𝑗+1. By definition of the curvature,

∇𝜕𝑗+1(∇𝜕𝑖𝜎) = ∇𝜕𝑖(∇𝜕𝑗+1𝜎) + ∇[𝜕𝑗+1,𝜕𝑖]𝜎 + Θ(𝜕1, 𝜕2)𝜎.

Each of the terms on the right-hand side is zero on 𝑀𝑗+1: the first because 𝜕𝑗+1𝜎 ≡
0 there; the second because [𝜕𝑗+1, 𝜕𝑖] = 0; and the third because ∇ is flat. This
completes the induction and shows that every 𝜎0 ∈ 𝐸𝑝 has a parallel extension to a
neighborhood of 𝑝.

Now choose a basis (𝑏1, … , 𝑏𝑘) for 𝐸𝑝, and for each 𝑖 = 1, … , 𝑘, let 𝑠𝑖 be a par-
allel extension of 𝑏𝑖 to a neighborhood of 𝑝. By continuity, the sections (𝑠1, … , 𝑠𝑘)
will continue to be linearly independent in some neighborhood of 𝑝, so they consti-
tute a parallel local frame. □

Here is another way to look at curvature. Given a smooth complex vector bundle
𝐸 → 𝑀 and a connection ∇ on 𝐸, we can define a sequence of maps on bundle-
valued differential forms

ℰ0(𝑀; 𝐸) 𝐷⟶ ℰ1(𝑀; 𝐸) 𝐷⟶ ℰ2(𝑀; 𝐸) → ⋯ ,

called exterior covariant differentiation, as follows.

Proposition 7.11 (The Exterior Covariant Derivative). Suppose 𝑀 is a complex
manifold, 𝐸 → 𝑀 is a smooth complex vector bundle, and ∇ is a connection on 𝐸.
Then there are operators 𝐷 ∶ ℰ 𝑞(𝑀; 𝐸) → ℰ 𝑞+1(𝑀; 𝐸) for each 𝑞 ≥ 0 satisfying
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the following properties:

(i) For 𝜎 ∈ ℰ0(𝑀; 𝐸) = Γ(𝐸), 𝐷𝜎 = ∇𝜎.
(ii) For 𝛼 ∈ ℰ 𝑞(𝑀) and 𝛽 ∈ ℰ 𝑞′(𝑀; 𝐸),

𝐷(𝛼 ∧ 𝛽) = 𝑑𝛼 ∧ 𝛽 + (−1)𝑞𝛼 ∧ 𝐷𝛽.

(iii) 𝐷2𝛼 = Θ ∧ 𝛼, where Θ ∈ ℰ2(𝑀;End(𝐸)) is the curvature form of ∇.

Proof. The proof is closely parallel to that of Proposition 4.16 for the Cauchy–
Riemann operator 𝜕𝐸 . For an 𝐸-valued 0-form (smooth section of 𝐸), we simply
define 𝐷𝜎 = ∇𝜎. To extend this to higher-degree forms, choose a smooth local
frame (𝑠𝑗) for 𝐸. For a section 𝛼 ∈ ℰ 𝑞(𝑀; 𝐸) expressed locally as 𝛼 = 𝛼𝑗 ⊗ 𝑠𝑗
where the 𝛼𝑗’s are scalar 𝑞-forms (using the summation convention), we wish to let
𝐷𝛼 be the element of ℰ 𝑞+1(𝑀; 𝐸) whose local expression is

(7.11) 𝐷𝛼 = 𝑑𝛼𝑗 ⊗ 𝑠𝑗 + (−1)𝑞𝛼𝑗 ∧ 𝐷𝑠𝑗 .

If ̃𝑠𝑘 = 𝜏𝑗
𝑘𝑠𝑗 is another local frame, we can write 𝛼 = 𝛼𝑘 ⊗ ̃𝑠𝑘 with 𝜏𝑗

𝑘𝛼𝑘 = 𝛼𝑗 , and
use the product rule for ∇ to compute

𝑑𝛼𝑗 ⊗ 𝑠𝑗 + (−1)𝑞𝛼𝑗 ∧ 𝐷𝑠𝑗

= 𝑑(𝜏𝑗
𝑘𝛼𝑘) ⊗ ((𝜏−1)𝑙

𝑗 ̃𝑠𝑙) + (−1)𝑞(𝜏𝑗
𝑘𝛼𝑘) ∧ ∇((𝜏−1)𝑙

𝑗 ̃𝑠𝑙)
= ((((((((((

𝑑𝜏𝑗
𝑘 ∧ 𝛼𝑘 ⊗ (𝜏−1)𝑙

𝑗 ̃𝑠𝑙 + 𝜏𝑗
𝑘𝑑𝛼𝑘 ⊗ (𝜏−1)𝑙

𝑗 ̃𝑠𝑙

+
((((((((((((
(−1)𝑞𝜏𝑗

𝑘𝛼𝑘 ∧ 𝑑(𝜏−1)𝑙
𝑗 ⊗ ̃𝑠𝑙 + (−1)𝑞𝜏𝑗

𝑘𝛼𝑘 ∧ (𝜏−1)𝑙
𝑗∇ ̃𝑠𝑙

= 𝑑𝛼𝑘 ⊗ ̃𝑠𝑘 + (−1)𝑞𝛼𝑘 ∧ 𝐷 ̃𝑠𝑘,

where the two terms involving derivatives of 𝜏𝑗
𝑘 cancel because 𝑑((𝜏−1)𝑙

𝑗𝜏𝑗
𝑘) =

𝑑(𝛿𝑙
𝑘) = 0. This proves that 𝐷 is well defined, and properties (i) and (ii) follow

immediately from the definition.
To prove (iii), we note first that for 𝛼 ∈ ℰ 𝑞(𝑀) and 𝜎 ∈ ℰ0(𝑀; 𝐸) = Γ(𝐸),

property (ii) implies

𝐷2(𝛼 ∧ 𝜎) = 𝐷(𝑑𝛼 ∧ 𝜎 + (−1)𝑞𝛼 ∧ 𝐷𝜎)
= (−1)𝑞+1𝑑𝛼 ∧ 𝐷𝜎 + (−1)𝑞𝑑𝛼 ∧ 𝐷𝜎 + 𝛼 ∧ 𝐷2𝜎
= 𝛼 ∧ 𝐷2𝜎.

This implies two important facts: First, it shows that the action of 𝐷2 on ℰ 𝑞(𝑀; 𝐸)
is determined by that on ℰ0(𝑀; 𝐸). And second, by taking 𝛼 to be a 0-form
𝑓 ∈ 𝐶∞(𝑀), it shows that 𝐷2 is linear over 𝐶∞(𝑀) and is thus a smooth bun-
dle homomorphism, so it suffices to check (iii) on elements of a local frame for 𝐸.
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Given a smooth local frame (𝑠𝑗) with connection 1-forms 𝜃𝑘
𝑗 , we have

𝐷2𝑠𝑗 = 𝐷(𝜃𝑘
𝑗 ⊗ 𝑠𝑘) = 𝑑𝜃𝑘

𝑗 ⊗ 𝑠𝑘 − 𝜃𝑘
𝑗 ∧ 𝜃𝑙

𝑘 ⊗ 𝑠𝑙 = (𝑑𝜃𝑙
𝑗 + 𝜃𝑙

𝑘 ∧ 𝜃𝑘
𝑗 ) ⊗ 𝑠𝑙 = Θ𝑙

𝑗 ⊗ 𝑠𝑙,
which is (iii) in this case. □

The First Real Chern Class
For any connection ∇ on a smooth complex vector bundle 𝐸 → 𝑀 , the curvature
form Θ associated with ∇ is a global endomorphism-valued 2-form. Because the
trace of an endomorphism is independent of the choice of basis, we can form a
global scalar 2-form, called the first Chern form of ∇, by

𝑐1(∇) = 𝑖
2𝜋 trΘ.

The reason for the coefficient will emerge shortly. (The adjective “first” reflects the
fact that there are also higher Chern forms that can be defined using higher-degree
polynomials in the curvature forms; but we will not need those. These forms, and
the cohomology classes they determine, were introduced by Shiing-Shen Chern in
1946 [Che46].)
Theorem 7.12. For any connection on a smooth complex vector bundle, the first
Chern form is closed, and its de Rham cohomology class is independent of the
choice of connection.

Proof. Let 𝐸 → 𝑀 be a smooth complex vector bundle and ∇ a connection on 𝐸.
In terms of a smooth local frame, we have

𝑐1(∇) = 𝑖
2𝜋 Θ𝑗

𝑗 = 𝑖
2𝜋 (𝑑𝜃𝑗

𝑗 + 𝜃𝑗
𝑙 ∧ 𝜃𝑙

𝑗).

Because wedge products of (scalar) 1-forms anticommute, we can write the second
term above as

𝜃𝑗
𝑙 ∧ 𝜃𝑙

𝑗 = −𝜃𝑙
𝑗 ∧ 𝜃𝑗

𝑙 = −𝜃𝑗
𝑙 ∧ 𝜃𝑙

𝑗 ,
where the second equality follows from interchanging the dummy indices 𝑗 and 𝑙.
Thus the wedge product term is identically zero, so in the domain of the local frame
we have

(7.12) 𝑐1(∇) = 𝑖
2𝜋 𝑑𝜃𝑗

𝑗 ,

which is locally exact and thus closed. (It is typically not globally exact, though,
because the 1-forms 𝜃𝑘

𝑗 are not globally defined.)
To see that its cohomology class is independent of the choice of connection,

suppose ∇̃ is another connection on 𝐸. Define the difference tensor between ∇̃
and ∇ as the map 𝒟 ∶ Γ(𝑇ℂ𝑀) × Γ(𝐸) → Γ(𝐸) given by

𝒟(𝑋)𝜎 = ∇̃𝑋𝜎 − ∇𝑋𝜎.
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A straightforward computation shows that 𝒟 is linear over 𝐶∞(𝑀) in both argu-
ments, so 𝒟 is actually a global endomorphism-valued 1-form, that is, a section of
ℰ1(End(𝐸)). It follows that its trace is a global scalar 1-form, and we have

𝑐1(∇̃) − 𝑐1(∇) = 𝑖
2𝜋 ( tr Θ̃ − trΘ) = 𝑖

2𝜋 ( tr 𝑑 ̃𝜃 − tr 𝑑𝜃) = 𝑖
2𝜋 (tr 𝑑𝒟)

= 𝑖
2𝜋 𝑑(tr𝒟).

Thus 𝑐1(∇̃) and 𝑐1(∇) differ by an exact form, so they define the same de Rham
cohomology class. □

We need one more property of this cohomology class, which explains why the
factor of 𝑖 is included in the definition of the Chern form.
Proposition 7.13. Suppose 𝐸 → 𝑀 is a smooth complex vector bundle with a
Hermitian fiber metric. If ∇ is a metric connection on 𝐸, then 𝑐1(∇) is a real 2-
form.

Proof. Let∇ be ametric connection on𝐸. In a neighborhood of each point, wemay
choose an orthonormal local frame (𝑠𝑗), and let 𝜃𝑘

𝑗 be the corresponding connection
1-forms. Proposition 7.1 shows that

𝜃𝑘
𝑗 + 𝜃𝑗

𝑘 = 0.

Taking the trace of this equation, we find that the scalar 1-form 𝜃𝑗
𝑗 is purely imagi-

nary, and thus so is Θ𝑗
𝑗 = 𝑑𝜃𝑗

𝑗 . Thus 𝑐1(∇) = 𝑖
2𝜋 Θ𝑗

𝑗 is real. □

Let 𝐸 → 𝑀 be a smooth complex vector bundle. We can always choose a
Hermitian fiber metric on ∇ and a connection ∇ compatible with it, so that 𝑐1(∇) is
represented by a real 2-form. Thus the cohomology class determined by 𝑐1(∇) lies
in 𝐻2

dR(𝑀; ℝ) (considered as the subspace of 𝐻2
dR(𝑀; ℂ) consisting of cohomol-

ogy classes that are invariant under conjugation). We define the first real Chern
class of 𝑬, denoted by 𝑐ℝ

1 (𝐸) ∈ 𝐻2
dR(𝑀; ℝ), to be the cohomology class of 𝑐1(∇),

where ∇ is any connection on 𝐸. Under the de Rham–Weil isomorphisms, we can
also consider it as an element of the sheaf cohomology group 𝐻2(𝑀; ℝ) or the
singular cohomology group 𝐻2

Sing(𝑀; ℝ).

Line Bundles

Now we examine how this looks in the case of line bundles. Let 𝐿 → 𝑀 be
a smooth complex line bundle, and let ∇ be a connection on 𝐿. The endomor-
phism bundle End(𝐿) is a trivial line bundle because the identity endomorphism
is a canonical global frame, so we can consider the connection form Θ as a global
scalar-valued 2-form. If we choose a trivializing cover 𝒰 = {𝑈𝛼}𝛼∈𝐴 with a local
frame 𝑠𝛼 (that is, a nonvanishing local section) on each set 𝑈𝛼 , the connection is
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determined in 𝑈𝛼 by a 1×1 matrix of 1-forms, that is, an ordinary scalar 1-form. Let
us denote the 1-form associated with the local frame 𝑠𝛼 by 𝜃𝛼 , so ∇𝑠𝛼 = 𝜃𝛼 ⊗ 𝑠𝛼 .
When 𝑈𝛼 and 𝑈𝛽 overlap, equation (3.4) shows that the local frames 𝑠𝛼 and 𝑠𝛽
are related by 𝑠𝛽 = 𝜏𝛼𝛽𝑠𝛼 , so the transition formula (7.5) for the connection forms
becomes
(7.13) 𝜃𝛽 = 𝜏−1

𝛼𝛽 𝑑𝜏𝛼𝛽 + 𝜃𝛼

(because 1 × 1 matrices commute).
The curvature form is the globally defined 2-form Θ that satisfies Θ|𝑈𝛼 = 𝑑𝜃𝛼

for each 𝛼; and the Chern form is 𝑐1(∇) = 𝑖
2𝜋 Θ, a globally defined closed 2-form,

which is real if ∇ is a metric connection.
The next theorem explains the relationship between the first real Chern class

of a line bundle and the sheaf-theoretic Chern class defined in Chapter 5. It is the
reason the factor of 𝑖/(2𝜋) is included in the definition of 𝑐1(∇), and the negative
sign in the definition of 𝑐(𝐿). (See the remark following the proof for a comment
about the sign.)

Theorem 7.14. Let 𝐿 → 𝑀 be a smooth complex line bundle. Under the compo-
sition

𝐻2(𝑀; ℤ) → 𝐻2(𝑀; ℝ) → 𝐻2
dR(𝑀; ℝ),

in which the first map is the homomorphism induced by the sheaf inclusion 𝜄∶ ℤ ↪
ℝ and the second is the inverse of the de Rham–Weil isomorphism, the sheaf-
theoretic Chern class 𝑐(𝐿) maps to the first real Chern class 𝑐ℝ

1 (𝐿).

Proof. This is a matter of unwinding the definitions of two maps: first, the sheaf-
theoretic Chern class map 𝑐 ∶ 𝐻1(𝑀; ℰ∗) → 𝐻2(𝑀; ℤ), and second, the isomor-
phism ℛ2 ∶ 𝐻2

dR(𝑀; ℝ) → 𝐻2(𝑀; ℝ) given by the de Rham–Weil theorem.
We begin by choosing an open cover 𝒰 = {𝑈𝛼}𝛼∈𝐴 of 𝑀 by convex geodesic

balls with respect to some Riemannian metric, so that each 𝑈𝛼 and all finite inter-
sections 𝑈𝛼0 ∩⋯∩𝑈𝛼𝑝 are contractible, as in Problem 6-3. By choosing the geodesic
balls small enough, we can also ensure that over each 𝑈𝛼 there is a smooth local
frame 𝑠𝛼 (that is, a nonvanishing local section) for 𝐿.

Recall that the sheaf-theoretic Chern class is defined by 𝑐(𝐿) = −𝛿∗([𝐿]),
where 𝛿∗ ∶ 𝐻1(𝑀; ℰ∗) → 𝐻2(𝑀; ℤ) is the connecting homomorphism in the long
exact sequence arising from the short exact sheaf sequence

0 → ℤ
𝜄

↪ ℰ 𝜀⟶ ℰ∗ → 0.
The homomorphism 𝛿∗ is characterized by (6.6). To compute it explicitly, we begin
by letting 𝜏𝛼𝛽 ∶ 𝑈𝛼 ∩ 𝑈𝛽 → GL(1, ℂ) be the transition functions for the given local
frames; taken together, they define a cocycle 𝜏 ∈ 𝐶1(𝒰; ℰ∗) that represents [𝐿] ∈
𝐻1(𝑀; ℰ∗). Because 𝑈𝛼 ∩ 𝑈𝛽 is contractible, the nonvanishing complex-valued
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function 𝜏𝛼𝛽 has a complex logarithm there by the result of Problem 5-11, so we
can choose a smooth function 𝑏𝛼𝛽 ∶ 𝑈𝛼 ∩ 𝑈𝛽 → ℂ such that 𝜏𝛼𝛽 = 𝜀(𝑏𝛼𝛽) = 𝑒2𝜋𝑖𝑏𝛼𝛽 .
Let 𝑏 ∈ 𝐶1(𝒰; ℰ) denote the cochain defined by these functions. Our construction
ensures that 𝜀#𝑏 = 𝜏, where 𝜀# ∶ 𝐶1(𝒰; ℰ) → 𝐶1(𝒰; ℰ∗) is the homomorphism
defined by (6.2).

Now consider 𝛿𝑏 ∈ 𝐶2(𝒰; ℰ):

(𝛿𝑏)𝛼𝛽𝛾 = (𝑏𝛽𝛾 − 𝑏𝛼𝛾 + 𝑏𝛼𝛽)|𝑈𝛼∩𝑈𝛽 ∩𝑈𝛾
.

The fact that 𝜏𝛼𝛽𝜏𝛽𝛾 = 𝜏𝛼𝛾 implies that (𝛿𝑏)𝛼𝛽𝛾 is integer-valued, and because 𝑈𝛼 ∩
𝑈𝛽 ∩ 𝑈𝛾 is connected, this continuous integer-valued function is constant. Thus the
assignment

(7.14) 𝑘𝛼𝛽𝛾 = (𝑏𝛽𝛾 − 𝑏𝛼𝛾 + 𝑏𝛼𝛽)|𝑈𝛼∩𝑈𝛽 ∩𝑈𝛾

defines a 2-cocyle 𝑘 ∈ 𝐶2(𝒰; ℤ) that satisfies 𝜄#𝑘 = 𝛿𝑏. We see from (6.6) that
𝛿∗[𝜏] is represented by 𝑘, so the sheaf-theoretic Chern class 𝑐(𝐿) is represented by
−𝑘.

On the other hand, Problem 6-3 shows how the isomorphism ℛ2 ∶ 𝐻2
dR(𝑀; ℝ)

→ 𝐻2(𝑀; ℝ) is constructed. Starting with a global closed 2-form 𝜂, on each 𝑈𝛼 we
need to find a 1-form 𝜑𝛼 such that 𝑑𝜑𝛼 = 𝜂|𝑈𝛼 , and on each nonempty intersection
𝑈𝛼 ∩ 𝑈𝛽 a smooth function 𝑢𝛼𝛽 such that 𝜑𝛽|𝑈𝛼∩𝑈𝛽 − 𝜑𝛼|𝑈𝛼∩𝑈𝛽 = 𝑑𝑢𝛼𝛽 ; and then
ℛ2([𝜂]) = [[𝑎]] where 𝑎𝛼𝛽𝛾 is the restriction to 𝑈𝛼 ∩𝑈𝛽 ∩𝑈𝛾 of the constant function
𝑢𝛽𝛾 − 𝑢𝛼𝛾 + 𝑢𝛼𝛽 .

Let ∇ be a connection on 𝐿 that is compatible with someHermitian fibermetric,
and for each 𝛼 let 𝜃𝛼 be the connection 1-form on 𝑈𝛼; the proof of Proposition 7.13
shows that 𝜃𝛼 is purely imaginary. Let Θ be the connection form of ∇, and let
𝜂 = 𝑖

2𝜋 Θ be its first Chern form. On each set 𝑈𝛼 , we have Θ|𝑈𝛼 = 𝑑𝜃𝛼 , so to apply
the de Rham isomorphism to 𝜂 we can take 𝜑𝛼 to be the real 1-form 𝑖

2𝜋 𝜃𝛼 on 𝑈𝛼 .
On each nonempty overlap 𝑈𝛼 ∩ 𝑈𝛽 , (7.13) shows that

𝜃𝛽 − 𝜃𝛼 = 𝜏−1
𝛼𝛽 𝑑𝜏𝛼𝛽 .

Using the same functions 𝑏𝛼𝛽 as above, we have 𝜏𝛼𝛽 = 𝑒2𝜋𝑖𝑏𝛼𝛽 , so

𝜑𝛽 − 𝜑𝛼 = 𝑖
2𝜋 (𝜃𝛽 − 𝜃𝛼) = −𝑑𝑏𝛼𝛽 ,

and we can take 𝑢𝛼𝛽 = −𝑏𝛼𝛽 . This yields ℛ2[𝑐1(∇)] = [[𝑎]], where 𝑎 is the ℂ-
valued 2-cocycle given by

(7.15) 𝑎𝛼𝛽𝛾 = −(𝑏𝛽𝛾 − 𝑏𝛼𝛾 + 𝑏𝛼𝛽)|𝑈𝛼∩𝑈𝛽 ∩𝑈𝛾
.
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Comparing (7.14) and (7.15), we see that 𝑎 = −𝜄#𝑘, so 𝜄∗𝑐(𝐿) = −[[𝜄#𝑘]] = [[𝑎]] =
ℛ2([𝑐1(∇)]). □

Remark. As we noted in Chapter 6, some authors write the definition of the sheaf-
theoretic Chern class as 𝑐(𝐿) = 𝛿∗([𝐿]), without the negative sign. In some cases,
this may just be a matter of choosing a different convention for the transition func-
tions, with (3.4) replaced by 𝑠𝛼 = 𝜏𝛼𝛽𝑠𝛽 . But in other cases, it seems to be based
on a computational error. For example, in [GH94, p. 141], the discrepancy results
from an incorrect transformation equation between the connection forms 𝜃𝛽 and 𝜃𝛼:
their transition functions 𝑔𝛼𝛽 play the same role as our 𝜏𝛼𝛽 , but their transformation
formula reverses the roles of 𝜃𝛼 and 𝜃𝛽 compared to our equation (7.13), resulting
in an incorrect sign for the image of 𝑐1(∇) in 𝐻2(𝑀; ℤ). Be sure to check all such
computations carefully before using them.

Corollary 7.15. Suppose 𝑀 is a connected compact Riemann surface, 𝐿 → 𝑀 is
a smooth complex line bundle, and Ω is a closed 2-form representing 𝑐ℝ

1 (𝐿). The
degree of 𝐿 is given by the formula

deg(𝐿) = ∫𝑀
Ω.

Proof. Let 𝜑 ∈ Sing2(𝑀; ℤ) be a singular cocycle representing the sheaf-theoretic
Chern class 𝑐(𝐿) ∈ 𝐻2

Sing(𝑀; ℤ), and let 𝜇 be a singular cycle representing the
fundamental class [𝑀] ∈ 𝐻2(𝑀). Then by definition deg(𝐿) = 𝜑(𝜇). Because
𝑀 is a smooth oriented compact manifold, we can choose 𝜇 to be a smooth chain
obtained from a smooth triangulation of 𝑀 .

Now the image of 𝑐(𝐿) in 𝐻2
Sing(𝑀; ℂ) under the coefficient homomorphism

ℤ ↪ ℂ is represented by the same cocycle 𝜑, but now thought of as a homo-
morphism from Sing2(𝑀) into ℂ. Similarly, its image in 𝐻2

Sing,∞(𝑀; ℂ) is again
the same cocycle, but with its action restricted to smooth chains. On the other
hand, Theorem 7.14 shows that this cocycle is also represented by the cocycle
𝜑̃ ∈ Sing2,∞(𝑀; ℂ) given by 𝜑̃(𝑐) = ∫𝑐 Ω. Since integrating over 𝜇 is the same as
integrating over 𝑀 [LeeSM, Prop. 16.8], the result follows. □

It is important to realize that the coefficient homomorphism 𝐻2(𝑀; ℤ) →
𝐻2(𝑀; ℂ) (or equivalently 𝐻2

Sing(𝑀; ℤ) → 𝐻2
Sing(𝑀; ℂ)) need not be injective,

so the sheaf-theoretic Chern class may contain more information than the first real
Chern class. For example, if 𝑀 is any smooth manifold for which 𝐻2

Sing(𝑀; ℤ)
contains a nontrivial torsion element 𝛾 (meaning 𝑘𝛾 = 0 for some positive integer
𝑘), then the image of 𝛾 in 𝐻2

dR(𝑀; ℝ) is zero. (Simple examples of such manifolds
are the real projective spaces ℝℙ𝑛 for 𝑛 ≥ 2.) By Theorem 6.29, there is a nontriv-
ial smooth complex line bundle over 𝑀 whose sheaf-theoretic Chern class is equal
to 𝛾; but its first real Chern class is zero.
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The Chern Connection
Now we turn our attention to holomorphic vector bundles on complex manifolds.
We can always choose a Hermitian fiber metric on such a bundle, and as we men-
tioned earlier, there is a connection on the bundle that is compatible with the metric.
As you can see from the use of a partition of unity in the construction of such con-
nections, such a connection is far from unique. But when the bundle is holomorphic,
we can require an additional condition that will guarantee uniqueness.

It is useful to consider the case of Riemannian metrics for comparison. On
a Riemannian manifold, there are many connections on the tangent bundle that
are compatible with the Riemannian metric; but there is a unique connection, the
Levi-Civita connection, that satisfies the additional condition of being torsion-free,
meaning that ∇𝑋𝑌 − ∇𝑌 𝑋 = [𝑋, 𝑌 ] for all smooth vector fields 𝑋 and 𝑌 . But the
torsion-free condition makes sense only for connections on the tangent bundle, so
we need another condition to determine a unique connection on a holomorphic bun-
dle.

Suppose 𝑀 is a complexmanifold and 𝐸 → 𝑀 is a holomorphic vector bundle.
Using the decomposition 𝑇 ∗

ℂ𝑀 = Λ1
ℂ𝑀 = Λ1,0𝑀 ⊕ Λ0,1𝑀 , we can decompose

a connection on 𝐸 as ∇ = ∇(1,0) + ∇(0,1), where ∇(1,0)𝜎 ∈ Γ(Λ1,0𝑀 ⊗ 𝐸) and
∇(0,1)𝜎 ∈ Γ(Λ0,1𝑀 ⊗ 𝐸).

Here is the additional condition we wish to impose in the holomorphic case.
A connection on a holomorphic vector bundle 𝐸 → 𝑀 is said to be compatible
with the holomorphic structure if ∇(0,1) is equal to the operator 𝜕𝐸 defined by
Proposition 4.16.

Proposition 7.16 (Compatibility with the Holomorphic Structure). Let 𝐸 →
𝑀 be a holomorphic vector bundle and ∇ a connection on 𝐸. The following are
equivalent:

(a) ∇ is compatible with the holomorphic structure (i.e., ∇(0,1) = 𝜕𝐸).
(b) Whenever 𝜎 is a holomorphic local section of 𝐸 and 𝑍 is a smooth local

section of 𝑇 ″𝑀 , we have ∇𝑍𝜎 = 0.
(c) For each holomorphic local frame (𝑠𝑗), we have ∇𝑠𝑗 = 𝜃𝑘

𝑗 ⊗ 𝑠𝑘 where the
1-forms 𝜃𝑘

𝑗 are all of type (1, 0).

Proof. This is a local issue, so we may work in an open set over which there is a
holomorphic local frame (𝑠𝑗). Let 𝜃𝑘

𝑗 be the connection 1-forms with respect to this
frame. Taking the projection of both sides of (7.4) onto Λ0,1𝑀 ⊗ 𝐸, we have

∇(0,1)(𝜎𝑗𝑠𝑗) = 𝜕𝜎𝑗 ⊗ 𝑠𝑗 + 𝜎𝑗(𝜃𝑘
𝑗 )(0,1) ⊗ 𝑠𝑘.

On the other hand, (4.20) shows that
𝜕𝐸(𝜎𝑗𝑠𝑗) = 𝜕𝜎𝑗 ⊗ 𝑠𝑗 .
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Comparing these two equations, we see that ∇(0,1) = 𝜕𝐸 if and only if (𝜃𝑘
𝑗 )(0,1) = 0

for all 𝑗 and 𝑘, which shows that (a) ⇔ (c).
To prove that (c) ⇒ (b), suppose (c) holds. Let 𝜎 be a holomorphic local section

of 𝐸 and 𝑍 be a smooth local section of 𝑇 ″𝑀 . We can write 𝜎 = 𝜎𝑗𝑠𝑗 , where now
the component functions 𝜎𝑗 are holomorphic, and compute

∇𝑍𝜎 = 𝑍(𝜎𝑗)𝑠𝑗 + 𝜃𝑘
𝑗 (𝑍)𝑠𝑘 = 0 + 0.

Conversely if (b) holds, then for any local section 𝑍 of 𝑇 ″𝑀 ,

0 = ∇𝑍𝑠𝑗 = 𝜃𝑘
𝑗 (𝑍)𝑠𝑘.

This shows that each form 𝜃𝑘
𝑗 vanishes on 𝑇 ″𝑀 , which is equivalent to being of

type (1, 0), so (b) ⇒ (c). □

Here is the fundamental fact about connections on Hermitian holomorphic bun-
dles.

Theorem 7.17 (Chern Connection Theorem). On every Hermitian holomorphic
vector bundle there is a unique connection, called the Chern connection, that is
compatible with the metric and the holomorphic structure.

Proof. We begin by proving uniqueness. Suppose ∇ is such a connection on 𝐸 →
𝑀 , and let (𝑠𝑗) be a holomorphic local frame for 𝐸 over an open subset 𝑈 ⊆ 𝑀 .
Writing ∇𝑠𝑗 = 𝜃𝑘

𝑗 ⊗ 𝑠𝑘, we note first that Proposition 7.16 implies that the forms
𝜃𝑘

𝑗 are all of type (1, 0). If we let ℎ𝑗𝑘 = ⟨𝑠𝑗 , 𝑠𝑘⟩, then compatibility with the metric
implies the following equation for every local section 𝑍 of 𝑇 ′𝑀 :

(7.16)

𝑍(ℎ𝑗𝑘) = 𝑍⟨𝑠𝑗 , 𝑠𝑘⟩ = ⟨∇𝑍𝑠𝑗 , 𝑠𝑘⟩ + ⟨𝑠𝑗 , ∇𝑍𝑠𝑘⟩
= ⟨𝜃𝑙

𝑗(𝑍)𝑠𝑙, 𝑠𝑘⟩ + 0
= 𝜃𝑙

𝑗(𝑍)ℎ𝑙𝑘.

Since the matrix (ℎ𝑗𝑘) is positive definite, it has an inverse matrix, denoted by (ℎ𝑗𝑘).
Multiplying both sides of (7.16) by ℎ𝑘𝑚 and simplifying, we obtain

ℎ𝑘𝑚𝑍(ℎ𝑗𝑘) = 𝜃𝑚
𝑗 (𝑍).

Since this is true for every section 𝑍 of 𝑇 ′𝑀 , it implies

(7.17) 𝜃𝑚
𝑗 = ℎ𝑘𝑚𝜕ℎ𝑗𝑘.

This shows that ∇ is uniquely determined if it exists.
To prove existence, we use (7.17) to define ∇ in terms of each holomorphic lo-

cal frame. These forms are of type (1, 0) by definition, so the resulting connection
is compatible with the holomorphic structure; and reverse-engineering the com-
putation above (together with the analogous computation for 𝑍) shows that it is
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also compatible with the metric. Then uniqueness guarantees that the definitions
associated with different local frames agree where they overlap, so ∇ is globally
defined. □

The relative simplicity of (7.17) should be compared with the much more com-
plicated formula for the connection coefficients of the Levi–Civita connection on a
Riemannian manifold [LeeRM, eq. (5.12)].
Proposition 7.18 (Curvature of the Chern Connection is Type (1, 1)). Suppose
𝑀 is a complex manifold and 𝐸 → 𝑀 is a Hermitian holomorphic vector bun-
dle. The curvature form Θ associated with the Chern connection on 𝐸 lies in
ℰ1,1(𝑀;End(𝐸)).

Proof. In terms of a holomorphic local frame (𝑠𝑗), we can write
(7.18) Θ𝑚

𝑗 = 𝜕𝜃𝑚
𝑗 + 𝜕𝜃𝑚

𝑗 + 𝜃𝑚
𝑘 ∧ 𝜃𝑘

𝑗 .
Because the forms 𝜃𝑚

𝑗 are all of type (1, 0), the first term on the right-hand side of
(7.18) is of type (1, 1) and the last two are of type (2, 0); thus it suffices to show that
the last two terms sum to zero. This is just a computation using (7.17):

𝜕𝜃𝑚
𝑗 + 𝜃𝑚

𝑘 ∧ 𝜃𝑘
𝑗 = 𝜕(ℎ𝑘𝑚𝜕ℎ𝑗𝑘) + (ℎ𝑝𝑚𝜕ℎ𝑘𝑝) ∧ (ℎ𝑞𝑘𝜕ℎ𝑗𝑞)

= 𝜕ℎ𝑘𝑚 ∧ 𝜕ℎ𝑗𝑘 + ℎ𝑝𝑚ℎ𝑞𝑘𝜕ℎ𝑘𝑝 ∧ 𝜕ℎ𝑗𝑞 .
Now differentiating ℎ𝑘𝑝ℎ𝑝𝑙 = 𝛿𝑘

𝑙 and multiplying by ℎ𝑙𝑚 yields
𝜕ℎ𝑘𝑚 = −ℎ𝑙𝑚ℎ𝑘𝑝𝜕ℎ𝑝𝑙,

and substituting this above and renaming the dummy indices proves the result. □

The Chern Connection on a Line Bundle

In the case of a holomorphic line bundle, the formulas for the Chern connection
and its curvature simplify even further. Let 𝐿 → 𝑀 be a Hermitian holomorphic
line bundle and let∇ be its Chern connection. Given a local holomorphic frame 𝑠 for
𝐿 (that is, a nonvanishing holomorphic local section) over an open set 𝑈 ⊆ 𝑀 , let 𝜃
be the corresponding connection 1-form. The fiber metric is completely determined
in 𝑈 by the strictly positive smooth function ℎ = |𝑠|2 = ⟨𝑠, 𝑠⟩. In this situation,
(7.17) reduces to
(7.19) 𝜃 = ℎ−1𝜕ℎ = 𝜕(logℎ),
and its curvature is the globally defined 2-form Θ whose expression in terms of each
holomorphic local frame 𝑠 is
(7.20) Θ = 𝑑𝜃 = 𝜕𝜕(logℎ) = 𝜕𝜕( log |𝑠|2).
Thus the Chern form for this connection has the local expression

𝑐1(∇) = 𝑖
2𝜋 𝜕𝜕(logℎ) = 𝑖

2𝜋 𝜕𝜕(log |𝑠|2).
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Next we will show how these formulas allow us to easily compute the connec-
tion and curvature forms for various related line bundles—tensor product bundles,
dual bundles, and pullback bundles. We begin with tensor products. For a tensor
product of line bundles 𝐿 ⊗ 𝐿′, having chosen Hermitian fiber metrics for 𝐿 and
𝐿′, we obtain a fiber metric for 𝐿⊗𝐿′, called the tensor product metric, by setting
|𝜎 ⊗ 𝜎′|2 = |𝜎|2|𝜎′|2.

Proposition 7.19 (Curvature of a Tensor Product of Line Bundles). Let𝐿, 𝐿′ →
𝑀 be Hermitian holomorphic line bundles, and let Θ𝐿 and Θ𝐿′ be curvature forms
of their Chern connections. With respect to the tensor product metric, the curvature
of the Chern connection on 𝐿 ⊗ 𝐿′ is given by

Θ𝐿⊗𝐿′ = Θ𝐿 + Θ𝐿′ .

Proof. With respect to holomorphic local frames 𝑠 for 𝐿 and 𝑠′ for 𝐿′, if we set
ℎ = |𝑠|2 and ℎ′ = |𝑠′|2, then the fiber metric on 𝐿 ⊗ 𝐿′ is represented locally by
the function ℎℎ′ = |𝑠 ⊗ 𝑠′|2. Thus the curvature form of the Chern connection on
𝐿 ⊗ 𝐿′ is given by

Θ𝐿⊗𝐿′ = 𝜕𝜕(logℎℎ′) = 𝜕𝜕(logℎ + logℎ′) = Θ𝐿 + Θ𝐿′ . □

Next we consider the dual bundle.

Proposition 7.20 (Curvature of the Dual Bundle). Let 𝐿 → 𝑀 be a Hermitian
holomorphic line bundle and let Θ𝐿 be the curvature form of its Chern connection.
When 𝐿∗ is endowed with the dual metric (see Problem 7-3), the curvature of its
Chern connection is given by

Θ𝐿∗ = −Θ𝐿.

Proof. This follows easily from the results of Problems 7-4 and 7-5. □

Finally, we consider pullbacks of line bundles. Suppose𝑀 and𝑀′ are complex
manifolds and 𝐿 → 𝑀 is a holomorphic line bundle. Given a holomorphic map
𝑓 ∶ 𝑀′ → 𝑀 , recall that the pullback bundle 𝑓 ∗𝐿 → 𝑀′ is defined as

𝑓 ∗𝐿 = {(𝑥, 𝑣) ∈ 𝑀′ × 𝐿 ∶ 𝑣 ∈ 𝐿𝑓(𝑥)}.

Thus the fiber of 𝑓 ∗𝐿 over 𝑥 ∈ 𝑀′ is {𝑥} × 𝐿𝑓(𝑥), which we can canonically
identify with 𝐿𝑓(𝑥). Using this identification, we can define a fiber metric on 𝑓 ∗𝐿,
called the pullback metric, by

⟨ ̃𝑣, 𝑤̃⟩𝑓 ∗𝐿 = ⟨𝑣, 𝑤⟩𝐿 for ̃𝑣 = (𝑥, 𝑣), 𝑤̃ = (𝑥, 𝑤) ∈ (𝑓 ∗𝐿)𝑥.

For any smooth local frame 𝑠 for 𝐿, we get a smooth local frame 𝑓 ∗𝑠 for 𝑓 ∗𝐿
defined by 𝑓 ∗𝑠(𝑥) = (𝑥, 𝑠(𝑓 (𝑥))), and the pullback metric satisfies |𝑓 ∗𝑠(𝑥)|𝑓 ∗𝐿 =
|𝑠(𝑓(𝑥))|𝐿, so it is smooth by composition.
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Proposition 7.21 (Curvature of a Pullback Bundle). Let 𝑀 and 𝑀′ be complex
manifolds, 𝐿 → 𝑀 a holomorphic line bundle, and 𝑓 ∶ 𝑀′ → 𝑀 a holomorphic
map. With respect to any Hermitian fiber metric on 𝐿 and the pullback metric on
𝑓 ∗𝐿, the curvatures of the Chern connections on 𝐿 and 𝑓 ∗𝐿 satisfy

Θ𝑓 ∗𝐿 = 𝑓 ∗Θ𝐿.

Proof. Given 𝑝 ∈ 𝑀′, let 𝑠 be a holomorphic local frame for 𝐿 in a neighborhood
of 𝑓(𝑝), and let 𝑠′ = 𝑓 ∗𝑠, which is a holomorphic local frame for 𝑓 ∗𝐿. If we write
ℎ = |𝑠|2 and ℎ′ = |𝑠′|2, then ℎ′ = ℎ ∘ 𝑓 , and therefore the curvature form of the
Chern connection on 𝑓 ∗𝐿 is given locally by

Θ𝑓 ∗𝐿 = 𝜕𝜕(logℎ′) = 𝜕𝜕(log 𝑓 ∗ℎ) = 𝑓 ∗𝜕𝜕(logℎ) = 𝑓 ∗Θ𝐿.

Since this is true in a neighborhood of each point, it follows that Θ𝑓 ∗𝐿 = 𝑓 ∗Θ𝐿
globally. □

The next theorem gives an extremely useful way to compute the degrees of line
bundles on Riemann surfaces. Recall that if 𝐿 → 𝑀 is a holomorphic line bundle
on a compact Riemann surface and 𝜎 is a meromorphic section of 𝐿, the divisor
of 𝝈, denoted by (𝜎), is the formal sum of zeros and poles of 𝜎 with coefficients
indicating their orders (positive for zeros, negative for poles). If 𝐷 = ∑𝑘

𝛼=1 𝑚𝛼𝑝𝛼
is a divisor, we define the degree of 𝑫 to be the sum of its coefficients, that is,

deg𝐷 =
𝑘

∑
𝛼=1

𝑚𝛼 .

Theorem 7.22 (Degree of a Line Bundle Associated with a Divisor). Let 𝑀 be
a connected compact Riemann surface. For any divisor 𝐷 on 𝑀 , the degree of the
line bundle 𝐿𝐷 is equal to the degree of the divisor 𝐷.

Proof. Let 𝐷 = ∑𝑘
𝛼=1 𝑚𝛼𝑝𝛼 be a divisor on 𝑀 . Proposition 3.41 shows that 𝐿𝐷

has a meromorphic section 𝜎 whose divisor is 𝐷. Choose any Hermitian metric on
𝐿, and let ∇ be the corresponding Chern connection and Θ ∈ ℰ1,1(𝑀) its curvature
form.

For each point 𝑝𝛼 , choose a holomorphic coordinate 𝑧𝛼 on an open disk 𝑈𝛼
centered at 𝑝𝛼 . For 𝜀 > 0, let 𝑈𝛼(𝜀) ⊆ 𝑀 be the set {𝑞 ∈ 𝑈𝛼 ∶ |𝑧𝛼(𝑞)| < 𝜀}. For
any 𝜀 small enough that 𝑈 𝛼(𝜀) ⊆ 𝑈𝛼 for each 𝛼 and the sets 𝑈 1(𝜀), … , 𝑈 𝑘(𝜀) are
disjoint, let 𝑀𝜀 = 𝑀 ∖ (𝑈1(𝜀) ∪ ⋯ ∪ 𝑈𝑘(𝜀)).

On 𝑀 ∖ {𝑝1, … , 𝑝𝑘}, the section 𝜎 is holomorphic and nonvanishing, so it can
be used as a holomorphic frame for 𝐿 with which to compute Θ on that set. Formula
(7.20) shows that on that set we have

Θ = 𝜕𝜕( log |𝜎|2) = 𝑑𝜕( log |𝜎|2).



212 7. Connections

Thus by Stokes’s theorem,

∫𝑀𝜀
Θ = ∫𝜕𝑀𝜀

𝜕( log |𝜎|2) = −
𝑘

∑
𝛼=1 ∫𝜕𝑈𝛼(𝜀)

𝜕( log |𝜎|2),

where the minus sign in the last expression comes from the fact that the Stokes
orientation on 𝜕𝑈 𝛼(𝜀), considered as the boundary of 𝑈 𝛼(𝜀), is opposite to its ori-
entation considered as part of 𝜕𝑀𝜀. It follows from Corollary 7.15 that

(7.21) deg(𝐿) = 𝑖
2𝜋 ∫𝑀

Θ = − lim
𝜀→0

𝑘

∑
𝛼=1

𝑖
2𝜋 ∫𝜕𝑈𝛼(𝜀)

𝜕( log |𝜎|2).

Now consider one of the disks 𝑈 𝛼(𝜀), and write the corresponding holomorphic
coordinate as 𝑧 = 𝑧𝛼 for convenience. Choose a nonvanishing holomorphic section
𝑠 of 𝐿 on 𝑈𝛼 , and write 𝜎(𝑧) = 𝑧𝑚𝛼 𝑓(𝑧)𝑠(𝑧), where 𝑚𝛼 is the coefficient of 𝑝𝛼 in
𝐷 and 𝑓 is a nonvanishing holomorphic function on 𝑈 𝛼(𝜀). Let ℎ(𝑧) = |𝑠(𝑧)|2, a
nonvanishing smooth function. In these coordinates, since |𝜎|2 does not vanish on
𝜕𝑈 𝛼(𝜀), we have

𝜕( log |𝜎|2) =
𝜕(𝑧𝑚𝛼 𝑧𝑚𝛼 |𝑓 (𝑧)|2ℎ(𝑧)))

𝑧𝑚𝛼 𝑧𝑚𝛼 |𝑓 (𝑧)|2ℎ(𝑧)
= 𝑚𝛼

𝑑𝑧
𝑧 + 𝑢(𝑧) 𝑑𝑧,

where 𝑢 is a smooth function of 𝑧 on 𝑈 𝛼(𝜀).
We can parametrize 𝜕𝑈 𝛼(𝜀) in 𝑧-coordinates by 𝑧 = 𝜀𝑒𝑖𝜃 for 𝜃 ∈ [0, 2𝜋], so

𝑑𝑧 = 𝑖𝜀𝑒𝑖𝜃 𝑑𝜃. This yields

𝑖
2𝜋 ∫𝜕𝑈𝛼(𝜀)

𝜕( log |𝜎|2) = 𝑖
2𝜋 ∫

2𝜋

0
𝑚𝛼𝑖𝑑𝜃 + 𝑖

2𝜋 ∫
2𝜋

0
𝑢(𝜀𝑒𝑖𝜃)𝑖𝜀𝑒𝑖𝜃 𝑑𝜃.

The first term on the right is equal to −𝑚𝛼 , and the second approaches zero as 𝜀 → 0.
Applying this to each term in the sum (7.21) proves the result. □

Corollary 7.23. Let 𝑀 be a connected compact Riemann surface. If 𝐿 → 𝑀 is a
holomorphic line bundle of negative degree, then 𝐿 admits no nontrivial holomor-
phic sections.

Proof. Theorem 7.22 implies the contrapositive: if 𝐿 admits a nontrivial holomor-
phic section 𝜎, then it is isomorphic to the bundle 𝐿𝐷 for 𝐷 = (𝜎); and since 𝐷 is
an effective divisor (i.e., it has only nonnegative coefficients), its degree is either
zero or a sum of positive integers. □

Corollary 7.24. Let 𝑀 be a connected compact Riemann surface and 𝑓 be a mero-
morphic function on 𝑀 . Then deg(𝑓 ) = 0.
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Proof. We can consider 𝑓 as a meromorphic section of the trivial holomorphic line
bundle, so the line bundle 𝐿𝐷 associated with the divisor 𝐷 = (𝑓) is trivial. Since
the trivial line bundle has degree 0, so does (𝑓 ). □

Proposition 7.25 (Characterizations of ℂℙ1). Let 𝑀 be a connected compact
Riemann surface. The following are equivalent.

(a) There exists a meromorphic function on𝑀 with only a single pole of order
1.

(b) There are distinct points 𝑝, 𝑞 ∈ 𝑀 such that the point bundles 𝐿{𝑝} and
𝐿{𝑞} are isomorphic.

(c) There is a holomorphic line bundle 𝐿 → 𝑀 of degree 1 whose space of
global holomorphic sections has dimension 2.

(d) 𝑀 is biholomorphic to ℂℙ1.

Proof. We will prove (a) ⇒ (b) ⇒ (c) ⇒ (d) ⇒ (a). First, assuming (a), let 𝑓 be a
meromorphic function with a simple pole at 𝑝 ∈ 𝑀 . Corollary 7.24 implies that 𝑓
must have exactly one simple zero, say at 𝑞. Let 𝐿 denote the point bundle 𝐿{𝑝}. It
has a holomorphic section 𝜎𝑝 with a simple zero at 𝑝 by Theorem 3.39. Then 𝑓𝜎𝑝
will have a removable singularity at 𝑝, so it is a holomorphic section of 𝐿 with a
simple zero at 𝑞. Thus Theorem 3.39 shows that 𝐿{𝑝} ≅ 𝐿{𝑞}.

Next, assuming (b), let us denote the bundle 𝐿{𝑝} ≅ 𝐿{𝑞} by 𝐿. By Theorem
3.39, there are holomorphic sections 𝑠𝑝, 𝑠𝑞 ∈ 𝒪(𝑀; 𝐿) that vanish simply at 𝑝 and
𝑞, respectively, and nowhere else. Because they vanish at different points, they
cannot be linearly dependent. If 𝜎 ∈ 𝒪(𝑀; 𝐿) is an arbitrary nontrivial holomor-
phic section, because 𝐿 has degree 1 the divisor of 𝜎 must consist of a single point
𝑥. If 𝑥 is equal to 𝑝, then Theorem 3.41 shows that 𝜎 is a constant multiple of 𝑠𝑝.
Otherwise, 𝑠𝑝(𝑥) ≠ 0, so there is a complex number 𝑎 such that 𝑠𝑞(𝑥) = 𝑎𝑠𝑝(𝑥).
The section 𝜎′ = 𝑎𝑠𝑝 − 𝑠𝑞 also vanishes at 𝑥, and is not identically zero because
𝑠𝑝 and 𝑠𝑞 are linearly independent. Because deg𝐿 = 1, Theorem 7.22 shows that
𝜎′ cannot vanish anywhere else in 𝑀 , so it follows from Theorem 3.41 that 𝜎 is a
constant multiple of 𝜎′. In either case, we have shown that 𝑠𝑝 and 𝑠𝑞 span 𝒪(𝑀; 𝐿).
This proves (c).

Now assume 𝐿 → 𝑀 is a holomorphic line bundle of degree 1 such that
dim𝒪(𝑀; 𝐿) = 2. We will show that the associated map 𝐹 ∶ 𝑀 → ℂℙ1 is a
biholomorphism. By Lemma 3.42, 𝐹 will be a holomorphic embedding provided
𝒪(𝑀; 𝐿) separates points and directions.

Let (𝑠1, 𝑠2) be a basis for 𝒪(𝑀; 𝐿). To see that they separate points, let 𝑝, 𝑞 ∈
𝑀 be arbitrary distinct points. If 𝑠1(𝑝) = 0, then 𝑠1(𝑞) ≠ 0 because each section
has only one simple zero. Otherwise, there is a complex number 𝑎 such that 𝑠2(𝑝) =
𝑎𝑠1(𝑝), and the section 𝜎 = 𝑎𝑠1 − 𝑠2 vanishes at 𝑝. As before, it can have no other
zeros, so 𝜎(𝑞) ≠ 0.
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To see that they separate directions, again let 𝑝 ∈ 𝑀 be arbitrary and let 𝜎
be the section defined above. Theorem 7.22 shows that 𝜎 cannot have a zero of
order greater than 1 at 𝑝, so in terms of a local holomorphic frame 𝑠 for 𝐿 we have
𝜎 = 𝑓𝑠 where 𝑓(𝑝) = 0 and 𝑑𝑓𝑝 ≠ 0. Thus given any nonzero 𝑣 ∈ 𝑇 ′

𝑝 𝑀 , we have
𝑣𝑓(𝑝) = 𝑑𝑓𝑝(𝑣) ≠ 0.

Therefore 𝐹 is a holomorphic embedding. Since 𝑀 and ℂℙ1 are connected
compact manifolds of the same dimension, 𝐹 is both an open and closed map and
therefore surjective, so it is a biholomorphism.

Finally, to prove (d) ⇒ (a), just note that the function 𝑓 ∶ ℂℙ1 ∖ {[0, 1]} → ℂ
defined by 𝑓([𝑤0, 𝑤1]) = 𝑤1/𝑤0 has a simple pole at [0, 1] and is holomorphic
elsewhere. □

Here are some examples that illustrate how to use these formulas.

Example 7.26 (Curvatures of Projective Line Bundles). Let 𝑇 → ℂℙ𝑛 be the
tautological bundle. Since each fiber is canonically identified with a line in ℂ𝑛+1, it
inherits a Hermitian metric ⟨⋅, ⋅⟩ from the standard metric on ℂ𝑛+1. On each open
subset 𝑈𝛼 = {[𝑤] ∈ ℂℙ𝑛 ∶ 𝑤𝛼 ≠ 0}, we have a nonvanishing section 𝑠𝛼 of 𝑇
given by (3.6), and its norm with respect to this metric satisfies

|𝑠𝛼([𝑤])|2 = |𝑤|2

|𝑤𝛼|2 .

On 𝑈𝛼 , the Chern connection for this metric is given by the connection form

𝜃𝛼 = 𝜕 log |𝑠𝛼|2 = 𝜕 log |𝑤|2

|𝑤𝛼|2 ,

and its curvature form is

Θ𝑇 |𝑈𝛼
= 𝜕𝜕 log |𝑠𝛼|2 = 𝜕𝜕 log |𝑤|2

|𝑤𝛼|2 .

For the hyperplane bundle 𝐻 = 𝑇 ∗ with the dual fiber metric, Proposition 7.20
shows that

Θ𝐻 |𝑈𝛼
= −Θ𝑇 |𝑈𝛼

= 𝜕𝜕 log |𝑤𝛼|2

|𝑤|2 ,

and more generally for a tensor power 𝐻𝑚 with 𝑚 ∈ ℤ,

Θ𝐻𝑚|𝑈𝛼
= 𝑚𝜕𝜕 log |𝑤𝛼|2

|𝑤|2 .
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Let us compute the curvature form Θ𝐻 explicitly in terms of affine coordinates
(𝑧1, … , 𝑧𝑛) ↔ [𝑧1, … , 1, … , 𝑧𝑛] on 𝑈𝛼:

(7.22)
Θ𝐻 |𝑈𝛼

= 𝜕𝜕 log 1
1 + |𝑧|2 = 𝜕𝜕 log(1 + |𝑧|2)

=
∑𝑗 𝑑𝑧𝑗 ∧ 𝑑𝑧𝑗

1 + |𝑧|2 −
∑𝑗,𝑘 𝑧𝑗𝑧𝑘 𝑑𝑧𝑗 ∧ 𝑑𝑧𝑘

(1 + |𝑧|2)2 .

It is notable that the formula is exactly the same in all the affine charts. //

Example 7.27 (Degrees of Line Bundles on ℂℙ1). The holomorphic sections of
the hyperplane bundle 𝐻 → ℂℙ1 correspond to complex-linear functionals on ℂ2,
and each such section vanishes simply on a projective hyperplane, which in this case
is a single point. Thus it follows from Theorem 7.22 that deg(𝐻) = 1. Since the
degree map is a homomorphism from the Picard group to ℤ, for any tensor power
𝐻𝑑 we have deg(𝐻𝑑) = 𝑑.

We can also verify this using the Chern form. On ℂℙ1, formula (7.22) reduces
to

Θ𝐻 |𝑈𝛼
= (1 + |𝑧|2)𝑑𝑧 ∧ 𝑑𝑧 − |𝑧|2 𝑑𝑧 ∧ 𝑑𝑧

(1 + |𝑧|2)2 = 𝑑𝑧 ∧ 𝑑𝑧
(1 + |𝑧|2)2 .

By Corollary 7.15, the degree of 𝐻 is equal to the integral 𝑖
2𝜋 ∫ℂℙ1 Θ𝐻 . This can

be computed explicitly by integrating over the subset 𝑈0 (which is biholomorhpic
to ℂ), since ℂℙ1 ∖ 𝑈0 has measure zero. Making the change of variables 𝑧 = 𝑟𝑒𝑖𝜃 ,
𝑑𝑧 ∧ 𝑑𝑧 = −2𝑖𝑟 𝑑𝑟 ∧ 𝑑𝜃, we obtain

deg(𝐻) = 𝑖
2𝜋 ∫ℂ

𝑑𝑧 ∧ 𝑑𝑧
(1 + |𝑧|2)2

= 𝑖
2𝜋 ∫

2𝜋

0 ∫
∞

0

−2𝑖𝑟
(1 + 𝑟2)2 𝑑𝑟 𝑑𝜃.

Then a further change of variables 𝑠 = 1 + 𝑟2 yields

deg(𝐻) = 1
2𝜋 ∫

2𝜋

0 ∫
∞

0

1
𝑠2 𝑑𝑠 𝑑𝜃 = 1. //

The first real Chern class gives us another useful notion of positivity for line
bundles. A (1, 1)-form 𝜔 on a complex manifold 𝑀 is said to be positive if it is real
and 𝜔(𝑣, 𝐽𝑣) > 0 for every nonzero real tangent vector 𝑣; a negative (1, 1)-form
is defined analogously. (Note that this is a special definition for forms on complex
manifolds; it does not make sense to ask that a differential form be literally positive
in the sense of taking only positive values, because changing the sign of one of its
arguments will always convert a positive value to a negative one. See Problem 7-9
for a generalization to (𝑝, 𝑝)-forms.)

The next lemma gives some alternative characterizations of positive forms.
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Lemma 7.28. Suppose 𝜔 is a real (1, 1)-form on a complex manifold 𝑀 . The
following are equivalent:

(a) 𝜔 is positive.
(b) −𝑖𝜔(𝑣, 𝑣) > 0 for every nonzero 𝑣 ∈ 𝑇 ′𝑀 .
(c) 𝜔 restricts to a positively oriented volume form on every 1-dimensional

complex submanifold of 𝑀 .

Proof. Problem 7-8. □

A complex line bundle 𝐿 on a complex manifold is said to be positive if its first
real Chern class is represented by a positive (1, 1)-form. It is negative if 𝑐ℝ

1 (𝐿) has
a negative representative.

The next proposition shows that for Riemann surfaces, this new notion of pos-
itivity coincides with positivity of the degree.
Proposition 7.29. Let 𝑀 be a connected, compact Riemann surface and 𝐿 → 𝑀
a holomorphic line bundle. Then 𝐿 is positive if and only if deg𝐿 > 0.

Proof. First suppose 𝐿 is positive. Then there is a positive 2-form 𝜔 representing
𝑐1(𝐿), and Corollary 7.15 shows that that deg𝐿 = ∫𝑀 𝜔. Since Lemma 7.28 shows
that𝜔 is a positively oriented volume form for𝑀 , it follows that deg𝐿 = ∫𝑀 𝜔 > 0.

Conversely, suppose deg𝐿 > 0, and let 𝑑𝑉𝑔 be the Riemannian volume form
for some Riemannian metric on 𝑀 . Since there are no nontrivial (2, 0)-forms
or (0, 2)-forms on a complex 1-manifold, 𝑑𝑉𝑔 is a form of type (1, 1). Because
𝐻2(𝑀; ℝ) ≅ Hom(𝐻2(𝑀), ℝ) is 1-dimensional, it is spanned by the cohomology
class of 𝑑𝑉𝑔 . Thus the class 𝑐ℝ

1 (𝐿) is represented by 𝑎 𝑑𝑉𝑔 for some real constant
𝑎. The hypothesis implies 0 < deg𝐿 = ∫𝑀 𝑎 𝑑𝑉𝑔 = 𝑎Vol(𝑀). Thus 𝑎 > 0, which
means 𝑎 𝑑𝑉𝑔 is a positive (1, 1)-form representing 𝑐ℝ

1 (𝐿). □

We end the chapter with an important result about algebraic curves in ℂℙ2.
Proposition 7.30 (Degree of theHyperplane Bundle on aComplexCurve). Sup-
pose 𝑀 ⊆ ℂℙ2 is a nonsingular algebraic variety defined by a homogeneous poly-
nomial 𝑃 ∶ ℂ3 → ℂ of degree 𝑑. Let 𝐿 → 𝑀 be the restriction of the hyperplane
bundle 𝐻 → ℂℙ2. Then deg𝐿 = 𝑑.

Proof. Wewill show that deg(𝐿) = 𝑑 by showing that 𝐿 has a holomorphic section
with exactly 𝑑 simple zeros.

First we dispose of the easy case. If 𝑑 = 1, then 𝑀 is a projective line. After
a projective transformation, we may assume 𝑀 is the standard embedding of ℂℙ1

in ℂℙ2, and the restriction of 𝐻 to 𝑀 is isomorphic to the hyperplane bundle of
ℂℙ1 (as can be verified by examining transition functions). Thus deg(𝐿) = 1 by
the result of Example 7.27.
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For the case 𝑑 > 1, we start by finding a projective line Π ⊆ ℂℙ2 that intersects
𝑀 transversely. Let (ℂℙ2)∗ denote the dual projective space (Example 2.32), and
consider the map Φ∶ 𝑀 → (ℂℙ2)∗ that sends a point 𝑝 ∈ 𝑀 to the projective
tangent space to 𝑀 at 𝑝 (see Prop. 2.33). This map is smooth (as can be verified
by writing it in any affine coordinates), so its image has measure zero by an easy
application of Sard’s theorem [LeeSM, Cor. 6.11]. Thus there is some projective
line Π ∈ (ℂℙ2)∗ not in the image of Φ, which is to say that 𝑇 ′

𝑝 Π ≠ 𝑇 ′
𝑝 𝑀 at each

point 𝑝 ∈ Π ∩ 𝑀 . Since both holomorphic tangent spaces are 1-dimensional, their
intersection is trivial, and then by conjugation it follows that 𝑇 ″

𝑝 Π∩𝑇 ″
𝑝 𝑀 = {0} for

each such 𝑝, and thus 𝑇𝑝Π ∩ 𝑇𝑝𝑀 = {0}. By applying a projective transformation,
we can arrange that Π is the projective line {[𝑤0, 𝑤1, 𝑤2] ∶ 𝑤2 = 0}.

Since the polynomial𝑃 has degree 𝑑 > 1, there is some point 𝑏 = [𝑏0, 𝑏1, 0] that
lies on Π but not on 𝑀 . The projective transformation 𝐴[𝑤0, 𝑤1, 𝑤2] = [𝑏1𝑤0 +
𝑏0𝑤1, 𝑏1𝑤1 −𝑏0𝑤0, 𝑤2] takes [0, 1, 0] to 𝑏 and leaves Π invariant, so after replacing
𝑀 by 𝐴−1(𝑀), we can arrange that [0, 1, 0] ∉ 𝑀 .

By formula (3.15), the linear function 𝑤2 ∶ ℂ3 → ℂ defines a holomorphic
section 𝜑𝑤2 of 𝐻 that vanishes exactly on Π. Let 𝜎 be the section of 𝐿 = 𝐻|𝑀
obtained by restricting 𝜑𝑤2 . Its zeros are exactly the points where 𝑀 intersects Π.
Every such point can be written in the form [𝑤0, 𝑤1, 0], where 𝑃 (𝑤0, 𝑤1, 0) = 0.
Since [0, 1, 0] is not one of those points, we can write each such point uniquely
in the form [1, 𝜁 , 0], for 𝜁 a solution to the polynomial equation 𝑞(𝜁) = 0, where
𝑞(𝜁) = 𝑃 (1, 𝜁 , 0). Thus all such points lie in the affine coordinate domain 𝑈0 =
{[𝑤0, 𝑤1, 𝑤2] ∶ 𝑤0 ≠ 0}.

We need to check several things: that 𝑞 is actually a polynomial of degree 𝑑;
that each zero of 𝑞 has multiplicity 1; and correspondingly that each zero of 𝜎 has
multiplicity 1. Once we have verified these facts, it will follow from the fundamen-
tal theorem of algebra that 𝑞 has exactly 𝑑 zeros, all of multiplicity 1; and therefore
𝜎 has 𝑑 zeros of multiplicity 1. Then Theorem 7.22 implies that deg(𝐿) = 𝑑.

To see that 𝑞 has degree 𝑑, note first that it has degree at most 𝑑 because it is
obtained from 𝑃 by setting some variables equal to constants. Our normalizations
have ensured that 𝑃 (0, 1, 0) ≠ 0. Since 𝑃 (0, 1, 0) is equal to the coefficient of
(𝑤1)𝑑 in the expression for 𝑃 , it follows that this coefficient is nonzero, so 𝑞(𝜁) has
a nonzero 𝜁𝑑 term.

To see that the zeros of 𝑞 all have multiplicity 1, assume for contradiction
that 𝑎 ∈ ℂ is a zero of multiplicity greater than 1. This implies 0 = 𝑞′(𝑎) =
(𝜕𝑃 /𝜕𝑤1)(1, 𝑎, 0). In affine coordinates (𝑧1, 𝑧2) ↔ [1, 𝑧1, 𝑧2] on 𝑈0, 𝑀 ∩ 𝑈0 is
defined by the equation 𝑃 (1, 𝑧1, 𝑧2) = 0, and Π ∩ 𝑈0 is defined by 𝑧2 = 0. Since
(𝜕𝑃 /𝜕𝑤1)(1, 𝑎, 0) = 0, it follows that both 𝑇 ′

(𝑎,0)𝑀 and 𝑇 ′
(𝑎,0)Π are spanned in these

coordinates by 𝜕/𝜕𝑧1, which contradicts the fact that 𝑀 and Π intersect transversely.
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Finally, to see that the zeros of 𝜎 are simple, note that the restriction of 𝐻 to 𝑈0
has a global nonvanishing section 𝑠 = 𝜑𝑤0|𝑈0 , and in terms of that section 𝜎|𝑀∩𝑈0
can be written 𝜎(𝑧1, 𝑧2) = 𝑧2𝑠. At a point (𝑎, 0) ∈ 𝑀 ∩ Π ∩ 𝑈0, the argument above
shows that (𝜕𝑃 /𝜕𝑤1)(1, 𝑎, 0) = 𝑞′(𝑎) ≠ 0, so by the holomorphic implicit function
theorem we can solve the equation 𝑃 (1, 𝑧1, 𝑧2) = 0 for 𝑧1 in some neighborhood
𝑊 of (𝑎, 0), and write 𝑀 ∩ 𝑊 = {(𝑧1, 𝑧2) ∶ 𝑧1 = 𝑓(𝑧2)} for some holomorphic
function 𝑓 that satisfies 𝑃 (1, 𝑓 (𝑧2), 𝑧2) = 0 and 𝑓(0) = 𝑎. This gives a local
parametrization of 𝑀 in the form (𝑧1, 𝑧2) = 𝜒(𝜁) = (𝑓(𝜁), 𝜁), with 𝜒(0) = (𝑎, 0).
Pulling back 𝜎 by this parametrization, we find 𝜒∗𝜎(𝜁) = 𝜁𝜒∗𝑠, which has a zero
of multiplicity 1 at 𝜁 = 0. This completes the proof that deg(𝐿) = 𝑑. □

Problems
7-1. Prove the converse of Proposition 7.1: if ∇ is a connection on a Hermit-

ian vector bundle whose matrix of connection 1-forms is skew-Hermitian
with respect to every local orthonormal frame, then ∇ is a metric connec-
tion.

7-2. Suppose 𝐸 → 𝑀 is a holomorphic vector bundle with a Hermitian fiber
metric ℎ, and 𝐸′ ⊆ 𝐸 is a holomorphic subbundle with the fiber metric
ℎ′ given by restricting ℎ. For any section 𝜎 of 𝐸, let 𝜎⊤ and 𝜎⟂ be the
orthogonal projections of 𝜎 onto 𝐸′ and (𝐸′)⟂, respectively. Denoting
the Chern connections on 𝐸 and 𝐸′ by ∇ and ∇′, respectively, show that
∇′

𝑋𝜎 = (∇𝑋𝜎)⊤ for every smooth vector field 𝑋 on 𝑀 and smooth section
𝜎 of 𝐸′.

7-3. Let 𝐸 → 𝑀 be a smooth complex vector bundle endowed with a Hermit-
ian fiber metric ℎ.
(a) Show that ℎ determines a smooth conjugate-linear bundle isomor-

phism ℎ̂∶ 𝐸 → 𝐸∗ by
ℎ̂(𝜎)(𝜏) = ⟨𝜏, 𝜎⟩ℎ.

(Note the reversal of order on the right-hand side.)
(b) Show that the formula

⟨𝜑, 𝜓⟩ℎ∗ = ⟨ℎ̂−1(𝜓), ℎ̂−1(𝜑)⟩ℎ.
defines a Hermitian fiber metric ℎ∗ on the dual bundle 𝐸∗, called the
dual metric.

7-4. Let 𝐸 → 𝑀 be a smooth complex vector bundle, and let ∇ be a connection
on 𝐸. Define a map ∇∗ ∶ Γ(𝑇ℂ𝑀) × Γ(𝐸∗) → Γ(𝐸∗) by

(∇∗
𝑋𝜑)(𝜎) = 𝑋(𝜑(𝜎)) − 𝜑(∇𝑋𝜎)

for 𝑋 ∈ Γ(𝑇ℂ𝑀), 𝜑 ∈ Γ(𝐸∗), and 𝜎 ∈ Γ(𝐸).
(a) Show that ∇∗ is a connection on 𝐸∗, called the dual connection.
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(b) Now suppose 𝐸 is endowed with a Hermitian fiber metric ℎ, and let
ℎ∗ be the dual metric on 𝐸∗ (Problem 7-3). Show that if ∇ is a metric
connection, then

∇∗
𝑋(ℎ̂(𝜎)) = ℎ̂(∇𝑋𝜎),

and conclude that ∇∗ is also a metric connection.
(c) Show that if 𝐸 is a holomorphic Hermitian vector bundle and ∇ is its

Chern connection, then ∇∗ is the Chern connection of 𝐸∗.
7-5. Let 𝐸 → 𝑀 be a smooth complex vector bundle, let ∇ be a connection on

𝐸, and let ∇∗ be the dual connection on 𝐸∗ (Problem 7-5). Suppose (𝑠𝑗)
is a holomorphic local frame for 𝐸, and 𝜃𝑗

𝑘 and Θ𝑗
𝑘 are its connection and

curvature forms, respectively. Let (𝜀𝑗) be the dual frame for 𝐸∗ defined by
𝜀𝑗(𝑠𝑘) = 𝛿𝑗𝑘, and let 𝜃∗𝑘

𝑗 and Θ∗𝑘
𝑗 be the connection and curvature forms

of ∇∗, satisfying

∇∗
𝑋𝜀𝑗 = 𝜃∗𝑘

𝑗 (𝑋)𝜀𝑘, Θ∗(𝑋, 𝑌 )𝜀𝑗 = Θ∗𝑘
𝑗 (𝑋, 𝑌 )𝜀𝑘.

(We write the dual frame with lower indices instead of upper ones so as
to ensure that the indices of the connection and curvature forms for ∇∗

function the same as those for ∇.) Show that

𝜃∗𝑘
𝑗 = −𝜃𝑗

𝑘, Θ∗𝑘
𝑗 = −Θ𝑗

𝑘.

7-6. Let 𝐸, 𝐸′ → 𝑀 be smooth complex vector bundles endowed with con-
nections ∇ and ∇′.
(a) Show that there is a unique connection ∇⊗ on 𝐸 ⊗ 𝐸′, called the

tensor product connection, that satisfies ∇⊗
𝑋(𝜎 ⊗ 𝜎′) = ∇𝑋𝜎 ⊗ 𝜎′ +

𝜎 ⊗ ∇′
𝑋𝜎′ for all 𝜎 ∈ Γ(𝐸) and 𝜎′ ∈ Γ(𝐸′).

(b) Show that the curvature of ∇⊗ satisfies

Θ⊗(𝑋, 𝑌 )(𝜎 ⊗ 𝜏) = (Θ(𝑋, 𝑌 )𝜎) ⊗ 𝜏 + 𝜎 ⊗ (Θ′(𝑋, 𝑌 )𝜏).

(c) Show that if 𝐸 and 𝐸′ are holomorphic Hermitian bundles and ∇ and
∇′ are their Chern connections, then ∇⊗ is the Chern connection on
𝐸 ⊗ 𝐸′.

7-7. Let ∇ be a connection on a smooth vector bundle 𝐸 → 𝑀 and Θ
its curvature. Prove the differential Bianchi identity 𝐷Θ = 0, where
𝐷 ∶ ℰ2(End𝐸) → ℰ3(End𝐸) is the exterior covariant derivative opera-
tor associated with the tensor product connection on End𝐸 ≅ 𝐸 ⊗ 𝐸∗.

7-8. Prove Lemma 7.28 (characterizations of positive (1, 1)-forms).



220 7. Connections

7-9. Let 𝑀 be a complex 𝑛-manifold. Define a positive (𝒑, 𝒑)-form on 𝑀 to
be a real (𝑝, 𝑝)-form that restricts to a positively oriented volume form on
every 𝑝-dimensional complex submanifold of 𝑀 .
(a) Show that a real (𝑝, 𝑝)-form 𝜔 is positive if and only if

(−𝑖)𝑝𝜔(𝑣1, 𝑣1, … , 𝑣𝑝, 𝑣𝑝) > 0
whenever (𝑣1, … , 𝑣𝑝) is a linearly independent 𝑝-tuple of elements of
𝑇 ′

𝑥𝑀 for 𝑥 ∈ 𝑀 .
(b) Show that if 𝜑 is a nonzero (𝑛, 0)-form, then 𝑖𝑛2𝜑 ∧ 𝜑 is positive.

7-10. Let 𝑀 be a complex 𝑛-manifold, and let 𝜋 ∶ 𝐸 → 𝑀 be a smooth com-
plex vector bundle. Given a connection ∇ on 𝐸, let 𝐷 be the associ-
ated exterior covariant derivative operator, and for each 𝑞 > 0 define
an operator 𝐷″ ∶ ℰ0,𝑞(𝑀; 𝐸) → ℰ0,𝑞+1(𝑀; 𝐸) by 𝐷″ = 𝜋0,𝑞+1 ∘ 𝐷.
Show that if there is a connection on 𝐸 that satisfies 𝐷″ ∘ 𝐷″ = 0 on
ℰ0,0(𝑀; 𝐸), then 𝐸 has a unique structure as a holomorphic vector bun-
dle such that the holomorphic sections of 𝐸 are exactly those in the kernel
of 𝐷″. [Hint: Show that for any smooth local frame (𝑠1, … , 𝑠𝑚) for 𝐸
over 𝑈 ⊆ 𝑀 , the (0, 1)-forms 𝜃𝑗

𝑘 on 𝑈 defined by 𝐷″(𝑠𝑘) = 𝜃𝑗
𝑘 ⊗ 𝑠𝑗

satisfy 𝜕𝜃𝑗
𝑘 + 𝜃𝑗

𝑙 ∧ 𝜃𝑙
𝑘 = 0. Let (𝑧𝑗) be local holomorphic coordinates for

𝑈 and let (𝑧, 𝑏) = (𝑧1, … , 𝑧𝑛, 𝑏1, … , 𝑏𝑚) be the (complex-valued) coordi-
nates on the open set 𝜋−1(𝑈) ⊆ 𝐸 defined by the local frame (𝑠𝑘), via the
correspondence (𝑧, 𝑏) ↔ 𝑏𝑘𝑠𝑘(𝑧). Show that there is a unique integrable
almost complex structure on the total space of 𝐸 such that Λ1,0(𝐸) is lo-
cally spanned by {𝜋∗𝑑𝑧𝑗 , 𝑑𝑏𝑙 + 𝑏𝑘𝜋∗𝜃𝑙

𝑘 ∶ 𝑗 = 1, … , 𝑛, 𝑙 = 1, … , 𝑚},
and apply the Newlander–Nirenberg theorem.]



Chapter 8

Hermitian and Kähler
Manifolds

In this chapter, we explore the interplay between holomorphic structures and met-
rics on the tangent bundle. We begin by discussing basic properties of Hermit-
ian metrics on the tangent bundle and their relationships with Riemannian metrics.
Then for the rest of the chapter we focus on the special case of Kähler metrics, which
are Hermitian metrics that satisfy an additional condition ensuring a closer relation-
ship between the Riemannian structure and the holomorphic structure. Complex
manifolds that admit Kähler metrics are far and away the most important class of
complex manifolds.

Hermitian Metrics on the Tangent Bundle
Let 𝑀 be a complex manifold. Because the almost complex structure 𝐽 turns the
tangent bundle into a complex vector bundle 𝑇𝐽 𝑀 , we can look for Hermitian fiber
metrics on 𝑇𝐽 𝑀 . Because 𝐽 plays the role of multiplication by 𝑖 on 𝑇𝐽 𝑀 , a Her-
mitian fiber metric in this case is a map ℎ∶ Γ(𝑇𝐽 𝑀) × Γ(𝑇𝐽 𝑀) → 𝐶∞(𝑀; ℂ) that
satisfies all of the following:

• ℎ is bilinear over 𝐶∞(𝑀; ℝ);
• ℎ(𝐽𝑋, 𝑌 ) = 𝑖ℎ(𝑋, 𝑌 );
• ℎ(𝑋, 𝐽𝑌 ) = −𝑖ℎ(𝑋, 𝑌 );
• ℎ(𝑌 , 𝑋) = ℎ(𝑋, 𝑌 );
• ℎ(𝑋, 𝑋) > 0 at points where 𝑋 ≠ 0.
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A Hermitian fiber metric is not a Riemannian metric, because it cannot take on
only real values; but the next lemma shows that its real part is.

Lemma 8.1. Suppose 𝑀 is a complex manifold and ℎ is a Hermitian fiber metric
on 𝑇𝐽 𝑀 . Then 𝑔 = Reℎ is a Riemannian metric on 𝑀 .

Proof. It follows directly from the definition that 𝑔 is smooth, positive definite, and
bilinear over 𝐶∞(𝑀; ℝ). It remains only to show that it is symmetric. We compute

𝑔(𝑋, 𝑌 ) = 1
2 (ℎ(𝑋, 𝑌 ) + ℎ(𝑋, 𝑌 )) = 1

2 (ℎ(𝑋, 𝑌 ) + ℎ(𝑌 , 𝑋)),

which is unchanged when 𝑋 and 𝑌 are swapped. □

It is natural to ask what can be said about the imaginary part. The next lemma
answers that question.

Lemma 8.2. Suppose 𝑀 is a complex manifold and ℎ is a Hermitian fiber metric
on 𝑇𝐽 𝑀 . Then 𝜔 = − Imℎ is a 2-form of type (1, 1).

Proof. As before, it is immediate that 𝜔 is smooth and bilinear over 𝐶∞(𝑀; ℝ),
so we need only show that it is antisymmetric and of type (1, 1). Antisymmetry is
another simple computation:

𝜔(𝑋, 𝑌 ) = − 1
2𝑖(ℎ(𝑋, 𝑌 ) − ℎ(𝑋, 𝑌 )) = − 1

2𝑖(ℎ(𝑋, 𝑌 ) − ℎ(𝑌 , 𝑋)),

and this last expression changes sign when 𝑋 and 𝑌 are swapped.
To see that 𝜔 is of type (1, 1), note that the properties of ℎ guarantee that

ℎ(𝐽𝑋, 𝐽𝑌 ) = (𝑖)(−𝑖)ℎ(𝑋, 𝑌 ) = ℎ(𝑋, 𝑌 ) for all real vector fields 𝑋 and 𝑌 . It
follows that

𝜔(𝐽𝑋, 𝐽𝑌 ) = − Imℎ(𝐽𝑋, 𝐽𝑌 ) = − Imℎ(𝑋, 𝑌 ) = 𝜔(𝑋, 𝑌 ),

so 𝜔 is of type (1, 1) by the result of Problem 4-1. □

The reasons for the choice of a negative sign in the definition of 𝜔 will become
clear below (see Example 8.6 and Proposition 8.9).

Another natural question to ask is this: Given a Riemannian metric 𝑔 on a
complex manifold 𝑀 , can we find a 2-form 𝜔 such that ℎ = 𝑔 − 𝑖𝜔 is a Hermitian
fiber metric on 𝑇𝐽 𝑀? The first thing to note is that if there is such a form 𝜔, it is
uniquely determined by 𝑔.

Lemma 8.3. Suppose 𝑀 is a complex manifold and ℎ is a Hermitian fiber metric
on 𝑇𝐽 𝑀 . Let 𝑔 = Reℎ and 𝜔 = − Imℎ. Then

(8.1) 𝜔(𝑋, 𝑌 ) = 𝑔(𝐽𝑋, 𝑌 ) for all 𝑋, 𝑌 ∈ Γ(𝑇 𝑀).
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Proof. Once again, a computation:

𝑔(𝐽𝑋, 𝑌 ) = 1
2(ℎ(𝐽𝑋, 𝑌 ) + ℎ(𝐽𝑋, 𝑌 ))

= 1
2(𝑖ℎ(𝑋, 𝑌 ) + 𝑖ℎ(𝑋, 𝑌 ))

= 𝑖
2(ℎ(𝑋, 𝑌 ) − ℎ(𝑋, 𝑌 ))

= 𝜔(𝑋, 𝑌 ). □

So now the question becomes: Given a Riemannian metric 𝑔, if we define a
2-form 𝜔 by (8.1), when is ℎ = 𝑔 − 𝑖𝜔 a Hermitian fiber metric on 𝑇𝐽 𝑀? The next
proposition answers that question in several ways.
Proposition 8.4. Let 𝑀 be a complex manifold 𝑀 and 𝐽 ∶ 𝑇 𝑀 → 𝑇 𝑀 its asso-
ciated almost complex structure. Given a Riemannian metric 𝑔 on 𝑀 , define 𝜔, ℎ,
and 𝑔ℂ by

• 𝜔(𝑋, 𝑌 ) = 𝑔(𝐽𝑋, 𝑌 ),
• ℎ = 𝑔 − 𝑖𝜔,
• 𝑔ℂ is the extension of 𝑔 by complex bilinearity to act on pairs of complex
vector fields.

The following are equivalent.

(a) ℎ is a Hermitian fiber metric on 𝑇𝐽 𝑀 .
(b) 𝐽 is an orthogonal map with respect to 𝑔.
(c) 𝐽 is a skew-symmetric map with respect to 𝑔.
(d) 𝑔ℂ(𝑋, 𝑌 ) = 0 if 𝑋 and 𝑌 are both sections of 𝑇 ′𝑀 .
(e) 𝜔 is skew-symmetric.

Proof. We will prove (a) ⇒ (b) ⇒ (c) ⇒ (d) ⇒ (e) ⇒ (a).
(a) ⇒ (b): Suppose ℎ is a Hermitian fiber metric. Because ℎ is sesquilinear, it

satisfies ℎ(𝐽𝑋, 𝐽𝑌 ) = (𝑖)(−𝑖)ℎ(𝑋, 𝑌 ) = ℎ(𝑋, 𝑌 ). Thus
𝑔(𝐽𝑋, 𝐽𝑌 ) = 1

2 (ℎ(𝐽𝑋, 𝐽𝑌 ) + ℎ(𝐽𝑋, 𝐽𝑌 ))
= 1

2 (ℎ(𝑋, 𝑌 ) + ℎ(𝑋, 𝑌 )) = 𝑔(𝑋, 𝑌 ).

(b) ⇒ (c): If 𝐽 is orthogonal, then 𝑔(𝐽𝑋, 𝑌 ) = 𝑔(𝐽 2𝑋, 𝐽𝑌 ) = −𝑔(𝑋, 𝐽𝑌 ).
(c) ⇒ (d): Assuming 𝐽 is skew-symmetric, its complexification 𝐽 ∶ 𝑇ℂ𝑀 →

𝑇ℂ𝑀 is also skew-symmetric with respect to 𝑔ℂ. Suppose 𝑍, 𝑊 ∈ Γ(𝑇 ′𝑀). Then
𝑖𝑔ℂ(𝑍, 𝑊 ) = 𝑔ℂ(𝑖𝑍, 𝑊 ) = 𝑔ℂ(𝐽𝑍, 𝑊 )

= −𝑔ℂ(𝑍, 𝐽𝑊 ) = −𝑔ℂ(𝑍, 𝑖𝑊 ) = −𝑖𝑔ℂ(𝑍, 𝑊 ),
from which it follows that 𝑔ℂ(𝑍, 𝑊 ) = 0.
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(d) ⇒ (e); Suppose 𝑔ℂ vanishes when applied to pairs of sections of 𝑇 ′𝑀 .
Because 𝑔ℂ is the complexification of a real tensor field, by conjugation it also
vanishes when applied to pairs of sections of 𝑇 ″𝑀 . Given 𝑋, 𝑌 ∈ Γ(𝑇 𝑀), we can
use the decomposition 𝑇ℂ𝑀 = 𝑇 ′𝑀 ⊕𝑇 ″𝑀 to write 𝑋 = 𝑍+𝑍 and 𝑌 = 𝑊 +𝑊 ,
with 𝑍, 𝑊 ∈ Γ(𝑇 ′𝑀). Then

𝜔(𝑋, 𝑌 ) = 𝑔(𝐽𝑋, 𝑌 ) = 𝑔ℂ(𝐽(𝑍 + 𝑍), 𝑊 + 𝑊 )
= 𝑔ℂ(𝑖𝑍 − 𝑖𝑍, 𝑊 + 𝑊 )
= 𝑖(𝑔ℂ(𝑍, 𝑊 ) + 𝑔ℂ(𝑍, 𝑊 ) − 𝑔ℂ(𝑍, 𝑊 ) − 𝑔ℂ(𝑍, 𝑊 ))
= 𝑖(𝑔ℂ(𝑍, 𝑊 ) − 𝑔ℂ(𝑍, 𝑊 )).

Interchanging 𝑋 and 𝑌 has the effect of interchanging 𝑍 and 𝑊 , and this last
expression manifestly changes sign under that interchange.

(e) ⇒ (a): Now suppose 𝜔 is skew-symmetric. Then ℎ = 𝑔 − 𝑖𝜔 is certainly
smooth and bilinear over 𝐶∞(𝑀, ℝ), and it is positive definite because the skew
symmetry of 𝜔 implies

ℎ(𝑋, 𝑋) = 𝑔(𝑋, 𝑋) − 𝑖𝜔(𝑋, 𝑋) = 𝑔(𝑋, 𝑋) > 0, where 𝑋 ≠ 0.

To see that ℎ is conjugate symmetric, compute

ℎ(𝑋, 𝑌 ) − ℎ(𝑌 , 𝑋) = 𝑔(𝑋, 𝑌 ) − 𝑖𝜔(𝑋, 𝑌 ) − (𝑔(𝑌 , 𝑋) − 𝑖𝜔(𝑌 , 𝑋))
= 𝑔(𝑋, 𝑌 ) − 𝑖𝜔(𝑋, 𝑌 ) − 𝑔(𝑌 , 𝑋) − 𝑖𝜔(𝑌 , 𝑋)
= 0.

And for complex linearity in the first variable, we have

ℎ(𝐽𝑋, 𝑌 ) = 𝑔(𝐽𝑋, 𝑌 ) − 𝑖𝜔(𝐽𝑋, 𝑌 ) = 𝜔(𝑋, 𝑌 ) − 𝑖𝑔(𝐽 2𝑋, 𝑌 )
= 𝜔(𝑋, 𝑌 ) + 𝑖𝑔(𝑋, 𝑌 ) = 𝑖ℎ(𝑋, 𝑌 ).

Finally, conjugate linearity in the second variable follows from the two previous
computations:

ℎ(𝑋, 𝐽𝑌 ) = ℎ(𝐽𝑌 , 𝑋) = 𝑖ℎ(𝑌 , 𝑋) = −𝑖ℎ(𝑋, 𝑌 ). □

A Hermitian metric on a complex manifold 𝑀 is a Riemannian metric for
which 𝐽 is orthogonal, and a complexmanifold endowedwith a Hermitian structure
is called a Hermitian manifold. Given a Hermitian manifold (𝑀, 𝑔), the 2-form
𝜔 = 𝑔(𝐽 ⋅, ⋅) is called the fundamental 2-form of the Hermitian metric. (Although
this terminology is quite common, it is important to remember that the metric 𝑔
itself is not a Hermitian fiber metric on 𝑇𝐽 𝑀 ; that role is played by ℎ = 𝑔 − 𝑖𝜔.)

Lemma 8.5. Every complex manifold has a Hermitian metric.
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Proof. Given a complex manifold 𝑀 , let 𝑔0 be an arbitrary Riemannian metric on
𝑀 , and define another Riemannian metric 𝑔 by

𝑔(𝑋, 𝑌 ) = 𝑔0(𝑋, 𝑌 ) + 𝑔0(𝐽𝑋, 𝐽𝑌 ).
It follows easily that 𝑔(𝐽𝑋, 𝐽𝑌 ) = 𝑔(𝑋, 𝑌 ). □

Example 8.6 (The Standard Metric on ℂ𝒏). On ℂ𝑛 with standard holomorphic
coordinates 𝑧𝑗 = 𝑥𝑗 + 𝑖𝑦𝑗 , we have the Euclidean metric

𝑔E =
𝑛

∑
𝑗=1

(𝑑𝑥𝑗)2 + (𝑑𝑦𝑗)2.

Because
𝐽 𝜕

𝜕𝑥𝑗 = 𝜕
𝜕𝑦𝑗 and 𝐽 𝜕

𝜕𝑦𝑗 = − 𝜕
𝜕𝑥𝑗 ,

𝐽 takes an orthonormal frame to an orthonormal frame, so it is orthogonal. Thus
𝑔E is Hermitian. Its fundamental 2-form 𝜔E satisfies

𝜔E(
𝜕

𝜕𝑥𝑗 , 𝜕
𝜕𝑥𝑘 ) = 𝑔E(

𝜕
𝜕𝑦𝑗 , 𝜕

𝜕𝑥𝑘 ) = 0,

𝜔E(
𝜕

𝜕𝑥𝑗 , 𝜕
𝜕𝑦𝑘 ) = 𝑔E(

𝜕
𝜕𝑦𝑗 , 𝜕

𝜕𝑦𝑘 ) = 𝛿𝑗𝑘,

𝜔E(
𝜕

𝜕𝑦𝑗 , 𝜕
𝜕𝑥𝑘 ) = −𝑔E(

𝜕
𝜕𝑥𝑗 , 𝜕

𝜕𝑥𝑘 ) = −𝛿𝑗𝑘,

𝜔E(
𝜕

𝜕𝑦𝑗 , 𝜕
𝜕𝑦𝑘 ) = −𝑔E(

𝜕
𝜕𝑥𝑗 , 𝜕

𝜕𝑦𝑘 ) = 0.

It follows that 𝜔E has the coordinate expression

(8.2) 𝜔E =
𝑛

∑
𝑗=1

𝑑𝑥𝑗 ∧ 𝑑𝑦𝑗 .

This 2-form is called the standard symplectic form onℝ2𝒏 (see [LeeSM, Example
22.9(a)]). This formula is one reason for the choice of the sign in our definition of
the fundamental 2-form. //

In the discussion so far, we have assumed that we started with a Riemannian
metric and looked for conditions under which it determines a Hermitian fiber metric
on 𝑇𝐽 𝑀 . We can also start with a 2-form 𝜔 and ask the analogous question: Is there
a Hermitian metric 𝑔 for which 𝜔 is the fundamental 2-form? The next lemma
shows that such a 𝑔, if it exists, is determined by 𝜔.
Lemma 8.7. Suppose 𝑔 is a Hermitian metric on a complex manifold 𝑀 and 𝜔 is
its fundamental 2-form. Then

𝑔(𝑋, 𝑌 ) = 𝜔(𝑋, 𝐽𝑌 ) for all 𝑋, 𝑌 ∈ Γ(𝑇 𝑀).

► Exercise 8.8. Prove this lemma.
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Thus another appropriate question is: Given a 2-form 𝜔, if we define 𝑔(𝑋, 𝑌 ) =
𝜔(𝑋, 𝐽𝑌 ), when is 𝑔 a Hermitian metric? Lemma 8.2 shows that one necessary
condition is that 𝜔 must be of type (1, 1). Another obvious necessary condition
is that 𝜔 must be a positive form, because 𝑔 must be positive definite. The next
proposition shows that these two conditions are also sufficient.
Proposition 8.9. Suppose 𝑀 is a complex manifold and 𝜔 is a smooth 2-form on
𝑀 . Define a 2-tensor 𝑔 by 𝑔(𝑋, 𝑌 ) = 𝜔(𝑋, 𝐽𝑌 ). Then 𝑔 is a Hermitian metric
with 𝜔 as its fundamental 2-form if and only if 𝜔 is a positive (1, 1)-form.

Proof. If 𝑔 is a Hermitian metric with 𝜔 as its fundamental 2-form, then 𝜔 is a
positive (1, 1)-form as noted above.

Conversely, suppose 𝜔 is a smooth positive (1, 1)-form. Problem 4-1 shows
that 𝜔(𝐽𝑋, 𝐽𝑌 ) = 𝜔(𝑋, 𝑌 ) for all vector fields 𝑋, 𝑌 . Let 𝑔(𝑋, 𝑌 ) = 𝜔(𝑋, 𝐽𝑌 ),
and note that 𝑔 is smooth and bilinear over 𝐶∞(𝑀), and positivity of 𝜔 ensures that
𝑔 is positive definite. To ensure that 𝑔 is a Riemannian metric, we need only check
that it is symmetric. Using the observation above, we find

𝑔(𝑋, 𝑌 ) = 𝜔(𝑋, 𝐽𝑌 ) = 𝜔(𝐽𝑋, 𝐽 2𝑌 ) = −𝜔(𝐽𝑋, 𝑌 ) = 𝜔(𝑌 , 𝐽𝑋) = 𝑔(𝑌 , 𝑋).

To finish the proof, we use the fact that 𝑔(𝐽𝑋, 𝑌 ) = 𝜔(𝐽𝑋, 𝐽𝑌 ) = 𝜔(𝑋, 𝑌 ),
so 𝜔 is the fundamental 2-form associated with 𝑔; and since 𝜔 is skew-symmetric,
Proposition 8.4 shows that 𝑔 is Hermitian. □

Since positivity of a (1, 1)-form is a natural condition because of its relation-
ship with orientations of 1-dimensional complex submanifolds (Lemma 7.28), the
preceding lemma gives another justification for the choice of the minus sign in the
definition of the fundamental 2-form.

There is one more natural question we might ask: By virtue of the natural iso-
morphism 𝑇𝐽 𝑀 ≅ 𝑇 ′𝑀 (Prop. 1.58), the bundle 𝑇𝐽 𝑀 inherits the structure of a
holomorphic vector bundle. Thus a Hermitian fiber metric ℎ = 𝑔 − 𝑖𝜔 determines
a Chern connection on 𝑇 𝑀 . One might wonder whether the Chern connection of
ℎ coincides with the Levi-Civita connection of 𝑔. The answer is “not always,” and
we will explore the conditions under which they do coincide in the next section.

Kähler Metrics
A Hermitian metric on a complex manifold is called a Kähler metric if its funda-
mental 2-form 𝜔 is closed. A complex manifold equipped with a Kähler metric is
called a Kähler manifold, This seemingly innocuous condition turns out to have
deep and wide-ranging consequences.

Because everyHermitianmetric is completely determined by its fundamental 2-
form, it is frequently easiest to define a Kähler metric that way. A Kähler form on a
complexmanifold is a smooth, closed, positive (1, 1)-form. By virtue of Proposition
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8.9, every Kähler form 𝜔 determines a Kähler metric via 𝑔 = 𝜔(⋅, 𝐽 ⋅). A Kähler
form is, in particular, a symplectic form, which is a smooth closed real 2-form that
is nondegenerate in the sense that the map from 𝑇 𝑀 to 𝑇 ∗𝑀 given by 𝑣 ↦ 𝑣 ⅃ 𝜔
is injective (see [LeeSM, Chap. 22]).

Because a Kähler form is closed and real, it determines a real cohomology class
[𝜔] ∈ 𝐻2

dR(𝑀; ℝ), called the Kähler class of the given metric.
In order to perform computations with Kähler metrics efficiently, we introduce

some additional index conventions. Suppose 𝑀 is an 𝑛-dimensional complex man-
ifold. Given any local holomorphic coordinates (𝑧1, … , 𝑧𝑛) for 𝑀 , we will gen-
erally use the local frame (𝜕/𝜕𝑧1, … , 𝜕/𝜕𝑧𝑛, 𝜕/𝜕𝑧1, … , 𝜕/𝜕𝑧𝑛) for the complexified
tangent bundle, numbered from 1 to 2𝑛. For each index 𝑗 ∈ {1, … , 𝑛}, we interpret
𝑗 to mean 𝑗 + 𝑛, and 𝑧𝑗 to be synonymous with 𝑧𝑗 . We use the abbreviations

𝜕𝑗 = 𝜕
𝜕𝑧𝑗 , 𝜕𝑗 = 𝜕

𝜕𝑧𝑗 ,

with implied summations over such indices going from 1 to 𝑛 = dimℂ 𝑀 . Thus,
for example, the expression 𝑉 𝑗𝜕𝑗 + 𝑉 𝑗𝜕𝑗 is shorthand for

𝑛

∑
𝑗=1

𝑉 𝑗 𝜕
𝜕𝑧𝑗 +

𝑛

∑
𝑗=1

𝑉 𝑗 𝜕
𝜕𝑧𝑗 .

Now suppose 𝑔 is a Hermitian metric. (For the time being, we are not assum-
ing it is Kähler.) As in the previous section, we extend 𝑔 to act on pairs of complex
vector fields by complex bilinearity; but for simplicity, henceforth we will not dif-
ferentiate notationally between 𝑔 and its complex-bilinear extension, using the same
symbol 𝑔 for both.

In local holomorphic coordinates, we can write the complexification of 𝑔 as

𝑔 = 𝑔𝑗𝑘 𝑑𝑧𝑗 ⊗ 𝑑𝑧𝑘 + 𝑔𝑗𝑘 𝑑𝑧𝑗 ⊗ 𝑑𝑧𝑘 + 𝑔𝑗𝑘 𝑑𝑧𝑗 ⊗ 𝑑𝑧𝑘 + 𝑔𝑗𝑘 𝑑𝑧𝑗 ⊗ 𝑑𝑧𝑘,

where 𝑔𝑗𝑘 = 𝑔(𝜕𝑗 , 𝜕𝑘), 𝑔𝑗𝑘 = 𝑔(𝜕𝑗 , 𝜕𝑘), etc. Because 𝑔 is the complexification of a
real symmetric tensor, we have

𝑔𝑗𝑘 = 𝑔𝑗𝑘 = 𝑔𝑘𝑗 and 𝑔𝑗𝑘 = 𝑔𝑗𝑘 = 𝑔𝑘𝑗 .

Moreover, because 𝑔 vanishes when applied to pairs of vectors in 𝑇 ′𝑀 , we have
𝑔𝑗𝑘 = 0 and then also 𝑔𝑗𝑘 = 0 by conjugation. Thus we can write

(8.3)

𝑔 = 𝑔𝑗𝑘 𝑑𝑧𝑗 ⊗ 𝑑𝑧𝑘 + 𝑔𝑗𝑘 𝑑𝑧𝑗 ⊗ 𝑑𝑧𝑘

= 2𝑔𝑗𝑘(
𝑑𝑧𝑗 ⊗ 𝑑𝑧𝑘 + 𝑑𝑧𝑘 ⊗ 𝑑𝑧𝑗

2 )
= 2𝑔𝑗𝑘 𝑑𝑧𝑗 𝑑𝑧𝑘,
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where the juxtaposition 𝑑𝑧𝑗 𝑑𝑧𝑘 represents the symmetric product. The Riemann-
ian metric 𝑔 is then the restriction of this tensor to pairs of real vector fields. For
example, if 𝑋 and 𝑌 are real vector fields, written locally as 𝑋 = 𝑋𝑗𝜕𝑗 + 𝑋𝑗𝜕𝑗 and
𝑌 = 𝑌 𝑗𝜕𝑗 + 𝑌 𝑗𝜕𝑗 , then

𝑔(𝑋, 𝑌 ) = 𝑔𝑗𝑘(𝑋𝑗𝑌 𝑘 + 𝑌 𝑗𝑋𝑘),

and 𝑔(𝑋, 𝑋) = 2𝑔𝑗𝑘𝑋𝑗𝑋𝑘.
For many computations, we are going to need a Hermitian fiber metric on the

whole complexified tangent bundle. For complex vector fields 𝑋, 𝑌 , we define

(8.4) ⟨𝑋, 𝑌 ⟩ = 𝑔(𝑋, 𝑌 ),

and denote the associated norm by |𝑋| = ⟨𝑋, 𝑋⟩1/2. It is easy to check that this
is Hermitian, and it coincides with 𝑔 when applied to real vector fields. Moreover,
because 𝑔(𝑍, 𝑊 ) = 0 when 𝑍 and 𝑊 are both sections of 𝑇 ′𝑀 or 𝑇 ″𝑀 , this fiber
metric makes 𝑇 ′𝑀 orthogonal to 𝑇 ″𝑀 .

Of course, we have already defined aHermitian fibermetric on 𝑇𝐽 𝑀 by ℎ = 𝑔−
𝑖𝜔. One might hope that this new inner product matches ℎ under the isomorphism
𝜉 ∶ 𝑇𝐽 𝑀 → 𝑇 ′𝑀 given by 𝜉(𝑣) = 𝑣−𝑖𝐽𝑣. Unfortunately not: for real vector fields
𝑋 and 𝑌 ,

⟨𝜉(𝑋), 𝜉(𝑌 )⟩ = ⟨𝑋 − 𝑖𝐽𝑋, 𝑌 − 𝑖𝐽𝑌 ⟩ = 𝑔(𝑋 − 𝑖𝐽𝑋, 𝑌 + 𝑖𝐽𝑌 )
= 𝑔(𝑋, 𝑌 ) − 𝑖𝑔(𝐽𝑋, 𝑌 ) + 𝑖𝑔(𝑋, 𝐽𝑌 ) + 𝑔(𝐽𝑋, 𝐽𝑌 )
= 2𝑔(𝑋, 𝑌 ) − 2𝑖𝜔(𝑋, 𝑌 ) = 2ℎ(𝑋, 𝑌 ).

We could have avoided this discrepancy by adding a factor of 1/√2 to the definition
of 𝜉; but since we will be computing norms using exclusively the inner product
⟨⋅, ⋅⟩, it is not worth the additional complication this would have brought to our
formulas.

In holomorphic coordinates, for sections 𝑍, 𝑊 of 𝑇 ′𝑀 , we have

⟨𝑍, 𝑊 ⟩ = 𝑔(𝑍𝑗𝜕𝑗 , 𝑊 𝑘𝜕𝑘) = 𝑔𝑗𝑘𝑍𝑗𝑊 𝑘,

where we have written 𝑊 𝑘 = 𝑊 𝑘. On the other hand, if 𝑋 and 𝑌 are real, decom-
posed as 𝑋 = 𝑍 + 𝑍 and 𝑌 = 𝑊 + 𝑊 with 𝑍, 𝑊 ∈ Γ(𝑇 ′𝑀), then

⟨𝑋, 𝑌 ⟩ = 𝑔(𝑍 + 𝑍, 𝑊 + 𝑊 ) = 𝑔(𝑍, 𝑊 ) + 𝑔(𝑊 , 𝑍) = 𝑔𝑗𝑘(𝑍𝑗𝑊 𝑘 + 𝑊 𝑗𝑍𝑘).

In particular, for 𝑋 = 𝑍 + 𝑍, this yields

(8.5) |𝑋|2 = |𝑍 + 𝑍|2 = |𝑍|2 + |𝑍|2 = 2|𝑍|2 = 2𝑔𝑗𝑘𝑍𝑗𝑍𝑘.
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We use the complexifiedmetric 𝑔 (not the Hermitian fiber metric ⟨⋅, ⋅⟩) to define
the musical isomorphisms ♭∶ 𝑇ℂ𝑀 → 𝑇 ∗

ℂ𝑀 and ♯∶ 𝑇 ∗
ℂ𝑀 → 𝑇ℂ𝑀 , called the

flat and sharp operators: for a complex vector field 𝑋, the 1-form 𝑋♭ is defined by
𝑋♭(𝑌 ) = 𝑔(𝑋, 𝑌 ) for all complex vector fields 𝑌 ;

and ♯ is the inverse of ♭. Thus both ♯ and ♭ are smooth (but not holomorphic)
complex-linear bundle isomorphisms. For example, for 𝑍 ∈ Γ(𝑇 ′𝑀) and 𝑌 any
complex vector field, we have

𝑍♭(𝑌 ) = 𝑔(𝑍, 𝑌 ) = 𝑔(𝑍𝑗𝜕𝑗 , 𝑌 𝑘𝜕𝑘 + 𝑌 𝑘𝜕𝑘) = 𝑔𝑗𝑘𝑍𝑗𝑌 𝑘.

Thus we can write the coordinate expression of 𝑍♭ as 𝑍𝑘𝑑𝑧𝑘, where 𝑍𝑘 = 𝑔𝑗𝑘𝑍𝑗 .
Note that the flat operator maps 𝑇 ′𝑀 to Λ0,1𝑀 and 𝑇 ″𝑀 to Λ1,0𝑀 . More gener-
ally, we use the matrix 𝑔𝑗𝑘 and its inverse 𝑔𝑗𝑘 to raise and lower indices on complex
tensors of any type.

Next let us look at the coordinate expression for the fundamental 2-form 𝜔.
Since 𝜔 is a (1, 1)-form, its only nonzero terms in holomorphic coordinates are
those involving 𝑑𝑧𝑗 ∧𝑑𝑧𝑘 or 𝑑𝑧𝑗 ∧𝑑𝑧𝑘, and by antisymmetry we can combine those
together after suitably renaming the indices. Thus we can write 𝜔 = 𝜔𝑗𝑘𝑑𝑧𝑗 ∧ 𝑑𝑧𝑘

for some coefficient functions 𝜔𝑗𝑘. To determine the coefficients, we compute
𝜔𝑗𝑘 = 𝜔(𝜕𝑗 , 𝜕𝑘) = 𝑔(𝐽𝜕𝑗 , 𝜕𝑘) = 𝑖𝑔(𝜕𝑗 , 𝜕𝑘) = 𝑖𝑔𝑗𝑘.

Thus
(8.6) 𝜔 = 𝑖𝑔𝑗𝑘 𝑑𝑧𝑗 ∧ 𝑑𝑧𝑘.
(The reason there is a factor of 2 in formula (8.3) for 𝑔 but not in this formula for
𝜔 is because of our convention regarding wedge products—we use the convention
labeled the determinant convention in [LeeSM, p. 358], which for 1-forms 𝜔 and 𝜂
yields 𝜔∧𝜂 = 𝜔⊗𝜂−𝜂⊗𝜔, while the symmetric product is 𝜔𝜂 = 1

2 (𝜔 ⊗ 𝜂+𝜂 ⊗ 𝜔).
Using the other common convention for the wedge product, the Alt convention,
would result in a factor of 2 in the formula for 𝜔 as well.)

In particular, for the standard metric on ℂ𝑛, the fundamental 2-form is given
by 𝜔 = ∑𝑗 𝑑𝑥𝑗 ∧ 𝑑𝑦𝑗 . Converting this to holomorphic coordinates using 𝑑𝑥𝑗 =
(𝑑𝑧𝑗 + 𝑑𝑧𝑗)/2 and 𝑑𝑦𝑗 = (𝑑𝑧𝑗 − 𝑑𝑧𝑗)/(2𝑖), we obtain

(8.7) 𝜔 = 𝑖
2 ∑

𝑗
𝑑𝑧𝑗 ∧ 𝑑𝑧𝑗 , 𝑔 = ∑

𝑗
𝑑𝑧𝑗 𝑑𝑧𝑗 ,

so the coefficients of the standard metric are 𝑔𝑗𝑘 = 1
2 𝛿𝑗𝑘.

The next theorem illustrates many of the reasons Kähler metrics are special, and
at the same time gives many alternative ways to characterize Kähler metrics among
the Hermitian ones. Before stating it, we note that because 𝑇 ′𝑀 is a holomorphic
vector bundle, the isomorphism 𝜉 ∶ 𝑇𝐽 𝑀 → 𝑇 ′𝑀 allows us to endow 𝑇𝐽 𝑀 with
a holomorphic bundle structure as well.
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Theorem 8.10 (Characterizations of KählerMetrics). Let 𝑀 be a complex man-
ifold and 𝑔 be a Hermitian metric on 𝑀 . We use the following notations:

• 𝜔 is the fundamental 2-form of 𝑔.
• ℎ = 𝑔 − 𝑖𝜔.
• ∇ is the Levi-Civita connection of 𝑔.
• ∇(ℎ) is the Chern connection of ℎ on 𝑇𝐽 𝑀 .
• 𝜉 ∶ 𝑇𝐽 𝑀 → 𝑇 ′𝑀 is the isomorphism 𝜉(𝑣) = 𝑣 − 𝑖𝐽𝑣.

The following statements are equivalent:

(a) 𝑔 is Kähler (i.e., 𝑑𝜔 = 0).
(b) For every 𝑝 ∈ 𝑀 , there exists a real-valued function 𝑢 on a neighborhood

𝑉 of 𝑝 such that 𝜔|𝑉 = 𝑖𝜕𝜕𝑢.
(c) In every holomorphic coordinate chart, 𝜕𝑗𝑔𝑙𝑘 = 𝜕𝑙𝑔𝑗𝑘 for all 𝑗, 𝑘, 𝑙.
(d) For every 𝑎 ∈ 𝑀 , there exists a holomorphic coordinate chart centered

at 𝑎 such that

(8.8) 𝑔𝑗𝑘(𝑎) = 1
2 𝛿𝑗𝑘 and 𝑑(𝑔𝑗𝑘)|𝑎 = 0.

(e) In every holomorphic coordinate chart, all Christoffel symbols of 𝑔 are
identically zero except those of types Γ𝑙

𝑗𝑘 and Γ𝑙
𝑗𝑘.

(f) ∇ restricts to the Chern connection on 𝑇 ′𝑀 with respect to the Hermitian
fiber metric ⟨⋅, ⋅⟩.

(g) For every real or complex vector field 𝑋, ∇𝑋 maps Γ(𝑇 ′𝑀) to itself.
(h) ∇𝐽 ≡ 0.
(i) ∇𝜔 ≡ 0.
(j) ∇𝜉 ≡ 0.
(k) ∇ is compatible with the holomorphic structure on 𝑇𝐽 𝑀 .
(l) ∇(ℎ) = ∇.

(m) ∇(ℎ) is torsion-free.

Proof. Here is the plan:

(a) +3 (b) +3 (c)
��z� ||

||||
||
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(e)
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(h)
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(l) ks +3 (m).



Kähler Metrics 231

(a) ⇒ (b): This is the local 𝜕𝜕-lemma (Corollary 4.15).
(b) ⇒ (c): Suppose 𝜔 = 𝑖𝜕𝜕𝑢 on some open subset 𝑉 ⊆ 𝑀 . In holomorphic

coordinates, 𝑖𝜕𝜕𝑢 = 𝑖𝜕𝑗𝜕𝑘𝑢 𝑑𝑧𝑗 ∧ 𝑑𝑧𝑘. Comparing this to (8.6), we find that 𝑔𝑗𝑘 =
𝜕𝑗𝜕𝑘𝑢, and therefore

𝜕𝑙𝑔𝑗𝑘 = 𝜕𝑙𝜕𝑗𝜕𝑘𝑢 = 𝜕𝑗𝜕𝑙𝜕𝑘𝑢 = 𝜕𝑗𝑔𝑙𝑘,
because the coordinate vector fields 𝜕𝑗 and 𝜕𝑙 commute.

(c) ⇒ (d): Given 𝑎 ∈ 𝑀 , let (𝑧𝑗) be any holomorphic coordinates centered at
𝑎. Using these coordinates, we may as well consider 𝑔 as a Hermitian metric on
an open subset of ℂ𝑛 with 𝑎 = 0. Using the Gram-Schmidt algorithm, we can find
a preliminary complex-linear change of coordinates that achieves 𝑔𝑗𝑘(0) = 1

2 𝛿𝑗𝑘.
To eliminate the first derivatives of 𝑔 at 0, we will make a quadratic change of
coordinates by setting 𝑧 = 𝑓(𝑤), where

𝑓 𝑗(𝑤) = 𝑤𝑗 + 𝐴𝑗
𝑚𝑙𝑤

𝑚𝑤𝑙,

for some constants 𝐴𝑗
𝑚𝑙 to be determined, but assumed to be symmetric in 𝑚 and 𝑙.

Note that this implies
𝜕𝑓 𝑗

𝜕𝑤𝑚 (0) = 𝛿𝑗
𝑚 and 𝜕2𝑓 𝑗

𝜕𝑤𝑚𝑤𝑙 (0) = 2𝐴𝑗
𝑚𝑙.

To compute the effect this has on 𝑔, we express 𝑔 in 𝑤-coordinates as 𝑔 =
̃𝑔𝑙𝑚𝑑𝑤𝑙 𝑑𝑤𝑚, where

̃𝑔𝑙𝑚 = (𝑔𝑗𝑘 ∘ 𝑓)
𝜕𝑓 𝑗

𝜕𝑤𝑙
𝜕𝑓 𝑘

𝜕𝑤𝑚 .

(Here 𝑤𝑚 and 𝑓 𝑘 represents the conjugates of 𝑤𝑚 and 𝑓 𝑘, respectively.) Because
the holomorphic Jacobian of 𝑓 at the origin is the identity matrix, this change of
coordinates maintains the condition ̃𝑔𝑙𝑚(0) = 1

2 𝛿𝑙𝑚.
By the chain rule (Prop. 1.47),

𝜕 ̃𝑔𝑙𝑚
𝜕𝑤𝑞 = (

𝜕𝑔𝑗𝑘
𝜕𝑧𝑝 ∘ 𝑓)

𝜕𝑓 𝑝

𝜕𝑤𝑞
𝜕𝑓 𝑗

𝜕𝑤𝑙
𝜕𝑓 𝑘

𝜕𝑤𝑚 + (𝑔𝑗𝑘 ∘ 𝑓)
𝜕2𝑓 𝑗

𝜕𝑤𝑞𝜕𝑤𝑙
𝜕𝑓 𝑘

𝜕𝑤𝑚 .

(The other terms that would ordinarily result from the chain rule are zero because
𝑓 is holomorphic.) When we evaluate this at 0, we find

(8.9)

𝜕 ̃𝑔𝑙𝑚
𝜕𝑤𝑞 (0) =

𝜕𝑔𝑗𝑘
𝜕𝑧𝑝 (0) 𝛿𝑝

𝑞 𝛿𝑗
𝑙 𝛿𝑘

𝑚 + 𝑔𝑗𝑘(0)2𝐴𝑗
𝑞𝑙𝛿

𝑘
𝑚

= 𝜕𝑔𝑙𝑚
𝜕𝑧𝑞 (0) + 2𝑔𝑗𝑚(0)𝐴𝑗

𝑞𝑙.

Let us choose
𝐴𝑗

𝑞𝑙 = −1
2𝑔𝑗𝑘(0)𝜕𝑔𝑙𝑘

𝜕𝑧𝑞 (0),

where 𝑔𝑗𝑘 = 𝑔𝑘𝑗 is the matrix satisfying 𝑔𝑚𝑘𝑔𝑘𝑗 = 𝛿𝑗
𝑚. Note that hypothesis (c)

guarantees that 𝐴𝑗
𝑞𝑙 is symmetric in 𝑞 and 𝑙. It then follows easily from (8.9) (which
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implicitly used the symmetry of 𝐴𝑗
𝑞𝑙) that each first derivative 𝜕 ̃𝑔𝑙𝑚/𝜕𝑤𝑞 vanishes

at 0, and by conjugation so does 𝜕 ̃𝑔𝑙𝑚/𝜕𝑤𝑞 = 𝜕 ̃𝑔𝑚𝑙/𝜕𝑤𝑞 .
(d) ⇒ (a): Since 𝑑𝜔 is defined independently of coordinates, for each 𝑝 ∈ 𝑀

we can choose a holomorphic coordinate chart in which 𝑑(𝑔𝑗𝑘) = 0 at 𝑝, and then

𝑑𝜔𝑝 = 𝑑(𝑖𝑔𝑗𝑘 𝑑𝑧𝑗 ∧ 𝑑𝑧𝑘)|𝑝 = 𝑖 𝑑𝑔𝑗𝑘 ∧ 𝑑𝑧𝑗 ∧ 𝑑𝑧𝑘|𝑝 = 0.

(c) ⇒ (e): Assuming (c), choose holomorphic coordinates (𝑧𝑗), and write the
Christoffel symbols of 𝑔 as

Γ𝑎
𝑏𝑐 = 𝑔𝑎𝑑(𝜕𝑏𝑔𝑐𝑑 + 𝜕𝑐𝑔𝑏𝑑 − 𝜕𝑑𝑔𝑏𝑐),

where each of the indices 𝑎, 𝑏, 𝑐, 𝑑 ranges through {1, … , 𝑛, 1, … , 𝑛}. First note
that the matrices 𝑔 and 𝑔−1 have the block form

𝑔 = (
0 𝑔𝑗𝑘

𝑔𝑗𝑘 0 ) , 𝑔−1 = (
0 𝑔𝑘𝑙

𝑔𝑘𝑙 0 ) ,

where (𝑔𝑘𝑙) is the inverse of the matrix (𝑔𝑗𝑘) as above. We compute

Γ𝑚
𝑗𝑘 = 1

2𝑔𝑙𝑚(𝜕𝑗𝑔𝑘𝑙 + 𝜕𝑙𝑔𝑘𝑗 − 𝜕𝑘𝑔𝑗𝑙) = 0,

Γ𝑚
𝑗𝑘 = 1

2𝑔𝑙𝑚(𝜕𝑗𝑔𝑘𝑙 + 𝜕𝑘𝑔𝑗𝑙 − 𝜕𝑙𝑔𝑗𝑘) = 0,

where we have used the facts that 𝑔𝑗𝑘 = 0 since 𝑔 annihilates pairs sections of 𝑇 ′𝑀 ,
and 𝜕𝑙𝑔𝑗𝑘 = 𝜕𝑗𝑔𝑙𝑘 = 𝜕𝑗𝑔𝑘𝑙 since we are assuming hypothesis (c). It then follows by
conjugation and symmetry that all other Christoffel symbols involving both barred
and unbarred indices are also zero.

(e) ⇒ (f): First we need to check that ∇ maps Γ(𝑇 ′𝑀) to itself. This is just a
computation in local holomorphic coordinates:

∇𝜕𝑘𝜕𝑗 = Γ𝑙
𝑘𝑗𝜕𝑙 +

�
��Γ𝑙

𝑘𝑗𝜕𝑙,

∇𝜕𝑘𝜕𝑗 =
�
��Γ𝑙

𝑘𝑗𝜕𝑙 +
�
��Γ𝑙

𝑘𝑗𝜕𝑙.

It is compatible with the Hermitian fiber metric ⟨⋅, ⋅⟩ on 𝑇 ′𝑀 because it is compat-
ible with 𝑔. To check that it is compatible with the holomorphic structure on 𝑇 ′𝑀 ,
suppose 𝑊 = 𝑊 𝑗𝜕𝑗 is a holomorphic section of 𝑇 ′𝑀 . Then for each 𝑘, we have

∇𝜕𝑘𝑊 = (𝜕𝑘𝑊 𝑗)𝜕𝑗 + 𝑊 𝑗Γ𝑙
𝑘𝑗𝜕𝑙 = 0 + 0.

(f) ⇒ (g): This is immediate.
(g) ⇒ (h): Suppose ∇ maps Γ(𝑇 ′𝑀) to itself. The covariant derivative of the

endomorphism field 𝐽 is defined by (∇𝑋𝐽)𝑌 = ∇𝑋(𝐽𝑌 ) − 𝐽(∇𝑋𝑌 ). If 𝑌 is a
section of 𝑇 ′𝑀 , then so is ∇𝑋𝑌 , and the formula for ∇𝑋𝐽 (or rather its extension
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by complex linearity to complex vector fields) reduces to ∇𝑋(𝐽𝑌 ) − 𝐽(∇𝑋𝑌 ) =
∇𝑋(𝑖𝑌 ) − 𝑖(∇𝑋𝑌 ) = 0. Then by conjugation, the same formula holds whenever 𝑌
is a section of 𝑇 ″𝑀 . Since 𝑇ℂ𝑀 = 𝑇 ′𝑀 ⊕ 𝑇 ″𝑀 , this proves that ∇𝐽 ≡ 0.

(h) ⇒ (i): The assumption ∇𝐽 ≡ 0 implies that ∇𝑉 (𝐽𝑊 ) = 𝐽∇𝑉 𝑊 for all
complex vector fields 𝑉 and 𝑊 . Using the fact that the Levi-Civita connection is
compatible with 𝑔, we compute

(∇𝑉 𝜔)(𝑋, 𝑌 ) = 𝑉 (𝜔(𝑋, 𝑌 )) − 𝜔(∇𝑉 𝑋, 𝑌 ) − 𝜔(𝑋, ∇𝑉 𝑌 )
= 𝑉 (𝑔(𝐽𝑋, 𝑌 )) − 𝑔(𝐽∇𝑉 𝑋, 𝑌 ) − 𝑔(𝐽𝑋, ∇𝑉 𝑌 )
= 𝑔(∇𝑉 𝐽𝑋, 𝑌 )) + 𝑔(𝐽𝑋, ∇𝑉 𝑌 ))

− 𝑔(𝐽∇𝑉 𝑋, 𝑌 ) − 𝑔(𝐽𝑋, ∇𝑉 𝑌 )
= 0.

(i) ⇒ (a): Let 𝑝 ∈ 𝑀 be arbitrary. As we did earlier in the proof, to prove
that 𝑑𝜔𝑝 = 0, we may use any convenient coordinate chart. If we use Riemannian
normal coordinates centered at 𝑝, then all of the Christoffel symbols vanish at 𝑝,
and the equation ∇𝜔 = 0 implies that all first partial derivatives of the components
of 𝜔 vanish at 𝑝. It follows easily that 𝑑𝜔|𝑝 = 0.

(h) ⇔ (j): With 𝑋 and 𝑌 arbitrary real vector fields, we compute

(∇𝑋𝜉)𝑌 = ∇𝑋(𝜉𝑌 ) − 𝜉(∇𝑋𝑌 ) = ∇𝑋(𝑌 − 𝑖𝐽𝑌 ) − (∇𝑋𝑌 − 𝑖𝐽∇𝑋𝑌 )
= −𝑖(∇𝑋(𝐽𝑌 ) − 𝐽∇𝑋𝑌 ) = −𝑖(∇𝑋𝐽)𝑌 .

Thus ∇𝑋𝐽 = 0 for all 𝑋 if and only if ∇𝑋𝜉 = 0 for all 𝑋.
(j) ⇒ (k): Note that the previous steps showed that (j) ⇒ (h) ⇒ ⋯ ⇒ (f), so

assuming ∇𝜉 ≡ 0 implies that ∇ is compatible with the holomorphic structure on
𝑇 ′𝑀 . The way we have defined the holomorphic structure on 𝑇𝐽 𝑀 is via 𝜉, so a
section 𝑉 of 𝑇𝐽 𝑀 is holomorphic if and only if 𝜉(𝑉 ) is a holomorphic section of
𝑇 ′𝑀 . Thus if 𝑉 is a holomorphic section of 𝑇𝐽 𝑀 and 𝑍 is a smooth section of
𝑇 ″𝑀 , we have

𝜉(∇𝑍𝑉 ) = ∇𝑍(𝜉(𝑉 )) − (∇𝑍𝜉)𝑉 = 0 − 0.

Since 𝜉 is injective, this proves that ∇𝑍𝑉 = 0.
(k) ⇒ (h): Suppose ∇ is compatible with the holomorphic structure on 𝑇𝐽 𝑀 .

Let 𝑧𝑗 = 𝑥𝑗 + 𝑖𝑦𝑗 be holomorphic local coordinates on 𝑀 , and define smooth
sections (𝑋1, … , 𝑋2𝑛) of 𝑇 𝑀 by

𝑋𝑗 =
⎧⎪
⎨
⎪⎩

𝜕
𝜕𝑥𝑗 , 𝑗 ≤ 𝑛,

𝜕
𝜕𝑦𝑗 , 𝑗 > 𝑛.
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These form a commuting local frame for 𝑇 𝑀 (as a real vector bundle). A compu-
tation shows that

𝜉(𝑋𝑗) =
⎧⎪
⎨
⎪⎩

2 𝜕
𝜕𝑧𝑗 , 𝑗 ≤ 𝑛,

2𝑖 𝜕
𝜕𝑧𝑗 , 𝑗 > 𝑛,

so by the way we have defined the holomorphic structure on 𝑇𝐽 𝑀 , these are all
holomorphic sections of 𝑇𝐽 𝑀 . Now for each 𝑗, note that 𝑋𝑗 + 𝑖𝐽𝑋𝑗 is a section of
𝑇 ″𝑀 , so the assumption that ∇ is compatible with the holomorphic structure on
𝑇𝐽 𝑀 implies

0 = ∇𝑋𝑗+𝑖𝐽𝑋𝑗 𝑋𝑘 = ∇𝑋𝑗 𝑋𝑘 + 𝐽∇𝐽𝑋𝑗 𝑋𝑘 = ∇𝑋𝑘𝑋𝑗 + 𝐽∇𝑋𝑘(𝐽𝑋𝑗),

where in the second equality we used the fact that multiplication by 𝑖 in 𝑇𝐽 𝑀 is
accomplished by applying 𝐽 ; and in the third we used the fact that ∇𝑉 𝑊 = ∇𝑊 𝑉
when 𝑉 and 𝑊 commute because ∇ is torsion-free. It follows that

(∇𝑋𝑘𝐽)𝑋𝑗 = ∇𝑋𝑘(𝐽𝑋𝑗) − 𝐽∇𝑋𝑘𝑋𝑗 = −𝐽(∇𝑋𝑘𝑋𝑗 + 𝐽∇𝑋𝑘(𝐽𝑋𝑗)) = 0,
which shows that 𝐽 is parallel with respect to ∇.

(k) ⇔ (l): The previous steps showed that (k) ⇒ (h) ⇒ (i), so assumption (k)
implies ∇𝜔 = 0. Therefore, ∇ℎ = ∇(𝑔 − 𝑖𝜔) = 0, so ∇ is also compatible with
the Hermitian fiber metric on 𝑇𝐽 𝑀 . By uniqueness of the Chern connection, this
implies ∇ = ∇(ℎ). Conversely, if ∇ = ∇(ℎ), then ∇ is compatible with the holo-
morphic structure on 𝑇𝐽 𝑀 by definition of the Chern connection.

(l) ⇔ (m): If ∇(ℎ) = ∇, then ∇(ℎ) is torsion-free because ∇ is. Conversely,
suppose ∇(ℎ) is torsion-free. By definition of the Chern connection, for any real
vector field 𝑋, we have 0 = ∇(ℎ)

𝑋 ℎ = ∇(ℎ)
𝑋 (𝑔 − 𝑖𝜔). The real part of this equation

is ∇(ℎ)
𝑋 𝑔 = 0. Thus ∇(ℎ) is torsion-free and compatible with the metric 𝑔, so it is

equal to the Levi-Civita connection of 𝑔. □

If 𝑔 is a Kähler metric with Kähler form 𝜔, a real-valued function 𝑢 such that
𝜔 = 𝑖𝜕𝜕𝑢 is called aKähler potential for 𝒈. Part (b) of the preceding theorem shows
that every Kähler metric admits a Kähler potential in a neighborhood of each point;
but as we will see in Theorem 8.18 below, on a compact Kähler manifold there is
never a global Kähler potential because 𝜔 is never exact.

Examples of Kähler Metrics
There are plenty of examples of Kähler metrics.

Example 8.11 (The Standard Metric on ℂ𝒏). Let 𝑔E be the standard Hermitian
metric on ℂ𝑛 (see Example 8.6). Its fundamental 2-form is given by (8.2), which is
closed. Thus 𝑔E is Kähler. //
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Example 8.12 (Complex Tori). Recall that a complex torus is a quotient space of
the form ℂ𝑛/Λ, where Λ ⊆ ℂ𝑛 is a lattice (see Example 1.18). Because the action
of Λ on ℂ𝑛 preserves the holomorphic structure, the Euclidean metric 𝑔E, and the
standard Kähler form 𝜔E = 𝑔E(⋅, 𝐽 ⋅), it follows that 𝑔E descends to a Kähler metric
on ℂ𝑛/Λ. Thus every complex torus has a Kähler metric. //

Example 8.13 (Riemann Surfaces). Every Riemann surface (like every complex
manifold) has Hermitian metrics. Because every 2-form on a real 2-manifold is
closed for dimensional reasons, every Hermitian metric on a Riemann surface is
Kähler. //

Example 8.14 (The Fubini–Study Metric on ℂℙ𝒏). Recall the Hermitian fiber
metric ℎ we defined on the hyperplane bundle 𝐻 → ℂℙ𝑛 (Example 7.26). The
curvature of its Chern connection is the global 2-form Θ𝐻 whose expression in
each set 𝑈𝛼 where 𝑤𝛼 ≠ 0 is

(8.10) Θ𝐻 |𝑈𝛼 = 𝜕𝜕 log |𝑤𝛼|2

|𝑤|2 .

In affine coordinates (𝑧1, … , 𝑧𝑛) ↔ [𝑧1, … , 1, … , 𝑧𝑛] on 𝑈𝛼 , Example 7.26 showed
that

Θ𝐻 =
∑𝑗 𝑑𝑧𝑗 ∧ 𝑑𝑧𝑗

1 + |𝑧|2 −
∑𝑗,𝑘 𝑧𝑗𝑧𝑘 𝑑𝑧𝑗 ∧ 𝑑𝑧𝑘

(1 + |𝑧|2)2 .

Let 𝜔FS be the following closed real (1, 1)-form:

(8.11) 𝜔FS = 𝑖
2Θ𝐻 .

We will show that 𝜔FS is positive, and therefore is a Kähler form. The correspond-
ing Kähler metric 𝑔FS = 𝜔FS(⋅, 𝐽 ⋅) is called the Fubini–Study metric, after the
mathematicians who first described it in the early twentieth century, Guido Fubini
and Eduard Study [Fub04,Stu05]. It follows from the computation above that in
each affine coordinate chart, it is given by the formula 𝑔FS = 2𝑔𝑗𝑘𝑑𝑧𝑗𝑑𝑧𝑘, where

(8.12) 𝑔𝑗𝑘 = 1
2 (

𝛿𝑗𝑘
1 + |𝑧|2 − 𝑧𝑗𝑧𝑘

(1 + |𝑧|2)2 ) .

(Some authors use a different normalization. Our definition of 𝑔FS is motivated
primarily by the relationship with the standard metric on the sphere, described in
Problem 8-2. Others define the Kähler form to be equal to the Chern form of 𝐻 ,
which is 1/𝜋 times our 𝜔FS; the motivation for that choice is described in the proof
of Theorem 10.13.)

To see that 𝜔FS is a positive (1, 1)-form, or equivalently that 𝑔FS is positive
definite, let 𝑋 be a nonvanishing smooth real vector field on an open subset of one
of the affine charts 𝑈𝛼 , written as 𝑋 = 𝑍 + 𝑍 with 𝑍 a local section of 𝑇 ′ℂℙ𝑛,
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and compute

𝜔FS(𝑋, 𝐽𝑋) = 𝜔FS(𝑍 + 𝑍, 𝑖𝑍 − 𝑖𝑍) = −2𝑖𝜔FS(𝑍, 𝑍) = Θ𝐻 (𝑍, 𝑍)

=
(1 + |𝑧|2) ∑𝑗 𝑍𝑗𝑍𝑗 − ∑𝑗,𝑘 𝑧𝑗𝑧𝑘 𝑍𝑗𝑍𝑘

(1 + |𝑧|2)2

= (1 + |𝑧|2)|𝑍|2 − |𝑍 ⋅ 𝑧|2

(1 + |𝑧|2)2

≥ (1 + |𝑧|2)|𝑍|2 − |𝑍|2|𝑧|2

(1 + |𝑧|2)2 = |𝑍|2

(1 + |𝑧|2)2 > 0,

where we have written 𝑍 ⋅ 𝑧 = ∑𝑗 𝑍𝑗𝑧𝑗 and |𝑍|2 = 𝑍 ⋅ 𝑍, and the fourth line
follows from the Cauchy–Schwarz inequality. This shows that 𝜔FS is positive. //

One of the most important features of the Fubini–Study metric is that it is ho-
mogeneous. Because the unitary group U(𝑛 + 1) ⊆ GL(𝑛 + 1, ℂ) acts transitively
on 1-dimensional subspaces of ℂ𝑛+1, it acts transitively on ℂℙ𝑛 by projective trans-
formations.

Proposition 8.15 (Homogeneity of the Fubini–StudyMetric). The Fubini–Study
metric on ℂℙ𝑛 is invariant under the action of U(𝑛 + 1).

Proof. By (8.10) and (8.11), on 𝑈𝛼 ⊆ ℂℙ𝑛 we can write the Kähler form of 𝑔FS as
𝜔FS = 𝑖

2 𝜕𝜕 log 𝑢𝛼 , where

𝑢𝛼([𝑤]) = |𝑤𝛼|2

|𝑤|2 .

Suppose𝐴 ∈ U(𝑛+1), and let𝐴∶ ℂℙ𝑛 → ℂℙ𝑛 denote the corresponding projective
transformation given by 𝐴([𝑤]) = [𝐴𝑤]. Given 𝑝 ∈ ℂℙ𝑛, choose 𝛼, 𝛽 such that
𝑝 ∈ 𝑈𝛼 and 𝐴(𝑝) ∈ 𝑈𝛽 . Let 𝑓 = (𝐴𝑤)𝛽 /𝑤𝛼 , where (𝐴𝑤)𝛽 denotes the 𝛽 component
of 𝐴𝑤. Then 𝑓 is a nonvanishing holomorphic function on a neighborhood of 𝑝, so

𝑢𝛽 ∘ 𝐴([𝑤]) = |(𝐴𝑤)𝛽|2

|𝐴𝑤|2 = |𝑓|2|𝑤𝛼|2

|𝑤|2 ,

where in the last equality we used the fact that |𝐴𝑤|2 = |𝑤|2 because 𝐴 is unitary.
Thus in a small enough neighborhood of 𝑝 where 𝑓 has a complex logarithm, we
have

𝐴∗𝜔FS = 𝑖
2𝜕𝜕 log (𝑢𝛽 ∘ 𝐴) = 𝑖

2𝜕𝜕(log 𝑓 + log 𝑓 + log |𝑤𝛼|2

|𝑤|2 ) = 𝜔FS,

since 𝜕𝜕 log 𝑓 = 𝜕𝜕 log 𝑓 = 0. Therefore, 𝐴 preserves 𝜔FS, and since it also
preserves 𝐽 , it preserves 𝑔FS. □



Examples of Kähler Metrics 237

Here is one more class of examples of Kähler manifolds.

Example 8.16 (Kähler Submanifolds). Suppose 𝑀 is a Kähler manifold and
𝑁 ⊆ 𝑀 is a complex submanifold. Let 𝑔𝑀 , 𝜔𝑀 denote the Kähler metric and
Kähler form of 𝑀 and set 𝑔𝑁 = 𝜄∗𝑔𝑀 and 𝜔𝑁 = 𝜄∗𝜔𝑀 , where 𝜄∶ 𝑁 ↪ 𝑀 is the
inclusion map. Because 𝑑 commutes with pullbacks, 𝜔𝑁 is closed; and Proposition
4.10 shows that it is a (1, 1)-form. Since 𝑁 is a complex submanifold, the almost
complex structure map 𝐽 of 𝑀 maps 𝑇 𝑁 to itself. Thus for any vector field 𝑋 that
is tangent to 𝑁 ,

𝑔𝑁 (𝑋, 𝑋) = 𝑔𝑀 (𝑋, 𝑋) = 𝜔𝑀 (𝑋, 𝐽𝑋) = 𝜔𝑁 (𝑋, 𝐽𝑋),

so 𝑔𝑁 is a Kähler metric with Kähler form 𝜔𝑁 . Thus every complex submanifold
of a Kähler manifold is a Kähler manifold in a natural way.

In particular, this shows that all projective complex manifolds and all Stein
manifolds have Kähler metrics. //

On the other hand, there are complex manifolds that do not admit any Kähler
metrics. To exhibit some examples, we need the following lemma.

Lemma 8.17. Let (𝑀, 𝑔) be an 𝑛-dimensional Kähler manifold and 𝜔 its Kähler
form. The Riemannian volume form of 𝑔 is given explicitly by

𝑑𝑉𝑔 = 1
𝑛!𝜔𝑛 = 1

𝑛!𝜔 ∧ ⋯ ∧ 𝜔 (𝑛-fold wedge product).

Proof. Given 𝑝 ∈ 𝑀 , by Theorem 8.10(d) we can choose holomorphic coordinates
(𝑧𝑗 = 𝑥𝑗 + 𝑖𝑦𝑗) centered at 𝑝 such that 𝑔𝑗𝑘(𝑝) = 1

2 𝛿𝑗𝑘, which implies

𝜔𝑝 = 𝑖
2

𝑛

∑
𝑗=1

𝑑𝑧𝑗 ∧ 𝑑𝑧𝑗 =
𝑛

∑
𝑗=1

𝑑𝑥𝑗 ∧ 𝑑𝑦𝑗 .

For 1 ≤ 𝑘 ≤ 𝑛, let 𝜔(𝑘) be the 2-form

𝜔(𝑘) =
𝑘

∑
𝑗=1

𝑑𝑥𝑗 ∧ 𝑑𝑦𝑗 .

Because the frame

(
𝜕

𝜕𝑥1 , 𝜕
𝜕𝑦1 , … , 𝜕

𝜕𝑥𝑛 , 𝜕
𝜕𝑦𝑛 )

is orthonormal at 𝑝 and positively oriented, it follows that

𝑑𝑉𝑔|𝑝 = 𝑑𝑥1 ∧ 𝑑𝑦1 ∧ ⋯ ∧ 𝑑𝑥𝑛 ∧ 𝑑𝑦𝑛|𝑝.

We will prove by induction on 𝑘 that the following formula holds at 𝑝:

(8.13) (𝜔(𝑘))𝑘 = 𝑘!𝑑𝑥1 ∧ 𝑑𝑦1 ∧ ⋯ ∧ 𝑑𝑥𝑘 ∧ 𝑑𝑦𝑘.
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For 𝑘 = 1 this is obvious, and for 𝑘 = 𝑛 it is the result we are trying to prove. Thus
suppose (8.13) holds for some 𝑘 < 𝑛, and write

𝜔(𝑘+1) = 𝛼 + 𝛽, where 𝛼 = 𝜔(𝑘) and 𝛽 = 𝑑𝑥𝑘+1 ∧ 𝑑𝑦𝑘+1.

Note that 𝛼 and 𝛽 commute under wedge product because they are 2-forms. Also,
𝛽 ∧ 𝛽 = 0 because 𝑑𝑥𝑘+1 ∧ 𝑑𝑥𝑘+1 = 0, and the induction hypothesis shows that

𝛼𝑘 = 𝑘! 𝑑𝑥1 ∧ 𝑑𝑦1 ∧ ⋯ ∧ 𝑑𝑥𝑘 ∧ 𝑑𝑦𝑘.

It follows that 𝛼𝑘+1 = 0 because it is a sum of terms each of which has a repeated
1-form.

Using the binomial theorem, we compute

(𝜔(𝑘+1))𝑘+1 = (𝛼 + 𝛽)𝑘+1

= ���𝛼𝑘+1 + (𝑘 + 1)𝛼𝑘 ∧ 𝛽 + (𝑘 + 1)𝑘
2 �����𝛼𝑘−1 ∧ 𝛽2 + ⋯

+ (𝑘 + 1)����𝛼 ∧ 𝛽𝑘 +���𝛽𝑘+1

= (𝑘 + 1)𝑘! 𝑑𝑥1 ∧ 𝑑𝑦1 ∧ ⋯ ∧ 𝑑𝑥𝑘 ∧ 𝑑𝑦𝑘 ∧ 𝑑𝑥𝑘+1 ∧ 𝑑𝑦𝑘+1,

thus completing the induction. □

Here is our first topological obstruction to the existence of Kähler metrics.

Theorem 8.18. If 𝑀 is a compact 𝑛-dimensional Kähler manifold with Kähler
form 𝜔, then 𝜔𝑘 = 𝜔 ∧ ⋯ ∧ 𝜔 represents a nonzero element of 𝐻2𝑘

dR(𝑀; ℝ) for
𝑘 = 1, … , 𝑛. Thus a 2𝑛-dimensional compact manifold with 𝑏2𝑘(𝑀) = 0 for some
𝑘 ∈ {1, … , 𝑛} cannot admit Kähler metrics.

Proof. For each 𝑘 = 1, … , 𝑛, we have 𝑑(𝜔𝑘) = 𝑘 𝑑𝜔∧𝜔𝑘−1 = 0, so 𝜔𝑘 represents a
cohomology class in 𝐻2𝑘

dR(𝑀; ℝ). From the preceding lemma, we see that ∫𝑀 𝜔𝑛 =
𝑛! ∫𝑀 𝑑𝑉𝑔 > 0, so 𝜔𝑛 is not exact. Suppose for the sake of contradiction that 𝜔𝑘 is
exact for some 1 ≤ 𝑘 < 𝑛, so there is some 𝜂 such that 𝜔𝑘 = 𝑑𝜂. Then

𝜔𝑛 = 𝜔𝑘 ∧ 𝜔𝑛−𝑘 = 𝑑𝜂 ∧ 𝜔𝑛−𝑘 = 𝑑(𝜂 ∧ 𝜔𝑛−𝑘),

showing that 𝜔𝑛 is exact, a contradiction. Thus 𝜔𝑘 represents a nonzero element of
𝐻2𝑘

dR(𝑀; ℝ) for each 𝑘 = 1, … , 𝑛. □

Example 8.19 (The 6-sphere). Problem 1-13 showed that there is a nonintegrable
almost complex structure on 𝕊6, and noted that it is still not known whether there
is an integrable one. One thing we do know, however, is that there is no Kähler
structure, because 𝐻2

dR(𝕊6; ℝ) = 𝐻4
dR(𝕊6; ℝ) = 0. //
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Example 8.20 (Hopf Manifolds). The Hopf manifolds (Example 1.19) are com-
plex 𝑛-manifolds diffeomorphic to 𝕊2𝑛−1 × 𝕊1. It follows from the Künneth formula
of algebraic topology [Hat02, Thm. 3.15] together with the de Rham theorem that

𝐻2
dR(𝕊2𝑛−1 × 𝕊1; ℝ) ≅ (𝐻2

dR(𝕊2𝑛−1; ℝ) ⊗ 𝐻0
dR(𝕊1; ℝ))

⊕ (𝐻1
dR(𝕊2𝑛−1; ℝ) ⊗ 𝐻1

dR(𝕊1; ℝ)) ⊕ (𝐻0
dR(𝕊2𝑛−1; ℝ) ⊗ 𝐻2

dR(𝕊1; ℝ)),

which is zero when 𝑛 > 1 because all three terms in the direct sum are zero. Thus by
Theorem 8.18, Hopf manifolds of complex dimension greater than 1 do not admit
Kähler metrics. //

Curvature of Kähler Metrics
Suppose (𝑀, 𝑔) is a Kähler manifold, and let 𝑅𝑚 denote its Riemann curvature
tensor, a covariant 4-tensor field defined by

𝑅𝑚(𝑊 , 𝑋, 𝑌 , 𝑍) = 𝑔(𝑅(𝑊 , 𝑋)𝑌 , 𝑍),

where 𝑅∶ Γ(𝑇 𝑀) × Γ(𝑇 𝑀) × Γ(𝑇 𝑀) → Γ(𝑇 𝑀) is the curvature endomorphism
field defined by

𝑅(𝑊 , 𝑋)𝑌 = ∇𝑊 ∇𝑋𝑌 − ∇𝑋∇𝑊 𝑌 − ∇[𝑊 ,𝑋]𝑌 .

Initially defined only for real vector fields, 𝑅 and 𝑅𝑚 can be extended to act on
complex vector fields by the same formulas. The Riemann curvature is multilinear
over 𝐶∞(𝑀; ℂ), and satisfies the standard Riemannian symmetries for all complex
vector fields 𝑊 , 𝑋, 𝑌 , 𝑍:

𝑅𝑚(𝑊 , 𝑋, 𝑌 , 𝑍) = −𝑅𝑚(𝑋, 𝑊 , 𝑌 , 𝑍),(8.14)
𝑅𝑚(𝑊 , 𝑋, 𝑌 , 𝑍) = −𝑅𝑚(𝑊 , 𝑋, 𝑍, 𝑌 ),(8.15)
𝑅𝑚(𝑊 , 𝑋, 𝑌 , 𝑍) = 𝑅𝑚(𝑌 , 𝑍, 𝑊 , 𝑋),(8.16)
𝑅𝑚(𝑊 , 𝑋, 𝑌 , 𝑍) + 𝑅𝑚(𝑋, 𝑌 , 𝑊 , 𝑍) + 𝑅𝑚(𝑌 , 𝑊 , 𝑋, 𝑍) = 0.(8.17)

(Equation (8.17) is called the algebraic Bianchi identity.) These are proved for
real vector fields in [LeeRM, Prop. 7.12]. To see that they also hold for complex
vector fields, just note that we can choose a local frame for 𝑇ℂ𝑀 consisting of real
vector fields, so the identities for complex vector fields follow from the real ones
by complex multilinearity. In addition, since the action of 𝑅𝑚 on complex vector
fields is obtained from its action on real ones by complex multilinearity, we have

(8.18) 𝑅𝑚(𝑊 , 𝑋, 𝑌 , 𝑍) = 𝑅𝑚(𝑊 , 𝑋, 𝑌 , 𝑍).
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On a Kähler manifold, there are additional symmetries.
Theorem 8.21 (Kähler Curvature Symmetries). In addition to the standard sym-
metries, the curvature tensor of a Kähler metric satisfies the following symmetries
for all 𝑊 , 𝑋, 𝑌 , 𝑍 ∈ Γ(𝑇 ′𝑀):

𝑅𝑚(𝑊 , 𝑋, ⋅, ⋅) = 𝑅𝑚(⋅, ⋅, 𝑊 , 𝑋) = 0,(8.19)

𝑅𝑚(𝑊 , 𝑋, ⋅, ⋅) = 𝑅𝑚(⋅, ⋅, 𝑊 , 𝑋) = 0(8.20)

𝑅𝑚(𝑊 , 𝑋, 𝑌 , 𝑍) = 𝑅𝑚(𝑌 , 𝑋, 𝑊 , 𝑍),(8.21)

𝑅𝑚(𝑊 , 𝑋, 𝑌 , 𝑍) = 𝑅𝑚(𝑊 , 𝑍, 𝑌 , 𝑋),(8.22)

Proof. Suppose 𝑍, 𝑊 are sections of 𝑇 ′𝑀 and 𝑈, 𝑉 are arbitrary complex vector
fields. Then 𝑅(𝑈, 𝑉 )𝑍 = ∇𝑈 ∇𝑉 𝑍 − ∇𝑉 ∇𝑈 𝑍 − ∇[𝑈,𝑉 ]𝑍 ∈ Γ(𝑇 ′𝑀) because the
Levi-Civita connection maps Γ(𝑇 ′𝑀) to itself (Thm. 8.10(g)). Hence

𝑅𝑚(𝑈, 𝑉 , 𝑍, 𝑊 ) = 𝑔(𝑅(𝑈, 𝑉 )𝑍, 𝑊 ) = 0,
because 𝑔 annihilates pairs of sections of 𝑇 ′𝑀 . This proves (8.19), and then (8.20)
follows by conjugation.

For sections 𝑊 , 𝑋, 𝑌 , 𝑍 of 𝑇 ′𝑀 , the algebraic Bianchi identity (8.17) gives
0 = 𝑅𝑚(𝑊 , 𝑋, 𝑌 , 𝑍) + 𝑅𝑚(𝑋, 𝑌 , 𝑊 , 𝑍) +((((((((𝑅𝑚(𝑌 , 𝑊 , 𝑋, 𝑍)

= 𝑅𝑚(𝑊 , 𝑋, 𝑌 , 𝑍) − 𝑅𝑚(𝑌 , 𝑋, 𝑊 , 𝑍),
which is (8.21), and then (8.22) follows from (8.16). □

► Exercise 8.22. Prove that the curvature tensor on a Kähler manifold satisfies
the following additional symmetries for all (real or complex) vector fields:

𝑅𝑚(𝑊 , 𝑋, 𝐽𝑌 , 𝐽𝑍) = 𝑅𝑚(𝑊 , 𝑋, 𝑌 , 𝑍) = 𝑅𝑚(𝐽𝑊 , 𝐽𝑋, 𝑌 , 𝑍).

Let us work out the formulas for the connection and curvature in holomorphic
coordinates. Using the facts that 𝑔𝑙𝑝 = 0 and 𝜕𝑗𝑔𝑙𝑞 = 𝜕𝑙𝑔𝑗𝑞 , we compute

(8.23)
Γ𝑝

𝑗𝑙 = 1
2 𝑔𝑝𝑞(𝜕𝑗𝑔𝑙𝑞 + 𝜕𝑙𝑔𝑗𝑞 −���𝜕𝑞𝑔𝑙𝑝)

= 𝑔𝑝𝑞𝜕𝑗𝑔𝑙𝑞 .
(This can also be viewed as a reflection of the fact that ∇ restricts to the Chern
connection on 𝑇 ′𝑀 by virtue of Theorem 8.10(f), so its connection 1-forms are
determined by (7.17).) The only other nonzero Christoffel symbols are the ones
obtained from these by conjugation.

Using this formula, we can compute the components of the curvature endomor-
phism field and the Riemann curvature tensor.

𝑅(𝜕𝑗 , 𝜕𝑘)𝜕𝑙 = �����∇𝜕𝑗∇𝜕𝑘𝜕𝑙 − ∇𝜕𝑘∇𝜕𝑗𝜕𝑙 −�����∇[𝜕𝑗 ,𝜕𝑘]𝜕𝑙

= −𝜕𝑘(Γ𝑝
𝑗𝑙)𝜕𝑝 −����Γ𝑝

𝑗𝑙∇𝜕𝑘𝜕𝑝,



Curvature of Kähler Metrics 241

so

𝑅𝑗𝑘𝑙
𝑝 = −𝜕𝑘(Γ𝑝

𝑗𝑙) = −𝜕𝑘(𝑔𝑝𝑞𝜕𝑗𝑔𝑙𝑞),(8.24)
𝑅𝑗𝑘𝑙𝑚 = −𝑔𝑝𝑚𝜕𝑘(Γ𝑝

𝑗𝑙) = −𝑔𝑝𝑚𝜕𝑘(𝑔𝑝𝑞𝜕𝑗𝑔𝑙𝑞).(8.25)

We will use these formulas later in the chapter.

Holomorphic Sectional Curvature

A Kähler metric allows us to define a new curvature invariant, closely related
to the sectional curvature. For each nonzero vector 𝑍 ∈ 𝑇 ′𝑀 , we define the holo-
morphic sectional curvature in the direction 𝑍 by

𝐻(𝑍) =
𝑅𝑚(𝑍, 𝑍, 𝑍, 𝑍)

|𝑍|4 .

Lemma 8.23. For every nonzero vector 𝑍 ∈ 𝑇 ′𝑀 , 𝐻(𝑍) is the ordinary sectional
curvature of the plane spanned by {Re𝑍, Im𝑍}.

Proof. Given 𝑍 ∈ 𝑇 ′𝑀 , let us write 𝑋 = Re𝑍 and 𝑌 = Im𝑍. The sectional
curvature of the plane spanned by {𝑋, 𝑌 } is

sec(𝑋, 𝑌 ) = 𝑅𝑚(𝑋, 𝑌 , 𝑌 , 𝑋)
|𝑋|2|𝑌 |2 − ⟨𝑋, 𝑌 ⟩2 .

(See [LeeRM, Prop. 8.29].) We will prove the lemma by expanding this formula
using 𝑋 = 1

2 (𝑍 + 𝑍) and 𝑌 = 1
2𝑖 (𝑍 − 𝑍), and interpreting the inner product in the

denominator as the Hermitian fiber metric on 𝑇ℂ𝑀 . The Kähler symmetries of the
curvature tensor allow us to simplify the numerator:

𝑅𝑚(𝑋, 𝑌 , 𝑌 , 𝑋) = − 1
8 (𝑅𝑚(𝑍 + 𝑍, 𝑍 − 𝑍, 𝑍 − 𝑍, 𝑍 + 𝑍)

= − 1
8 (𝑅𝑚(𝑍, −𝑍, 𝑍, 𝑍) + 𝑅𝑚(𝑍, −𝑍, −𝑍, 𝑍)
+ 𝑅𝑚(𝑍, 𝑍, 𝑍, 𝑍) + 𝑅𝑚(𝑍, 𝑍, −𝑍, 𝑍))

= 1
2 𝑅𝑚(𝑍, 𝑍, 𝑍, 𝑍).

On the other hand, for the denominator, we use the facts that 𝑇 ′𝑀 and 𝑇 ″𝑀 are
orthogonal and |𝑍|2 = |𝑍|2 to compute

|𝑋|2|𝑌 |2 − ⟨𝑋, 𝑌 ⟩2 = 1
8 (|𝑍 + 𝑍|2|𝑍 − 𝑍|2 − ⟨𝑍 + 𝑍, 𝑍 − 𝑍⟩2)

= 1
8 ((|𝑍|2 + |𝑍|2)(|𝑍|2 + |𝑍|2) − (|𝑍|2 − |𝑍|2)

2
)

= 1
2 |𝑍|4. □
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Although this lemma suggests that the holomorphic sectional curvatures con-
tain only part of the information encoded by the curvature tensor (namely, sectional
curvatures of planes spanned by the real and imaginary parts of holomorphic vec-
tors, or equivalently by pairs of real vectors of the form {𝑋, 𝐽𝑋}), it turns out that
they actually determine the full curvature tensor thanks to the Kähler symmetries.

Lemma 8.24 (Holomorphic Sectional Curvature Determines the Curvature).
Suppose 𝑅1 and 𝑅2 are covariant 4-tensor fields on a complex manifold 𝑀 that
satisfy the Riemann curvature symmetries (8.14)–(8.17) as well as the Kähler sym-
metries (8.19)–(8.22). If the following equality holds for every nonzero vector
𝑍 ∈ 𝑇 ′𝑀 ,

𝑅1(𝑍, 𝑍, 𝑍, 𝑍)
|𝑍|4 = 𝑅2(𝑍, 𝑍, 𝑍, 𝑍)

|𝑍|4 ,

then 𝑅1 = 𝑅2.

Proof. Define 𝐺 = 𝑅1 − 𝑅2, so that 𝐺 has the same symmetries as 𝑅1 and 𝑅2 and
satisfies 𝐺(𝑍, 𝑍, 𝑍, 𝑍) = 0 for all 𝑍 ∈ 𝑇 ′𝑀 . Given a point 𝑝 ∈ 𝑀 and vectors
𝑍, 𝑊 ∈ 𝑇 ′

𝑝 𝑀 , consider the following smooth function of a complex variable 𝑧:

𝑢(𝑧) = 𝐺(𝑊 + 𝑧𝑍, 𝑊 + 𝑧𝑍, 𝑊 + 𝑧𝑍, 𝑊 + 𝑧𝑍).

Our hypothesis guarantees that 𝑢 is identically zero, so using the Kähler symmetries
we conclude

0 = 𝜕2𝑢
𝜕𝑧𝜕𝑧(0) = 4𝐺(𝑊 , 𝑊 , 𝑍, 𝑍).

Now let 𝑈, 𝑉 be two more elements of 𝑇 ′
𝑝 𝑀 and consider the smooth function

𝑣(𝑤, 𝑧) defined by

𝑣(𝑤, 𝑧) = 𝐺(𝑊 + 𝑤𝑈, 𝑊 + 𝑤𝑈, 𝑍 + 𝑧𝑉 , 𝑍 + 𝑧𝑉 ).

The first part of the proof showed that 𝑣 is identically zero, so

0 = 𝜕2𝑣
𝜕𝑤𝜕𝑧(0, 0) = 𝐺(𝑈, 𝑊 , 𝑉 , 𝑍).

It then follows from the Riemann and Kähler symmetries that 𝐺 = 0. □

A Kähler manifold is said to have constant holomorphic sectional curvature
if there is a constant 𝑐 such that 𝐻(𝑍) = 𝑐 for every 𝑝 ∈ 𝑀 and every nonzero
𝑍 ∈ 𝑇 ′

𝑝 𝑀 .

Lemma 8.25. A Kähler metric 𝑔 has constant holomorphic sectional curvature 𝑐
if and only if in each holomorphic coordinate chart, the coefficients of the Riemann
curvature tensor satisfy

(8.26) 𝑅𝑗𝑘𝑙𝑚 = 1
2 𝑐(𝑔𝑗𝑘𝑔𝑙𝑚 + 𝑔𝑙𝑘𝑔𝑗𝑚).
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Proof. A simple computation shows that if the curvature tensor satisfies (8.26),
then 𝑅𝑚(𝑍, 𝑍, 𝑍, 𝑍) = 𝑐|𝑍|4 for all 𝑍 ∈ 𝑇 ′𝑀 , and therefore 𝑔 has constant
holomorphic sectional curvature 𝑐. Conversely, if 𝑔 has constant holomorphic sec-
tional curvature 𝑐, then the curvature tensor of 𝑔 and the one given by the right-hand
side of (8.26) both give the same holomorphic sectional curvatures, so they must
be equal by Lemma 8.24. □

Example 8.26 (Constant Holomorphic Sectional Curvature Manifolds).
(a) The standard Kähler metric on ℂ𝑛 (which is just the Euclidean metric) is

flat, and thus has constant holomorphic sectional curvature zero.
(b) We will show that the Fubini–Study metric on ℂℙ𝑛 has constant holo-

morphic sectional curvature equal to 4. To verify this, because the met-
ric is homogeneous, it suffices to check it at one point. We choose the
point [1, 0, … , 0], which corresponds to the origin in affine coordinates
(𝑧1, … , 𝑧𝑛) ↔ [1, 𝑧1, … , 𝑧𝑛]. It follows from (8.12) that

𝜕𝑗𝑔𝑙𝑚 = 1
2(− 𝛿𝑙𝑚𝑧𝑗

(1 + |𝑧|2)2 −
𝛿𝑗𝑚𝑧𝑙

(1 + |𝑧|2)2 + 2𝑧𝑙𝑧𝑚𝑧𝑗

(1 + |𝑧|2)3 ).

Therefore, at the origin, 𝑔𝑙𝑚 = 1
2 𝛿𝑙𝑚, 𝜕𝑗𝑔𝑙𝑚 = 𝜕𝑘𝑔𝑙𝑚 = 0, and

𝜕𝑘𝜕𝑗𝑔𝑙𝑚 = − 1
2 (𝛿𝑙𝑚𝛿𝑗𝑘 + 𝛿𝑗𝑚𝛿𝑙𝑘).

Thus it follows from the result of Problem 8-11 that
𝑅𝑗𝑘𝑙𝑚 = 1

2 (𝛿𝑙𝑚𝛿𝑗𝑘 + 𝛿𝑗𝑚𝛿𝑙𝑘) = 2(𝑔𝑗𝑘𝑔𝑙𝑚 + 𝑔𝑙𝑘𝑔𝑗𝑚),
and Lemma 8.25 shows that the holomorphic sectional curvatures at the
origin are all equal to 4. The result then follows by homogeneity.

(c) The complex hyperbolic metric is the Kähler metric 𝑔CH on 𝔹2𝑛 whose
Kähler form is

𝜔CH = − 𝑖
2𝜕𝜕 log(1 − |𝑧|2).

Problem 8-5 asks you to show that 𝑔CH is homogeneous and geodesically
complete, and has constant holomorphic sectional curvature −4. //

Thus we have examples of Kähler manifolds in every dimension with constant
holomorphic sectional curvature that is positive (the Fubini–Studymetric), zero (the
Euclidean metric), and negative (the complex hyperbolic metric). By multiplying
these metrics by constants, we can obtain a Kähler metric with holomorphic sec-
tional curvature equal to any real constant. The next theorem shows that, in a sense,
these are all the possibilities. It is based on the theory of analytic continuations of
Riemannian isometries described in [LeeRM, Chap. 12]. The basic definition is
the following: Suppose (𝑀, 𝑔) and (𝑀̂, ̂𝑔) are Riemannian manifolds of the same
dimension and 𝜑∶ 𝑈 → 𝑀̂ is a local isometry (that is, a smooth map such that
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𝜑∗ ̂𝑔 = 𝑔) defined on a connected open subset 𝑈 ⊆ 𝑀 . For any continuous path
𝛾 ∶ [0, 1] → 𝑀 such that 𝛾(0) ∈ 𝑈 , an analytic continuation of 𝝋 along 𝜸 is a
family of pairs {(𝑈𝑡, 𝜑𝑡) ∶ 𝑡 ∈ [0, 1]}, where 𝑈𝑡 is a connected neighborhood of
𝛾(𝑡) and 𝜑𝑡 ∶ 𝑈𝑡 → 𝑀̂ is a local isometry, such that 𝜑0 = 𝜑 on 𝑈0 ∩ 𝑈 , and for
each 𝑡 ∈ [0, 1] there exists 𝛿 > 0 such that |𝑡 − 𝑡1| < 𝛿 implies that 𝛾(𝑡1) ∈ 𝑈𝑡 and
that 𝜑𝑡 agrees with 𝜑𝑡1 on 𝑈𝑡 ∩ 𝑈𝑡1 .

If (𝑀, 𝑔) and (𝑀̂, ̂𝑔) are Riemannian manifolds, a smooth covering map
𝜋 ∶ 𝑀 → 𝑀̂ is called a Riemannian covering if it is also a local isometry.

Theorem 8.27. Suppose (𝑀, 𝑔) is an 𝑛-dimensional Kähler manifold with constant
holomorphic sectional curvature 𝑐, and assume 𝑀 is connected and geodesically
complete. Then 𝑀 admits a holomorphic Riemannian covering by one of the fol-
lowing:

• ℂℙ𝑛 with a multiple of the Fubini–Study metric,
• ℂ𝑛 with the Euclidean metric, or
• 𝔹2𝑛 with a multiple of the complex hyperbolic metric.

Proof. First consider the case in which 𝑀 is simply connected. Given (𝑀, 𝑔)
satisfying the hypothesis, note that because the Riemann curvature tensor can be
expressed purely in terms of the metric tensor by formula (8.25), it follows that
∇𝑅𝑚 ≡ 0 since the metric is parallel. Let (𝑀̂, ̂𝑔) be the model Kähler manifold
(ℂℙ𝑛, ℂ𝑛, or 𝔹2𝑛) endowed with a Kähler metric ̂𝑔 with the same constant holo-
morphic sectional curvature as 𝑀 . Then (𝑀̂, ̂𝑔) also has a parallel curvature tensor
by the same reasoning, and is geodesically complete and simply connected.

Given any points 𝑝 ∈ 𝑀 and ̂𝑝 ∈ 𝑀̂ , let 𝐴∶ 𝑇𝑝𝑀 → 𝑇 ̂𝑝𝑀̂ be a complex-linear
isometry. Because 𝑀 and 𝑀̂ both have the same constant holomorphic sectional
curvature, it follows from (8.25) that 𝐴∗(𝑅𝑚 ̂𝑝) = 𝑅𝑚𝑝. Then [LeeRM, Lemma
10.18] shows that there is a Riemannian isometry 𝜑∶ 𝑈 → 𝑈 from a neighborhood
𝑈 of 𝑝 to a neighborhood 𝑈 of ̂𝑝 that satisfies 𝜑(𝑝) = ̂𝑝 and 𝐷𝜑(𝑝) = 𝐴 (where
𝐷𝜑(𝑝) is the total derivative). (That lemma is stated for two points in the same
Riemannian manifold, but it applies in the present case by taking the manifold to
be the disjoint union of 𝑀 and 𝑀̂ .) Corollary 12.3 of [LeeRM] shows that if 𝜑
can be analytically continued along every path starting at 𝑝, then there is a global
Riemannian isometry from 𝑀 to 𝑀̂ that agrees with 𝜑 on a neighborhood of 𝑝.

To see that analytic continuation is always possible, we use the fact that every
isometry between open subsets of 𝑀̂ is the restriction of a global isometry (Problem
8-6). Let 𝛾 ∶ [0, 1] → 𝑀 be a path starting at 𝑝. Each point in the image of 𝛾 has a
geodesically convex neighborhood that is isometric to an open subset of 𝑀̂ . Cover
the image of 𝛾 with finitely many such neighborhoods 𝑈0, … , 𝑈𝑘, with 𝑝 ∈ 𝑈0 ⊆
𝑈 , 𝑈𝑖 ∩ 𝑈𝑖+𝑖 ≠ ∅ for each 𝑖, and 𝛾(1) ∈ 𝑈𝑘. For each 𝑖, let 𝜑𝑖 ∶ 𝑈𝑖 → 𝑈 𝑖 ⊆ 𝑀̂
be an isometry, chosen so that 𝜑0 = 𝜑|𝑈0 . For each 𝑖, the intersection 𝑈𝑖 ∩ 𝑈𝑖+1 is
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connected, and the composition 𝜑𝑖∘𝜑−1
𝑖+1 is an isometry between the connected open

sets 𝜑𝑖+1(𝑈𝑖 ∩ 𝑈𝑖+1) and 𝜑𝑖(𝑈𝑖 ∩ 𝑈𝑖+1) in 𝑀̂ , so by Problem 8-6 it is the restriction
of a global isometry Ψ. By replacing 𝜑𝑖+1 by Ψ ∘ 𝜑𝑖+1, we can ensure that 𝜑𝑖+1
agrees with 𝜑𝑖 on the overlap. Thus by induction, we can continue 𝜑 all the way to
𝛾(1).

Consequently, there exists a global Riemannian isometry Φ∶ 𝑀 → 𝑀̂ . To see
that it is holomorphic, we argue as follows. Let 𝐽 and 𝐽 be the almost complex
structures of 𝑀 and 𝑀̂ , respectively, and define Φ∗𝐽 ∶ 𝑇 𝑀 → 𝑇 𝑀 by

(Φ∗𝐽)(𝑋𝑞) = 𝐷Φ(𝑞)−1𝐽(𝐷Φ(𝑞)𝑋𝑞).
Because Φ is an isometry, it pulls back the Levi-Civita connection of 𝑀̂ to that of
𝑀 , and because 𝐽 is parallel, it follows that Φ∗𝐽 is also parallel. At the original
point 𝑝 ∈ 𝑀 , we have 𝐷Φ(𝑝) = 𝐷𝜑(𝑝) = 𝐴, which was chosen to be complex-
linear; thus Φ∗𝐽 agrees with 𝐽 at 𝑝. Since both Φ∗𝐽 and 𝐽 are parallel and 𝑀 is
connected, it follows that Φ∗𝐽 ≡ 𝐽 , and therefore Φ is holomorphic. That com-
pletes the proof in case 𝑀 is simply connected.

For the general case, just apply the above argument to the universal covering
space of 𝑀 with the pullback metric. □

Ricci and Scalar Curvatures
On any Riemannian manifold, the Ricci curvature is the covariant 2-tensor field
defined by

𝑅𝑐(𝑋, 𝑌 ) = tr (𝑍 ↦ 𝑅(𝑍, 𝑋)𝑌 ).
Because the trace of a linear map is well defined, independent of choice of basis,
this is a globally defined tensor field, and it follows from the symmetries of the
Riemann curvature tensor that it is symmetric [LeeRM, Lemma 7.15]). In terms of
any local frame, it has components 𝑅𝑎𝑏 = 𝑅𝑐𝑎𝑏

𝑐 . In addition, the scalar curvature
is the real-valued function 𝑆 defined by raising an index of 𝑅𝑐 and taking the trace;
in a local frame, it is 𝑆 = 𝑔𝑎𝑏𝑅𝑎𝑏.

Lemma 8.28. On a Kähler manifold in holomorphic coordinates, the Ricci and
scalar curvatures have the coordinate expressions

(8.27) 𝑅𝑐 = 2𝑅𝑗𝑘𝑑𝑧𝑗 𝑑𝑧𝑘, 𝑆 = 2𝑔𝑗𝑘𝑅𝑗𝑘,
where the coefficients 𝑅𝑗𝑘 are given by any of the following expressions:

(8.28) 𝑅𝑗𝑘 = 𝑅𝑚𝑗𝑘
𝑚 = 𝑅𝑗𝑘𝑙

𝑙 = −𝜕𝑗𝜕𝑘 log(det 𝑔).
(Here det 𝑔 denotes the determinant of the 𝑛 × 𝑛 matrix (𝑔𝑗𝑘) in coordinates.)

Proof. The formula for the scalar curvature is an easy consequence of the one for
the Ricci curvature, so we focus on the latter.
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A priori, as a symmetric 2-tensor field, the Ricci curvature might have compo-
nents of the forms 𝑅𝑗𝑘, 𝑅𝑗𝑘 = 𝑅𝑘𝑗 , and 𝑅𝑗𝑘. However, on a Kähler manifold,

𝑅𝑗𝑘 = 𝑅𝑙𝑗𝑘
𝑙 + 𝑅𝑙𝑗𝑘

𝑙 = 𝑔𝑙𝑚𝑅𝑙𝑗𝑘𝑚 + 𝑔𝑚𝑙𝑅𝑙𝑗𝑘𝑚 = 0 + 0,
and by conjugation 𝑅𝑗𝑘 = 0 as well. Thus the only nontrivial components are those
of the form 𝑅𝑗𝑘, so we can write 𝑅𝑐 as in (8.27) with 𝑅𝑗𝑘 = 𝑅𝑐(𝜕𝑗 , 𝜕𝑘).

For the components of the Ricci tensor, we use the Kähler curvature symmetries
to compute

𝑅𝑗𝑘 =
����𝑅𝑚𝑗𝑘

𝑚 + 𝑅𝑚𝑗𝑘
𝑚

= 𝑔𝑙𝑚𝑅𝑚𝑗𝑘𝑙 = 𝑔𝑙𝑚𝑅𝑗𝑚𝑙𝑘 = 𝑔𝑙𝑚𝑅𝑗𝑘𝑙𝑚

= 𝑅𝑗𝑘𝑙
𝑙.

This proves the first two equalities in (8.28).
The total derivative of the determinant function is given by

𝐷(det)𝑋(𝐵) = (det𝑋) tr (𝑋−1𝐵)
for 𝑋 ∈ GL(𝑛, ℂ) and any 𝑛 × 𝑛 matrix 𝐵. (See [LeeSM, Problem 7-4, p. 172],
where the proof is sketched for GL(𝑛, ℝ); the same argument works for complex
matrices.) Thus by the chain rule,
(8.29) 𝜕𝑗(det 𝑔) = 𝐷(det)𝑔(𝜕𝑗𝑔) = (det 𝑔) tr (𝑔−1𝜕𝑗𝑔) = (det 𝑔)𝑔𝑙𝑞𝜕𝑗𝑔𝑙𝑞 .
Now, (8.23) shows that
(8.30) Γ𝑙

𝑗𝑙 = 𝑔𝑙𝑞𝜕𝑗𝑔𝑙𝑞 = 𝜕𝑗 log(det 𝑔).
On the other hand, (8.24) shows that
(8.31) 𝑅𝑗𝑘 = 𝑅𝑗𝑘𝑙

𝑙 = −𝜕𝑘(Γ𝑙
𝑗𝑙).

The third equality in (8.28) follows from (8.29) and (8.30), together with the fact
that 𝜕𝑗 and 𝜕𝑘 commute. □

This leads to an important feature of the Ricci curvature.

Lemma 8.29. On a Kähler manifold, the Ricci tensor is invariant under 𝐽 : for all
complex vector fields 𝑋 and 𝑌 ,

𝑅𝑐(𝐽𝑋, 𝐽𝑌 ) = 𝑅𝑐(𝑋, 𝑌 ).

Proof. This follows straightforwardly in coordinates by applying (8.27) with the
roles of (𝑋, 𝑌 ) played by (𝜕𝑗 , 𝜕𝑘), (𝜕𝑗 , 𝜕𝑘) and (𝜕𝑗 , 𝜕𝑘). □

As a consequence of this lemma, we can “twist” the Ricci tensor with 𝐽 to pro-
duce a 2-form, in the same way we did with the metric to produce the fundamental
2-form.
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Proposition 8.30 (The Ricci Form). Let (𝑀, 𝑔) be a Kähler manifold and 𝑅𝑐 its
Ricci curvature. Define a 2-tensor field 𝜌 by

𝜌(𝑋, 𝑌 ) = 𝑅𝑐(𝐽𝑋, 𝑌 ).
Then 𝜌 is a closed (1, 1)-form, called the Ricci form of 𝒈.

Proof. To see that 𝜌 is antisymmetric, we use Lemma 8.29:
𝜌(𝑋, 𝑌 ) = 𝑅𝑐(𝐽𝑋, 𝑌 ) = 𝑅𝑐(𝐽 2𝑋, 𝐽𝑌 ) = −𝑅𝑐(𝑋, 𝐽𝑌 ) = −𝑅𝑐(𝐽𝑌 , 𝑋)

= −𝜌(𝑌 , 𝑋).
To prove the other claims, note that Lemma 8.28 implies 𝜌 has the following ex-
pressions in local holomorphic coordinates:
(8.32) 𝜌 = 𝑖𝑅𝑗𝑘𝑑𝑧𝑗 ∧ 𝑑𝑧𝑘 = −𝑖𝜕𝑗𝜕𝑘 log(det 𝑔)𝑑𝑧𝑗 ∧ 𝑑𝑧𝑘 = −𝑖𝜕𝜕 log(det 𝑔).
This is a (1, 1)-form, and because 𝜕 ∘ 𝜕 = 𝑑 ∘ 𝜕, this shows that 𝜌 is locally exact and
thus closed. □

The significance of the Ricci form is based on the following theorem.

Theorem 8.31. On a Kähler manifold 𝑀 , the Ricci form is equal to 2𝜋 times the
first Chern form of the Chern connection on 𝑇 ′𝑀 .

Proof. Let ∇′ denote the Chern connection on 𝑇 ′𝑀 with respect to the Hermitian
fiber metric ⟨⋅, ⋅⟩ defined by (8.4). Recall from Theorem 8.10(f) that ∇′ is equal to
the restriction of the Levi-Civita connection ∇. To compute its first Chern form, we
work in holomorphic coordinates (𝑧1, … , 𝑧𝑛) and note that the connection forms 𝜃𝑘

𝑗
are determined by

𝜃𝑙
𝑘(𝑋)𝜕𝑙 = ∇′

𝑋𝜕𝑘 = Γ𝑙
𝑗𝑘𝑋𝑗𝜕𝑙,

which implies
𝜃𝑙

𝑘 = Γ𝑙
𝑗𝑘𝑑𝑧𝑗 .

From formula (7.12), the Chern form is determined in this coordinate domain
by

𝑐1(∇′) = 𝑖
2𝜋 𝑑𝜃𝑙

𝑙 = 𝑖
2𝜋 𝑑(Γ𝑙

𝑗𝑙𝑑𝑧𝑗),
and (8.30) and (8.32) show that we can rewrite this as

𝑐1(∇′) = 𝑖
2𝜋 𝑑𝜕 log(det 𝑔) = 𝑖

2𝜋 𝜕𝜕 log(det 𝑔) = 1
2𝜋 𝜌. □

The Italian-American mathematician Eugenio Calabi conjectured in the 1950s
[Cal57] that if (𝑀, 𝑔) is a compact Kähler manifold and ̃𝜌 is any closed real (1, 1)-
form representing the cohomology class 2𝜋𝑐ℝ

1 (𝑇 ′𝑀), then there is a Kähler metric
in the same Kähler class whose Ricci form is equal to ̃𝜌. The conjecture was proved
in 1977 by Shing-Tung Yau [Yau78].
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Theorem 8.32 (Calabi–Yau). Let (𝑀, 𝑔) be a compact Kähler manifold with Käh-
ler form 𝜔. If ̃𝜌 is any closed real (1, 1)-form representing 2𝜋𝑐ℝ

1 (𝑇 ′𝑀), then there
is a unique Kähler metric on 𝑀 whose Kähler form is cohomologous to 𝜔 and
whose Ricci form is equal to ̃𝜌.

The proof of this theorem (which was one of the main accomplishments for
which Yau was awarded the Fields Medal) was based on deep ideas in nonlinear
partial differential equations. We do not have the tools to prove the theorem, but it
is worthwhile outlining how to set it up as a PDE problem.

A Kähler metric in the same Kähler class as 𝜔 is given by a Kähler form 𝜔̃ =
𝜔 + 𝛾 , where 𝛾 is an exact real (1, 1)-form. In fact, the global 𝜕𝜕-lemma (which we
will prove in Chapter 9) shows that every exact real (1, 1)-form can be expressed as
𝛾 = 𝑖𝜕𝜕𝑢 for some smooth real-valued function 𝑢. Thus we seek a function 𝑢 such
that 𝜔̃ = 𝜔 + 𝑖𝜕𝜕𝑢 is a Kähler form with the prescribed Ricci form.

To see how the Ricci form changes under such a change in metric, we work in
local holomorphic coordinates. The coefficients of the new metric ̃𝑔 are given by

̃𝑔𝑗𝑘 = 𝑔𝑗𝑘 + 𝜕𝑗𝜕𝑘𝑢.
We note also that since the given form ̃𝜌 and the Ricci form 𝜌 of 𝑔 both represent 2𝜋
times the first Chern class of 𝑇 ′𝑀 , they are cohomologous, so the global 𝜕𝜕-lemma
shows that there is smooth real function 𝑣 such that ̃𝜌 = 𝜌 + 𝑖𝜕𝜕𝑣.

Using (8.32), we see that in coordinates we have
𝜌 = −𝑖𝜕𝜕 log(det 𝑔𝑗𝑘),

̃𝜌 = −𝑖𝜕𝜕 log(det(𝑔𝑗𝑘 + 𝜕𝑗𝜕𝑘𝑢)),
so we need to solve the following system of PDEs for 𝑢:
(8.33) −𝑖𝜕𝜕 log(det(𝑔𝑗𝑘 + 𝜕𝑗𝜕𝑘𝑢)) = −𝑖𝜕𝜕 log(det 𝑔𝑗𝑘) + 𝑖𝜕𝜕𝑣.
Calabi realized that this can be hugely simplified by just looking for a function 𝑢
that satisfies

log(det(𝑔𝑗𝑘 + 𝜕𝑗𝜕𝑘𝑢)) = log(det 𝑔𝑗𝑘) − 𝑣,
which obviously implies (8.33). This last equation is equivalent to

(8.34)
det(𝑔𝑗𝑘 + 𝜕𝑗𝜕𝑘𝑢)

det(𝑔𝑗𝑘) = 𝑒−𝑣,

and in this form the equation actually makes sense globally, because the left-hand
side is the ratio of the two globally defined volume forms: 𝑑𝑉 ̃𝑔/𝑑𝑉𝑔 . Thus the prob-
lem has been reduced to solving a single equation for a single unknown function.
Equation (8.34) is of a type called a complex Monge–Ampère equation: a real
Monge–Ampère equation is any equation involving the determinant of the Hessian
of an unknown function, and the complex version is similar but uses only the (1, 1)-
part of the Hessian (or, as in this case, the Hessian plus some known matrix). It
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is a fully nonlinear second-order partial differential equation, for which Yau had to
develop a substantial array of new techniques.

There is another natural problem on compact Kähler manifolds that is closely
related to the Calabi–Yau theorem. For Riemann surfaces, there is a powerful re-
sult called the uniformization theorem (see, for example, [FK92, p. 191]), which
says every Riemann surface admits a holomorphic covering by ℂℙ1, ℂ1, or the unit
disk. An important geometric consequence of this is that every Riemann surface
possesses a complete Kähler metric with constant Gaussian curvature [FK92, Thm.
IV.8.6]. Much effort has been expended in attempting to generalize this theorem
to higher dimensions. The most obvious generalization—finding a Kähler metric
of constant holomorphic sectional curvature—is hopeless in higher dimensions be-
cause Theorem 8.27 shows that only certain manifolds (those covered by ℂℙ𝑛, ℂ𝑛,
or 𝔹2𝑛) admit such metrics.

A plausible candidate for generalizing the uniformization theorem to higher
dimensions would be to search for a Kähler–Einstein metric, which is a Kähler
metric whose Ricci tensor is a constant multiple of themetric, or equivalently whose
Ricci form is a constant multiple of the Kähler form. This condition is satisfied by
every metric of constant holomorphic sectional curvature, but also by many other
Kähler metrics as well, as we will see below.

Certainly a necessary condition for 𝑀 to possess a Kähler–Einstein metric is
that it must possess a Kähler metric. Beyond that, since a Kähler–Einstein metric
has Ricci form 𝜌 = 𝜆𝜔 for some constant 𝜆, and 𝜌 represents a positive multiple of
the first real Chern class of 𝑇 ′𝑀 , another necessary condition is that the first Chern
class must contain a representative (1, 1)-form that is positive (which would be the
case if 𝜆 > 0), zero (for 𝜆 = 0), or negative (for 𝜆 < 0).

The zero case is a direct consequence of the Calabi–Yau theorem: if 𝑐ℝ
1 (𝑇 ′𝑀)

contains the zero form, then there is a Kähler–Einstein metric whose Ricci form is
zero. Around the same time as Yau proved the Calabi conjecture, Yau [Yau78] and
Thierry Aubin [Aub78] independently solved the negative case, using techniques
very similar to those used in the proof of the Calabi–Yau theorem.

Theorem 8.33 (Existence of Negative Kähler–Einstein Metrics). If (𝑀, 𝑔) is a
compact Kähler manifold and 𝑐ℝ

1 (𝑇 ′𝑀) is represented by a negative (1, 1)-form,
then 𝑀 admits a Kähler–Einstein metric with the same Kähler class as 𝑔.

The positive case is more complicated, because there are obstructions to the ex-
istence of Kähler–Einstein metrics even when 𝑐ℝ

1 (𝑇 ′𝑀) contains a positive (1, 1)-
form.

A connected compact Kähler manifold 𝑀 with holomorphically trivial canon-
ical bundle is called a Calabi–Yau manifold. Problem 8-10 shows that the assump-
tion of trivial canonical bundle implies 𝑐ℝ

1 (𝑇 ′𝑀) = 0, and therefore the Calabi–Yau
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theorem implies that 𝑀 carries a unique Kähler–Einstein metric with zero Ricci
curvature in each Kähler class (such a metric is said to be Ricci flat).

Here are some examples of Calabi–Yau manifolds.

Example 8.34 (Tori as Calabi–Yau Manifolds). Let Λ ⊆ ℂ𝑛 be a lattice and
𝑀 = ℂ𝑛/Λ the associated 𝑛-dimensional complex torus. The holomorphic (𝑛, 0)-
form 𝑑𝑧1 ∧ ⋯ ∧ 𝑑𝑧𝑛 ∈ Ω𝑛(ℂ𝑛) is invariant under the action of Λ, and thus descends
to a nonvanishing holomorphic section of the canonical bundle of 𝑀 . Therefore,
every complex torus is a Calabi–Yaumanifold. The corresponding Ricci-flat Kähler
metrics on 𝑀 are the flat metrics obtained fromHermitian inner products on ℂ𝑛. //

Example 8.35 (K3 Surfaces). A simply connected compact complex 2-manifold
with trivial canonical bundle is called aK3 surface. (The termwas coined by André
Weil [Wei14, p. 546] as a play on the name of the mountain peak K2 in Kashmir, in
honor of Ernst Kummer, Erich Kähler, and Kunihiko Kodaira.) Kodaira [Kod64]
proved in 1964 that all K3 surfaces are diffeomorphic to each other, but there is a
20-parameter family of inequivalent holomorphic structures. It was proved in 1983
by Yum-Tong Siu [Siu83] that every K3 surface has a Kähler metric, and thus is a
Calabi–Yau manifold. //

Example 8.36 (Projective Calabi–YauHypersurfaces). Projective hypersurfaces
provide a rich source of examples of Calabi–Yau manifolds. Suppose 𝑆 ⊆ ℂℙ𝑛 is
a nonsingular projective algebraic hypersurface defined by a homogeneous polyno-
mial of degree 𝑑. The adjunction formula (Problem 4-10) shows that the canoni-
cal bundle 𝐾𝑆 is isomorphic to the restriction to 𝑆 of 𝐾ℂℙ𝑛 ⊗ 𝐿𝑆 . On the other
hand, Example 3.40 showed that 𝐿𝑆 ≅ 𝐻𝑑 , while Proposition 4.17 shows that
𝐾ℂℙ𝑛 ≅ 𝐻−(𝑛+1). Thus 𝐾𝑆 is trivial exactly when 𝑑 = 𝑛 + 1, and every non-
singular projective algebraic hypersurface in ℂℙ𝑛 of degree 𝑛 + 1 is a Calabi–Yau
manifold. A simple example in each dimension is provided by the Fermat hyper-
surface of degree 𝑛 + 1 in ℂℙ𝑛 (Example 2.39). //

Calabi–Yau manifolds play a central role in the approach to elementary parti-
cle theory known as superstring theory, because the theory seems to be consistent
only if spacetime is viewed as the 10-dimensional total space of a fiber bundle
whose base has the familiar 4 dimensions and whose model fiber is a Calabi–Yau
threefold (which is, in particular, a 6-dimensional Ricci-flat Riemannian manifold).
The interaction between physicists and mathematicians has led to striking new in-
sights into the structure of Calabi–Yau manifolds, which are worth learning about
if you want to pursue this field. (See [YN11] for an informal description of this
interaction.)

It should be noted that except for the trivial case of tori, there is no known
Calabi–Yaumanifold whose Ricci-flat Kähler metric can bewritten down explicitly.
Even for Calabi–Yau manifolds that are defined algebraically such as the projective
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hypersurfaces of Example 8.36, there is no known algebraic construction of their
associated Ricci-flat Kähler metrics.

The definition of Calabi–Yau manifolds we have given is the simplest and per-
haps the most common one, but you will find a number of closely related but in-
equivalent definitions in the literature. Some definitions require in addition that the
manifold be simply connected or have finite fundamental group (which rules out
tori). Other definitions relax one or more of the conditions, such as allowing 𝑀
to be noncompact or requiring only trivial first real Chern class instead of trivial
canonical bundle. See also Problem 10-11 for another condition that is sometimes
imposed.

Problems
8-1. Suppose (𝑀, 𝑔) is a Kähler manifold of dimension 𝑛 ≥ 2, and ̃𝑔 is a metric

conformal to 𝑔 (i.e., ̃𝑔 = 𝑓𝑔 for some smooth positive function 𝑓 ). Prove
that ̃𝑔 is Kähler if and only if 𝑓 is constant.

8-2. If (𝑀̃, ̃𝑔) and (𝑀, 𝑔) are Riemannian manifolds, a smooth submersion
𝜋 ∶ 𝑀̃ → 𝑀 is called a Riemannian submersion if for each 𝑥 ∈ 𝑀̃ ,
the total derivative 𝐷𝜋(𝑥)∶ 𝑇𝑥𝑀̃ → 𝑇𝜋(𝑥)𝑀 restricts to a linear isom-
etry from 𝐻𝑥 to 𝑇𝜋(𝑥)𝑀 , where 𝐻𝑥 ⊆ 𝑇𝑥𝑀̃ , called the horizontal
tangent space, denotes the orthogonal complement of Ker𝐷𝜋(𝑥). Let
𝜋 ∶ 𝕊2𝑛+1 → ℂℙ𝑛 denote the restriction of the canonical quotient map
ℂ𝑛+1 ∖{0} → ℂℙ𝑛. Show that 𝜋 is a Riemannian submersion when 𝕊2𝑛+1

is given the standard roundmetric and ℂℙ𝑛 is given the Fubini–Studymet-
ric. [Hint: Since the metrics on both 𝕊2𝑛+1 and ℂℙ𝑛 are invariant under
U(𝑛 + 1), it suffices to check the condition at one point of 𝕊2𝑛+1.]

8-3. Let 𝑔 be a Kähler metric on a Riemann surface 𝑀 . Show that the holo-
morphic sectional curvature of 𝑔 is equal to its Gaussian curvature, and
in terms of any local holomorphic coordinate 𝑧, both are given by the
formula

−1
𝑢

𝜕2

𝜕𝑧𝜕𝑧 log 𝑢,

where 𝑢 = 𝑔(𝜕/𝜕𝑧, 𝜕/𝜕𝑧).

8-4. Let 𝑄 ⊆ ℂℙ2 be the quadric curve defined by the homogeneous polyno-
mial 𝑤1𝑤2 − (𝑤0)2. Compute the Gaussian curvature of 𝑄 in the metric
obtained by restricting the Fubini-Study metric to 𝑄.
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8-5. Let 𝑔CH be the complex hyperbolic metric on 𝔹2𝑛, defined by the Kähler
form 𝜔CH = − 𝑖

2 𝜕𝜕 log(1 − |𝑧|2) (see Example 8.26(c)). Let U(𝑛, 1) be
the subgroup of GL(𝑛 + 1, ℂ) leaving invariant the following sesquilinear
form:

𝐻(𝑣, 𝑤) = 𝑣1𝑤1 + ⋯ + 𝑣𝑛𝑤𝑛 − 𝑣0𝑤0.

(a) Considering the unit ball 𝔹2𝑛 as a subset of ℂℙ𝑛 via the embedding
(𝑧1, … , 𝑧𝑛) ↦ [1, 𝑧1, … , 𝑧𝑛], show that U(𝑛, 1) acts transitively on
𝔹2𝑛 by projective transformations.

(b) Show that 𝑔CH is, up to a constant multiple, the unique U(𝑛, 1)-
invariant Riemannian metric on 𝔹2𝑛.

(c) Show that 𝑔CH is geodesically complete.
(d) Show that 𝑔CH has constant holomorphic sectional curvature equal

to −4.
8-6. Let (𝑀, 𝑔) be one of the following Kähler manifolds with constant holo-

morphic sectional curvature: (ℂℙ𝑛, 𝑔FS), (ℂ𝑛, 𝑔E), or (𝔹2𝑛, 𝑔CH). Prove
that if 𝑈 ⊆ 𝑀 is a connected open set and 𝜑∶ 𝑈 → 𝑀 is a holomorphic
local isometry, then 𝜑 is the restriction of a global holomorphic isometry.
[Hint: Choose 𝑝 ∈ 𝑈 and show that there is a global holomorphic isom-
etry 𝜓 ∶ 𝑀 → 𝑀 such that 𝜓 ∘ 𝜑 fixes 𝑝 and an orthonormal basis for
𝑇 ′

𝑝 𝑀 . Then use the exponential map to show that 𝜓 ∘ 𝜑 is the identity on
𝑈 .]

8-7. Let 𝑀 be a complex manifold of dimension 𝑛, and let 𝑔 be a Kähler metric
on 𝑀 with constant holomorphic sectional curvature 𝑐.
(a) Let 𝑣, 𝑤 ∈ 𝑇𝑥𝑀 be a pair of orthonormal vectors. Show that the (or-

dinary) sectional curvature of 𝑔 in the direction of the plane spanned
by (𝑣, 𝑤) is given by

sec(𝑣, 𝑤) = 1
4 𝑐 (1 + 3 ⟨𝑣, 𝐽𝑤⟩2

) .

(b) Show that if 𝑛 ≥ 2, then at each point of 𝑀 , the (ordinary) sectional
curvatures of 𝑔 take on all values between 1

4 𝑐 and 𝑐, inclusive. Con-
clude that 𝑀 cannot have constant sectional curvature unless it is
flat.

8-8. Calculate the volume of ℂℙ𝑛 with the Fubini–Study metric.
8-9. Let 𝑚 > 𝑛 and let 𝐹 ∶ ℂℙ𝑛 → ℂℙ𝑚 be the holomorphic embedding of

Problem 3-2. Show that 𝐹 pulls back the Fubini–Study metric of ℂℙ𝑚 to
that of ℂℙ𝑛.

8-10. Suppose (𝑀, 𝑔) is a Kähler manifold and 𝐾 is its canonical bundle. Show
that 𝑐ℝ

1 (𝑇 ′𝑀) = −𝑐ℝ
1 (𝐾).
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8-11. Let (𝑀, 𝑔) be a Kähler manifold, and let (𝑧𝑗) be holomorphic coordinates
satisfying (8.8) at a point 𝑎 ∈ 𝑀 . Prove that the components of the cur-
vature tensor at 𝑎 are given by

𝑅𝑗𝑘𝑙𝑚 = −𝜕𝑘𝜕𝑗𝑔𝑙𝑚.

8-12. Suppose 𝑀 is a smooth manifold endowed with a Riemannian metric 𝑔
and an almost complex structure 𝐽 satisfying 𝑔(𝐽𝑋, 𝐽𝑌 ) = 𝑔(𝑋, 𝑌 ) for
all vector fields 𝑋 and 𝑌 . Suppose in addition that 𝐽 is parallel, that is,
∇𝐽 ≡ 0. Prove that 𝐽 is integrable and 𝑔 is Kähler.

8-13. Let (𝑀, 𝑔) be a Kähler manifold with constant holomorphic sectional cur-
vature 𝑐, and let 𝑁 ⊆ 𝑀 be a complex submanifold endowed with the
induced metric. Show that all holomorphic sectional curvatures of 𝑁 are
less than or equal to 𝑐. [Hint: Use the Gauss equation, [LeeRM, Thm.
8.5].]

8-14. Here is another curvature quantity that can be defined on Kähler mani-
folds. Given a Kähler manifold (𝑀, 𝑔), for any two linearly independent
vectors 𝑍, 𝑊 ∈ 𝑇 ′

𝑥𝑀 at the same point 𝑥 ∈ 𝑀 , define the holomorphic
bisectional curvature associated with 𝑍, 𝑊 by

𝐵(𝑍, 𝑊 ) =
𝑅𝑚(𝑍, 𝑍, 𝑊 , 𝑊 )

|𝑍|2|𝑊 |2 .

(a) Show that 𝐵(𝑍, 𝑊 ) is equal to the sum of two sectional curvatures:

𝐵(𝑍, 𝑊 ) = sec(Re𝑍, Im𝑍) + sec(Re𝑍, Im𝑊 ).

(b) Show that if 𝑔 has constant holomorphic sectional curvature 𝑐, then
its holomorphic bisectional curvatures at each point take on all values
between 1

2 𝑐 and 𝑐, inclusive.
(c) Show that if 𝑔 has positive holomorphic bisectional curvature, then

it has positive Ricci curvature, and the same is true with “positive”
replaced by “nonpositive,” “negative,” or “nonnegative.”

8-15. Let 𝑀 be a compact, connected Riemann surface endowed with a Kähler
metric, and let ∇′ be the Chern connection on 𝑇 ′𝑀 .
(a) Show that the Chern form 𝑐1(∇′) is equal to 1

2𝜋 𝑘 𝑑𝐴, where 𝑘 is the
Gaussian curvature (see Problem 8-3) and 𝑑𝐴 is the Riemannian area
form.

(b) Use the Gauss–Bonnet theorem to show that the degree of the line
bundle 𝑇 ′𝑀 is 2 − 2𝑔, and the degree of the canonical bundle 𝐾𝑀
is 2𝑔 − 2, where 𝑔 is the genus of 𝑀 .
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8-16. Suppose 𝑀 ⊆ ℂℙ2 is a connected nonsingular algebraic curve of genus
𝑔 defined by a single polynomial of degree 𝑑. Prove the genus-degree
formula:

𝑔 = (𝑑 − 1)(𝑑 − 2)
2 .

[Hint: Use the results of Propositions 7.30 and 4.17, and Problems 4-10
and 8-15.]

8-17. Let 𝑀 ⊆ ℂℙ2 be a 1-dimensional complex submanifold defined by a
homogeneous polynomial of degree 𝑑, endowed with the restriction of
the Fubini–Study metric. Show that the area of 𝑀 is equal to 𝜋𝑑.

8-18. A Fano manifold is a compact complex manifold whose anticanonical
bundle is positive. Use the Calabi–Yau theorem to prove that a compact
complex manifold is a Fano manifold if and only if it admits a Kähler
metric with strictly positive Ricci curvature.

8-19. Let (𝑀, 𝑔) be a connected Riemannian 𝑁-manifold and 𝑝 ∈ 𝑀 . For any
piecewise smooth loop 𝛾 ∶ [𝑎, 𝑏] → 𝑀 based at 𝑝 (meaning 𝛾(𝑎) = 𝛾(𝑏) =
𝑝), let 𝑃 𝛾 ∶ 𝑇𝑝𝑀 → 𝑇𝑝𝑀 denote the parallel transport operator along 𝛾
(see [LeeRM, Chap. 4]). The set of all linear maps from 𝑇𝑝𝑀 to itself
obtained in this way is a group, denoted by Hol(𝑝) and called the holo-
nomy group at 𝒑. Because parallel transport preserves inner products, a
choice of orthonormal basis for 𝑇𝑝𝑀 yields a representation of Hol(𝑝) as
a subgroup of 𝑂(𝑁).
(a) Show that if 𝑁 = 2𝑛 and 𝑔 is a Kähler metric, then Hol(𝑝) ⊆ U(𝑛)

with respect to an appropriate basis, where we view U(𝑛) as the sub-
group of 𝑂(2𝑛) that preserves the inner product and the complex
structure on ℂ𝑛, identified with ℝ2𝑛 in the usual way.

(b) Conversely, suppose 𝑔 is Riemannian and Hol(𝑝) ⊆ U(𝑛) for some
𝑝 ∈ 𝑀 and some choice of orthonormal basis for 𝑇𝑝𝑀 . Show that
𝑀 has an integrable almost complex structure with respect to which
𝑔 is Kähler.



Chapter 9

Hodge Theory

We have seen in Chapter 6 that sheaf cohomology groups can play the role of ob-
structions to surjectivity of certain maps of global sections of sheaves. And thanks
to the de Rham–Weil theorem, we can often identify sheaf cohomology groups
with the cohomology groups of certain complexes of global sections, such as the
de Rham complex or the Dolbeault complex. But these cohomology groups are
still typically quotients of infinite-dimensional spaces by infinite-dimensional sub-
spaces, so by themselves they are not very practical for computations. Of course,
the de Rham groups are isomorphic to singular cohomology groups, for which there
are a multitude of computational methods coming from algebraic topology. But for
the Dolbeault groups we do not have such topological tools.

The computations would become more tractable if we could single out a partic-
ular representative for each cohomology class, one that has special properties that
might lead to computational simplifications or new insights. A plausible approach
to finding such a representative would be to seek a representative that is “smallest”
or “most efficient” according to some scheme for measuring sizes.

In this chapter, we introduce an inner product and associated norm on the space
of global differential forms on a compact Riemannian manifold, and show that a
closed form minimizes the norm within its cohomology class if and only if it sat-
isfies a certain differential equation; forms satisfying this equation are called har-
monic forms. The main result about harmonic forms is the Hodge theorem, which
says that on a compact Riemannian manifold, every cohomology class has a unique
harmonic representative. The proof of this important theorem is based on a funda-
mental result about elliptic partial differential operators on compact manifolds; the
proof of that result would take us too far afield into the realm of PDE theory, so we
merely state it and give several references where proofs can be found.
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Then we turn to the case of Hermitian complex manifolds, and prove a simi-
lar Hodge theorem for the Dolbeault complex. The theory takes its most powerful
form on a compact Kähler manifold, where there is a close relationship between
harmonic representatives of de Rham cohomology classes and harmonic represen-
tatives of Dolbeault classes, leading to deep consequences for de Rham cohomology
and sheaf cohomology.

The general strategy of using harmonic forms to deduce topological, geomet-
ric, or complex-analytic properties of manifolds is now known as Hodge theory,
after William V. D. Hodge, who developed the theory in a series of papers in the
1930s, summarized in [Hod41]. It is now one of the most fundamental tools in both
differential and algebraic geometry.

The Hodge Inner Product
To introduce theHodge theorem in the simplest possible context, we begin by taking
a detour into the realm of Riemannian manifolds. Once the basic results of the the-
ory have been established, we will return below to the case of complex manifolds.
(The work we do in the Riemannian context will not be wasted, though, because the
Riemannian Hodge theorem also has important applications to complexmanifolds.)

Suppose (𝑀, 𝑔) is a Riemannian manifold of dimension 𝑁 . The Riemannian
metric 𝑔 together with the musical isomorphism ♯∶ 𝑇 ∗

ℂ𝑀 → 𝑇ℂ𝑀 yields a Her-
mitian fiber metric ⟨⋅, ⋅⟩ on the space of complex-valued 1-forms defined by

⟨𝛼, 𝛽⟩ = ⟨𝛼♯, 𝛽♯⟩ = 𝑔(𝛼♯, 𝛽♯).

In any smooth coordinates (𝑥1, … , 𝑥𝑁 ), it is given by

⟨𝑑𝑥𝑗 , 𝑑𝑥𝑘⟩ = 𝑔𝑗𝑘.

If (𝐸1, … , 𝐸𝑁 ) is a local orthonormal frame for 𝑇ℂ𝑀 , then its dual coframe
(𝜀1, … , 𝜀𝑁 ) is a local orthonormal frame for 𝑇 ∗

ℂ𝑀 .
We will extend this fiber metric to differential forms of all degrees. For

0 ≤ 𝑞 ≤ 𝑁 , we define a Hermitian fiber metric, called the pointwise Hodge in-
ner product, on the bundle of complex-valued 𝑞-forms as follows: For 0-forms
(complex-valued functions), we simply set ⟨𝑢, 𝑣⟩ = 𝑢𝑣. For higher-degree forms,
for any local orthonormal coframe (𝜀1, … , 𝜀𝑁 ) for 𝑇 ∗

ℂ𝑀 , let ⟨⋅, ⋅⟩ be the pointwise
Hermitian inner product on Λ𝑞

ℂ𝑀 for which the following collection of 𝑞-forms is
orthonormal:

{𝜀𝑗1 ∧ ⋯ ∧ 𝜀𝑗𝑞 ∶ 𝑗1 < ⋯ < 𝑗𝑞}.

Thanks to the following lemma, this yields a well-defined global fiber metric.
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Lemma 9.1. For 𝑞 ≥ 1, the pointwise Hodge inner product ⟨⋅, ⋅⟩ on 𝑞-forms is
uniquely determined by the following condition: for any locally defined 1-forms
𝛼1, … , 𝛼𝑞 , 𝛽1, … , 𝛽𝑞 , we have

(9.1) ⟨𝛼1 ∧ ⋯ ∧ 𝛼𝑞 , 𝛽1 ∧ ⋯ ∧ 𝛽𝑞⟩ = det(⟨𝛼𝑗 , 𝛽𝑘⟩).

Thus it is well defined, independently of the choice of local coframe.

Proof. Because both sides of (9.1) are linear over 𝐶∞(𝑀; ℂ) in each 𝛼𝑖 and
conjugate-linear in each 𝛽𝑖, it suffices to check the equality for basis covectors
𝛼𝑖 = 𝜀𝑗𝑖 and 𝛽𝑖 = 𝜀𝑘𝑖 . Let 𝐽 and 𝐾 denote the multi-indices (𝑗1, … , 𝑗𝑞) and
(𝑘1, … , 𝑘𝑞), respectively, and let 𝑆𝑞 denote the group of permutations of the set
{1, … , 𝑞}.

For the left-hand side of (9.1), since 𝜀𝑗1 ∧ ⋯ ∧ 𝜀𝑗𝑞 and 𝜀𝑘1 ∧ ⋯ ∧ 𝜀𝑘𝑞 match the
basis forms we have declared to be orthonormal up to sign, we have

⟨𝜀𝑗1 ∧ ⋯ ∧ 𝜀𝑗𝑞 , 𝜀𝑘1 ∧ ⋯ ∧ 𝜀𝑘𝑞 ⟩ =
{

sgn 𝜎 if 𝐾 = 𝜎(𝐽) for some 𝜎 ∈ 𝑆𝑞;
0 if 𝐾 is not a permutation of 𝐽 .

(Here sgn 𝜎 denotes the sign of 𝝈, which is equal to 1 if 𝜎 is an even permutation
and −1 if it is odd.)

On the other hand, if 𝐾 = 𝜎(𝐽), then the matrix on the right-hand side of (9.1)
is obtained from the identity by applying the permutation 𝜎 to the columns, so its
determinant is equal to the sign of 𝜎. If 𝐾 is not a permutation of 𝐽 , then the matrix
has a column of zeros, so its determinant is zero. □

It should be noted that there is another fiber metric on the bundle of real or
complex 𝑞-forms, obtained by treating it as a subbundle of a tensor bundle (see
[LeeRM, Prop. 2.40]). These inner products are the same for 1-forms, but for 𝑞 >
1, the pointwise Hodge inner product differs from the tensor inner product by a
constant factor depending on 𝑞. (The exact constants depend on which convention
for the wedge product is in use; see [LeeRM, Problem 2-17 on p. 49].) In this book,
we use only the pointwise Hodge inner product for differential forms.

When 𝑀 is compact, we can use this pointwise inner product to define a global
inner product on the space ℰ 𝑞(𝑀) of smooth complex-valued 𝑞-forms, called the
(global) Hodge inner product, by

(𝛼, 𝛽) = ∫𝑀
⟨𝛼, 𝛽⟩𝑑𝑉𝑔 ,

where we interpret 𝑑𝑉𝑔 to be the Riemannian volume form of 𝑔 if 𝑀 is oriented, and
otherwise it is the Riemannian density [LeeSM, Prop. 16.45]. This is always a well-
defined complex number because we are assuming 𝑀 is compact, and it is easy to
check that it is a Hermitian inner product on the complex vector space ℰ 𝑞(𝑀). We
can also extend this definition to noncompact𝑀 if we restrict attention to compactly
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supported forms. (This is sometimes called the 𝑳2 inner product, because it is
used to define the Hilbert space 𝐿2(𝑀; Λ𝑞

ℂ𝑀) of square-integrable forms with
measurable coefficients. Note, however, that ℰ 𝑞(𝑀) is not complete under this
inner product, so the tools of Hilbert space theory, such as orthogonal projections
and orthonormal bases, cannot be used here.) Wewill consistently denote the global
Hodge inner product by (𝛼, 𝛽) with parentheses, and its associated norm by ‖𝛼‖ =
(𝛼, 𝛼)1/2, reserving the notations ⟨⋅, ⋅⟩ and | ⋅ | for the pointwise inner product and
norm, respectively.

Using this inner product, we can single out a candidate for a “best” representa-
tive of each cohomology class.

Proposition 9.2. On a compact Riemannian manifold 𝑀 , a closed 𝑞-form 𝛼 min-
imizes the norm ‖𝛼‖ within its cohomology class if and only if it is orthogonal to
the space ℬ𝑞(𝑀) of exact forms. If so, it is the unique minimizer in its cohomology
class.

Proof. Suppose 𝛼 ∈ ℰ 𝑞(𝑀) is closed and orthogonal to ℬ𝑞(𝑀). Any other rep-
resentative of the same cohomology class is of the form 𝛼 = 𝛼 + 𝑑𝛽 for some
𝛽 ∈ ℰ 𝑞−1(𝑀). The hypothesis implies

‖𝛼‖2 = (𝛼 + 𝑑𝛽, 𝛼 + 𝑑𝛽) = ‖𝛼‖2 + 2�����Re(𝛼, 𝑑𝛽) + ‖𝑑𝛽‖2

≥ ‖𝛼‖2,

with equality if and only if 𝑑𝛽 = 0 and thus 𝛼 = 𝛼.
Conversely, suppose 𝛼 minimizes the norm within its cohomology class. For

an arbitrary 𝛽 ∈ ℰ 𝑞−1(𝑀), the hypothesis implies ‖𝛼 +𝑡𝑑𝛽‖2 ≥ ‖𝛼‖2 for all 𝑡 ∈ ℝ.
Since the smooth real-valued function 𝑡 ↦ ‖𝛼 + 𝑡𝑑𝛽‖2 takes a minimum at 𝑡 = 0,
we conclude that

0 = 𝑑
𝑑𝑡|𝑡=0

‖𝛼 + 𝑡𝑑𝛽‖2

= 𝑑
𝑑𝑡|𝑡=0 (‖𝛼‖2 + 2𝑡Re(𝛼, 𝑑𝛽) + 𝑡2‖𝛽‖2

)
= 2Re(𝛼, 𝑑𝛽).

Applying the same computation with 𝑖𝛽 in place of 𝛽 shows that Im(𝛼, 𝑑𝛽) =
Re(𝛼, 𝑖𝑑𝛽) = 0 as well, so 𝛼 is orthogonal to 𝑑𝛽. □

To make use of this observation, we need a practical way to identify which
forms are orthogonal to the image of 𝑑. As a warm-up, let us examine a simpler
model problem. Suppose 𝑉 and 𝑊 are finite-dimensional complex vector spaces
endowed with Hermitian inner products, and 𝐴∶ 𝑉 → 𝑊 is a linear map. The
adjoint of 𝑨 is the unique linear map 𝐴∗ ∶ 𝑊 → 𝑉 that satisfies

⟨𝐴𝑥, 𝑦⟩ = ⟨𝑥, 𝐴∗𝑦⟩ for all 𝑥 ∈ 𝑉 and 𝑦 ∈ 𝑊 .
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In terms of orthonormal bases for 𝑉 and 𝑊 , it is the map whose matrix repre-
sentation is the Hermitian adjoint (transposed conjugate) of that of 𝐴, as you can
check.

Lemma 9.3. In the situation described above,

(Im𝐴)⟂ = Ker(𝐴∗).

Proof. Suppose first that 𝑦 ∈ (Im𝐴)⟂. Then

|𝐴∗𝑦|2 = ⟨𝐴∗𝑦, 𝐴∗𝑦⟩ = ⟨𝐴𝐴∗𝑦, 𝑦⟩ = 0,

which implies 𝐴∗𝑦 = 0. Conversely if 𝐴∗𝑦 = 0, then for every 𝑥 ∈ 𝑉 we have

⟨𝐴𝑥, 𝑦⟩ = ⟨𝑥, 𝐴∗𝑦⟩ = 0,

which implies 𝑦 ⟂ Im𝐴. □

To apply this to the infinite-dimensional spaces ℰ 𝑞(𝑀), we first need to show
that operators like 𝑑 have suitable adjoint operators.

Suppose 𝑀 is smooth manifold, and 𝐸 and 𝐹 are smooth vector bundles over
𝑀 . (As usual in this book, we assume complex vector bundles, but the theory
works equally well for real ones.) A complex-linear map 𝑃 ∶ Γ(𝐸) → Γ(𝐹 ) is
called a linear differential operator of order 𝒎 if there is a covering of 𝑀 by open
subsets on which there exist smooth local coordinates (𝑥1, … , 𝑥𝑁 ) for 𝑀 and local
frames (𝑒𝛼) for 𝐸 and (𝑓𝛽) for 𝐹 , such that for each such subset 𝑈 , the restriction
of 𝑃 𝑢 to 𝑈 has a local expression of the form

(9.2) 𝑃 (∑𝛼
𝑢𝛼𝑒𝛼) =

𝑚

∑
𝑞=0

∑
1≤𝑗𝑖≤𝑁

∑
𝛼,𝛽

𝑝𝛽𝑗1…𝑗𝑞
𝛼 𝜕𝑗1 ⋯ 𝜕𝑗𝑞 (𝑢𝛼)𝑓𝛽

for some smooth functions 𝑝𝛽𝑗1…𝑗𝑞
𝛼 on 𝑈 , with the 𝑞 = 𝑚 coefficients 𝑝𝛽𝑗1…𝑗𝑚

𝛼 not
all zero (to ensure that it is actually an operator of order 𝑚 and not one of lower
order).

It is worth noting that this definition implies that a linear differential operator is
a local operator, meaning that if two sections 𝑢 and 𝑣 agree on an open set 𝑉 ⊆ 𝑀 ,
then 𝑃 𝑢|𝑉 = 𝑃 𝑣|𝑉 .

Now let 𝑀 be a Riemannian manifold. For any Hermitian vector bundle 𝐸 →
𝑀 , we denote by Γ𝑐(𝐸) the space of smooth compactly supported sections of 𝐸,
and define a global Hermitian inner product on Γ𝑐(𝐸) by

(𝑢, 𝑣) = ∫𝑀
⟨𝑢, 𝑣⟩𝑑𝑉𝑔 .

Suppose 𝐸 and 𝐹 are Hermitian vector bundles over 𝑀 and 𝑃 ∶ Γ(𝐸) → Γ(𝐹 ) is a
linear differential operator. Another linear differential operator 𝑃 ∗ ∶ Γ(𝐹 ) → Γ(𝐸)
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is called a formal adjoint of 𝑷 if it satisfies the following formula for all 𝑢 ∈ Γ𝑐(𝐸)
and 𝑣 ∈ Γ𝑐(𝐹 ):
(9.3) (𝑃 𝑢, 𝑣) = (𝑢, 𝑃 ∗𝑣).
(The term “formal” comes from functional analysis, where there is a notion of
Hilbert space adjoint of an operator acting on a Hilbert space of sections of a
bundle, which is required to satisfy (9.3) for a much larger class of sections. By
contrast, the formal adjoint is only required to satisfy it for smooth compactly sup-
ported sections. The formal adjoint is the only type of adjoint we will consider in
this book.)
Proposition 9.4 (Existence and Uniqueness of Formal Adjoints). Every linear
differential operator between smooth vector bundles has a unique formal adjoint,
which is a linear differential operator of the same order.

Proof. First, a comment: The proof looks a little daunting because of the notation,
but at heart it is really nothing but integration by parts.

To prove existence, let {𝑈𝑖}𝑖∈𝐼 be a cover of 𝑀 by coordinate domains on
which 𝑃 has a coordinate expression like (9.2).

First suppose 𝑣 ∈ Γ𝑐(𝐹 ) is supported in one of the sets 𝑈𝑖 and 𝑢 ∈ Γ𝑐(𝐸) is
arbitrary. Using local coordinates to identify 𝑈𝑖 with an open subset of ℝ𝑁 , we
compute

(𝑃 𝑢, 𝑣) = ∑𝑞 ∑
𝑗𝑖

∑
𝛼𝛽𝛾 ∫𝑈𝑖

𝑝𝛽𝑗1…𝑗𝑞
𝛼 (𝜕𝑗1 ⋯ 𝜕𝑗𝑞 𝑢𝛼)𝑣𝛾ℎ𝛽𝛾√det 𝑔 𝑑𝑥1 ⋯ 𝑑𝑥𝑁 ,

where ℎ𝛽𝛾 = ⟨𝑓𝛽 , 𝑓𝛾⟩. Since the integrand is smooth and compactly supported in
𝑈𝑖, we can consider this as an integral over a large cube in ℝ𝑁 and integrate by parts
with respect to each variable in turn. The boundary terms vanish, and we obtain

(𝑃 𝑢, 𝑣) = ∑𝑞
(−1)𝑞

∑
𝑗𝑖

∑
𝛼𝛽𝛾 ∫𝑈𝑖

𝑢𝛼𝜕𝑗𝑞 ⋯ 𝜕𝑗1(𝑝𝛽𝑗1…𝑗𝑞
𝛼 𝑣𝛾ℎ𝛽𝛾√det 𝑔)𝑑𝑥1 ⋯ 𝑑𝑥𝑁 .

This is equal to the inner product (𝑢, 𝑄𝑖𝑣), where

(9.4) 𝑄𝑖𝑣 = 1
√det 𝑔 ∑𝑞

(−1)𝑞
∑

𝑗𝑖
∑
𝛼𝛽𝛾𝜎

𝜕𝑗𝑞 ⋯ 𝜕𝑗1(𝑝𝛽𝑗1…𝑗𝑞
𝛼 𝑣𝛾ℎ𝛽𝛾√det 𝑔)𝐻𝜎𝛼𝑒𝜎 ,

as you can check. (Here 𝐻𝜎𝛼 denotes the inverse of the matrix 𝐻𝛼𝜎 = ⟨𝑒𝛼 , 𝑒𝜎⟩.)
For the general case, let {𝜑𝑖}𝑖∈𝐼 be a partition of unity subordinate to the 𝑈𝑖’s,

and define 𝑄∶ Γ(𝐹 ) → Γ(𝐸) by
(9.5) 𝑄𝑣 = ∑

𝑖∈𝐼
𝑄𝑖(𝜑𝑖𝑣).

Because the supports of the 𝜑𝑖’s are locally finite, each point of 𝑀 has a neigh-
borhood on which only finitely many terms in the sum on the right-hand side are
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nonzero, so this is well defined. After we expand out the derivatives using the
product rule, we see that this has the same form as (9.2), with coefficients involv-
ing various derivatives and conjugates of 𝑝𝛽𝑗1…𝑗𝑞

𝛼 , ℎ𝛽𝛾 , 𝐻𝜎𝛼 , det 𝑔, and 𝜑𝑖; thus it
is a differential operator of the same order as 𝑃 . Based on the argument in the first
part of the proof, for 𝑢 and 𝑣 compactly supported we compute

(𝑃 𝑢, 𝑣) = ∑
𝑖∈𝐼

(𝑃 𝑢, 𝜑𝑖𝑣) = ∑
𝑖∈𝐼

(𝑢, 𝑄𝑖(𝜑𝑖𝑣)) = (𝑢, 𝑄𝑣)

(using the fact that there are now only finitely many values of 𝑖 for which 𝜑𝑖𝑣 is not
identically zero), so 𝑄 is a formal adjoint of 𝑃 .

To prove uniqueness, suppose 𝑄 and 𝑄̃ are both formal adjoints of 𝑃 . Let
𝛿𝑣 = 𝑄𝑣 − 𝑄̃𝑣 for 𝑣 ∈ Γ(𝐹 ); then by the definition of formal adjoint, for all
𝑢 ∈ Γ𝑐(𝐸) and 𝑣 ∈ Γ𝑐(𝐹 ), we have

(𝑢, 𝛿𝑣) = (𝑢, 𝑄𝑣) − (𝑢, 𝑄̃𝑣) = (𝑃 𝑢, 𝑣) − (𝑃 𝑢, 𝑣) = 0.
Applying this with 𝑢 = 𝛿𝑣, we see that 𝛿𝑣 = 0 for all compactly supported 𝑣. Since
every smooth section agrees with a compactly supported section in a neighborhood
of each point and differential operators act locally, this implies 𝑄 = 𝑄̃. □

Proposition 9.5 (Properties of Formal Adjoints). Suppose 𝐸, 𝐹 , and 𝐺 are
smooth Hermitian vector bundles over a Riemannian manifold𝑀 , and 𝑃 ∶ Γ(𝐸) →
Γ(𝐹 ) and 𝑄∶ Γ(𝐹 ) → Γ(𝐺) are linear differential operators with formal adjoints
𝑃 ∗ and 𝑄∗, respectively.

(a) (𝑃 ∗)∗ = 𝑃 .
(b) (𝑄 ∘ 𝑃 )∗ = 𝑃 ∗ ∘ 𝑄∗.

Proof. Part (a) follows from the fact that (𝑃 ∗𝑢, 𝑣) = (𝑣, 𝑃 ∗𝑢) = (𝑃 𝑣, 𝑢) = (𝑢, 𝑃 𝑣)
for all 𝑢 ∈ Γ𝑐(𝐹 ) and 𝑣 ∈ Γ𝑐(𝐸), so 𝑃 satisfies the criterion to be the adjoint of 𝑃 ∗.

To prove (b), for all 𝑢 ∈ Γ𝑐(𝐸) and 𝑣 ∈ Γ𝑐(𝐺), we have
(𝑄 ∘ 𝑃 𝑢, 𝑣) = (𝑃 𝑢, 𝑄∗𝑣) = (𝑢, 𝑃 ∗ ∘ 𝑄∗𝑣),

which shows that 𝑃 ∗ ∘ 𝑄∗ is the formal adjoint of 𝑄 ∘ 𝑃 . □

Using the concept of formal adjoints, we have the following analogue of Lemma
9.3.
Proposition 9.6. Suppose 𝐸 and 𝐹 are smooth Hermitian vector bundles over a
compact Riemannian manifold 𝑀 , and 𝑃 ∶ Γ(𝐸) → Γ(𝐹 ) is a linear differential
operator. Then (Im𝑃 )⟂ = Ker(𝑃 ∗).

Proof. Because all sections of 𝐸 and 𝐹 are compactly supported in this case, the
relation (𝑃 𝑢, 𝑣) = (𝑢, 𝑃 ∗𝑣) holds for all 𝑢 ∈ Γ(𝐸) and 𝑣 ∈ Γ(𝐹 ). Based on this
formula, the proof of the proposition is exactly the same as the proof of Lemma
9.3. □
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As a consequence of Proposition 9.4, for any linear differential operator 𝑃 ,
we can freely refer to its unique formal adjoint 𝑃 ∗. In particular, 𝑑∗ denotes the
formal adjoint of the exterior derivative operator. The following corollary follows
immediately from Propositions 9.2 and 9.6.

Corollary 9.7. On a compact Riemannian manifold 𝑀 , a closed differential form
𝛼 is the unique representative of its de Rham cohomology class that minimizes the
Hodge norm if and only if it satisfies 𝑑∗𝛼 = 0. □

Although the conclusion of Proposition 9.6 is exactly the same as that of Lemma
9.3, it should be noted that there is one crucial difference between the two situations.
In the case of an operator 𝐴∶ 𝑉 → 𝑊 between finite-dimensional inner product
spaces, the fact that (Im𝐴)⟂ = Ker(𝐴∗) implies also that Im𝐴 = (Ker𝐴∗)⟂, just
by taking orthogonal complements of both sides. In other words, given 𝑦 ∈ 𝑊 ,
the equation 𝐴𝑥 = 𝑦 has a solution if and only if 𝑦 is orthogonal to the kernel
of 𝐴∗. But in the case of a differential operator 𝑃 ∶ Γ(𝐸) → Γ(𝐹 ), the infinite-
dimensional inner product space Γ(𝐹 ) is not complete, so it need not be the case
that ((Im𝑃 )⟂)⟂ = Im𝑃 . Thus we need to do more work to determine when an
equation like 𝑃 𝑢 = 𝑓 has a solution.

The Hodge Star Operator

To make use of Corollary 9.7, we need to compute the formal adjoint of 𝑑
explicitly. For our purposes, the computations will be easier if we assume 𝑀 is
oriented, which is certainly the case for every complex manifold. The main tool
will be a linear operator defined on every oriented Riemannian manifold, called the
Hodge star operator, that takes differential forms to forms of the complementary
degree.

Let𝑀 be an oriented Riemannian 𝑁-manifold. TheHodge star operator will be
a smooth bundle homomorphism taking 𝑞-forms to (𝑁 −𝑞)-forms. We define it first
in terms of local coframes. Let (𝜀1, … , 𝜀𝑁 ) be a local real oriented orthonormal
coframe for 𝑇 ∗𝑀 ; thus the collection of forms 𝜀𝑗1 ∧ ⋯ ∧ 𝜀𝑗𝑞 with 𝑗1 < ⋯ < 𝑗𝑞
forms an orthonormal frame for Λ𝑞

ℂ𝑀 . To simplify the notation, given any ordered
𝑞-tuple of positive integers 𝐽 = (𝑗1, … , 𝑗𝑞), we will use the abbreviation 𝜀𝐽 for
𝜀𝑗1 ∧ ⋯ ∧ 𝜀𝑗𝑞 .

Given any increasing multi-index 𝐽 , the idea is to define

(9.6) ∗ 𝜀𝐽 = sgn 𝜎(𝐽 , 𝐽 ′)𝜀𝐽 ′

and extend to all complex-valued 𝑞-forms by complex linearity, where 𝐽 ′ is the
unique increasing multi-index of length 𝑁 − 𝑞 consisting of the indices comple-
mentary to {𝑗1, … , 𝑗𝑞}, and 𝜎(𝐽 , 𝐽 ′) is the permutation that takes (1, … , 𝑁) to
(𝑗1, … , 𝑗𝑞 , 𝑗′

1, … , 𝑗′
𝑁−𝑞). The next proposition shows that this is well defined, in-

dependently of the choice of coframe.
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Proposition 9.8. On an oriented Riemannian 𝑁-manifold (𝑀, 𝑔), there is a unique
smooth complex-linear bundle isomorphism ∗∶ Λ𝑞

ℂ𝑀 → Λ𝑁−𝑞
ℂ 𝑀 , called the

Hodge star operator, that satisfies the following formula for all 𝛼, 𝛽 ∈ Λ𝑞
ℂ𝑀:

(9.7) 𝛼 ∧ ∗ 𝛽 = ⟨𝛼, 𝛽⟩𝑑𝑉𝑔 ,

where 𝑑𝑉𝑔 is the Riemannian volume form. In terms of any local real oriented
orthonormal coframe, ∗ is given by (9.6). In addition,

∗ 𝛼 = ∗ 𝛼;(9.8)
∗ ∗ 𝛼 = (−1)𝑞(𝑁−𝑞)𝛼;(9.9)

⟨∗ 𝛼, ∗ 𝛽⟩ = ⟨𝛼, 𝛽⟩.(9.10)

Proof. We begin by showing that the operator ∗ defined locally by (9.6) in terms of
an oriented real orthonormal coframe satisfies (9.7). Because both sides of (9.7) are
complex-linear in 𝛼 and conjugate-linear in 𝛽, it suffices to prove it for 𝛼 and 𝛽 equal
to basis forms. Thus let 𝛼 = 𝜀𝐽 and 𝛽 = 𝜀𝐾 , where 𝐽 and 𝐾 are arbitrary increasing
multi-indices of length 𝑞. Because we assumed the basis forms are real, we have
𝛽 = 𝛽. Then ∗ 𝛽 = sgn 𝜎(𝐾, 𝐾′)𝜀𝐾′ , which implies that 𝛽 ∧ ∗ 𝛽 = 𝜀1 ∧ ⋯ ∧ 𝜀𝑁 =
𝑑𝑉𝑔 .

First assume 𝐽 = 𝐾 . Then 𝛼 = 𝛽, ⟨𝛼, 𝛽⟩ = 1, and

𝛼 ∧ ∗ 𝛽 = 𝛽 ∧ ∗ 𝛽 = 𝑑𝑉𝑔 = ⟨𝛼, 𝛽⟩𝑑𝑉𝑔 ,

which proves (9.7) in this case. On the other hand, if 𝐽 ≠ 𝐾 , then ⟨𝛼, 𝛽⟩ = 0, and
𝛼 ∧ ∗ 𝛽 = ±𝜀𝐽 ∧ 𝜀𝐾′ = 0 because there is some index common to 𝐽 and 𝐾′.

To show that ∗ is the unique operator satisfying (9.7), suppose ∗̃ also satisfies
the same property, and let 𝛿 = ∗ −∗̃. Then 𝛼 ∧ 𝛿𝛽 = 0 for all 𝛼 and 𝛽, and applying
this with 𝛽 in place of 𝛽 shows that 𝛼 ∧ 𝛿𝛽 = 0 as well. Thus

|𝛿𝛽|2𝑑𝑉𝑔 = 𝛿𝛽 ∧ ∗ 𝛿𝛽 = ± ∗ 𝛿𝛽 ∧ 𝛿𝛽 = 0,

which shows that 𝛿 is identically zero. Therefore, the definitions given by different
local coframes agree, so ∗ is globally well defined, and it is smooth because it takes
a smooth local frame to a smooth local frame.

Now (9.8) follows from the fact that ∗ takes real basis forms to real forms and
is extended by complex linearity.

To prove (9.9), it suffices to consider the case 𝛼 = 𝜀𝐽 for some increasing multi-
index 𝐽 . On the one hand, ∗ 𝛼 = ±𝜀𝐽 ′ and thus ∗ ∗ 𝛼 = ±𝜀𝐽 = ±𝛼, with the sign
determined uniquely by the requirement that ∗ 𝛼 ∧ ∗ ∗ 𝛼 = 𝑑𝑉𝑔 . On the other hand,
since 𝛼 is a 𝑞-form and ∗ 𝛼 is an (𝑁 − 𝑞)-form,

𝑑𝑉𝑔 = 𝛼 ∧ ∗ 𝛼 = (−1)𝑞(𝑁−𝑞) ∗ 𝛼 ∧ 𝛼,
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so (−1)𝑞(𝑁−𝑞)𝛼 satisfies the sign requirement and thus is equal to ∗ ∗ 𝛼. It also
follows from this formula that ∗ is a bundle isomorphism, because ± ∗ is an inverse
for it.

Finally, (9.6) shows that ∗ takes an orthonormal frame for Λ𝑞
ℂ𝑀 to an orthonor-

mal frame for Λ𝑁−𝑞
ℂ 𝑀 , so (9.10) follows. □

For forms of degrees 0 and 1, there are simple formulas for the Hodge star
operator.

Proposition 9.9. On an oriented Riemannian manifold (𝑀, 𝑔), the following for-
mulas hold for a 0-form (scalar function) 𝑢 and a 1-form 𝛽:

∗ 𝑢 = 𝑢 𝑑𝑉𝑔 ,(9.11)
∗ 𝛽 = 𝛽♯ ⅃ 𝑑𝑉𝑔 .(9.12)

Proof. We just need to verify that the given formulas satisfy condition (9.7) for all
suitable forms 𝛼 and 𝛽. For scalar functions 𝑢 and 𝑣,

𝑣 ∧ (𝑢 𝑑𝑉𝑔) = (𝑣𝑢) 𝑑𝑉𝑔 = ⟨𝑣, 𝑢⟩𝑑𝑉𝑔 ,
which proves (9.11). For 1-forms 𝛼 and 𝛽, we use the fact that interiormultiplication
by a vector is an antiderivation. Because 𝛼 ∧ 𝑑𝑉𝑔 is an (𝑁 + 1)-form on an 𝑁-
manifold, it is zero, so

0 = 𝛽♯ ⅃ (𝛼 ∧ 𝑑𝑉𝑔) = (𝛽♯ ⅃ 𝛼)𝑑𝑉𝑔 − 𝛼 ∧ (𝛽♯ ⅃ 𝑑𝑉𝑔)
= ⟨𝛼, 𝛽⟩𝑑𝑉𝑔 − 𝛼 ∧ (𝛽♯ ⅃ 𝑑𝑉𝑔),

which proves (9.12). □

Using (9.7), we can write the global Hodge inner product as

(9.13) (𝛼, 𝛽) = ∫𝑀
𝛼 ∧ ∗ 𝛽.

This is the formula we will use to determine the formal adjoint of 𝑑.
Proposition 9.10. For an oriented Riemannian 𝑁-manifold 𝑀 , the formal adjoint
of the exterior derivative operator 𝑑 ∶ ℰ 𝑞−1(𝑀) → ℰ 𝑞(𝑀) is the differential op-
erator 𝑑∗ ∶ ℰ 𝑞(𝑀) → ℰ 𝑞−1(𝑀) given by
(9.14) 𝑑∗𝛽 = (−1)𝑁𝑞+𝑁+1 ∗ 𝑑 ∗ 𝛽.

Proof. Let 𝛿𝛽 denote the right-hand side of (9.14). The proposition will be proved
if we can show that the following holds for all compactly supported 𝛼 ∈ ℰ 𝑞−1(𝑀)
and 𝛽 ∈ ℰ 𝑞(𝑀):
(9.15) (𝛼, 𝛿𝛽) = (𝑑𝛼, 𝛽).
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Using (9.13), we have

(𝛼, 𝛿𝛽) = ∫𝑀
𝛼 ∧ ∗ 𝛿𝛽

= (−1)𝑁𝑞+𝑁+1
∫𝑀

𝛼 ∧ ∗ ( ∗ 𝑑 ∗ 𝛽)

= (−1)𝑁𝑞+𝑁+1(−1)(𝑁−𝑞+1)(𝑞−1)
∫𝑀

𝛼 ∧ 𝑑 ∗ 𝛽

= (−1)𝑞
∫𝑀

𝛼 ∧ 𝑑 ∗ 𝛽,

where in the third line we have used (9.9) together with the fact that 𝑑 ∗ 𝛽 is an
(𝑁 − 𝑞 + 1)-form. Stokes’s theorem gives

0 = ∫𝑀
𝑑(𝛼 ∧ ∗ 𝛽)

= ∫𝑀
𝑑𝛼 ∧ ∗ 𝛽 + (−1)𝑞−1

∫𝑀
𝛼 ∧ 𝑑 ∗ 𝛽

= (𝑑𝛼, 𝛽) − (𝛼, 𝛿𝛽). □

Elliptic Differential Operators
We are going to prove that every de Rham cohomology class on a compact oriented
Riemannian manifold has a unique representative that minimizes the Hodge norm
in its cohomology class. To get started, we show how to convert this to a problem
in partial differential equations.

Starting with a closed 𝑞-form 𝛼 ∈ ℰ 𝑞(𝑀), we seek a (𝑞 − 1)-form 𝜂 such that
𝛼 − 𝑑𝜂 satisfies 𝑑∗(𝛼 − 𝑑𝜂) = 0. Thus we need to solve the partial differential
equation 𝑑∗𝑑𝜂 = 𝑑∗𝛼 for the unknown form 𝜂.

Let us see how this works in the special case 𝑞 = 1. In this case 𝑑∗𝛼 is a smooth
scalar function, and we are looking for a function 𝑢 such that 𝑑∗𝑑𝑢 = 𝑑∗𝛼. This
operator 𝑑∗𝑑 on functions has another guise. Recall that the gradient of a function
𝑢 on a Riemannian manifold is the vector field grad 𝑢 defined by

grad 𝑢 = (𝑑𝑢)♯,

and the divergence of a vector field 𝑋 is the unique scalar function div𝑋 that sat-
isfies

𝑑(𝑋 ⅃ 𝑑𝑉𝑔) = (div𝑋)𝑑𝑉𝑔 .
The Laplace–Beltrami operator is the partial differential operator Δ∶ ℰ(𝑀) →
ℰ(𝑀) defined by

Δ𝑢 = div grad 𝑢.
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(Some authors define the Laplace–Beltrami operator to be the negative of this, so
as to eliminate the negative sign in the following lemma. But the definition above
is most common among Riemannian geometers.)
Lemma 9.11. Let (𝑀, 𝑔) be a Riemannian manifold. The operator 𝑑∗𝑑 acting on
scalar functions is equal to the negative of the Laplace–Beltrami operator: 𝑑∗𝑑𝑢 =
−Δ𝑢.

Proof. By Proposition 9.10, 𝑑∗𝑑𝑢 = − ∗ 𝑑 ∗ 𝑑𝑢. Using Proposition 9.9, we com-
pute

𝑑∗𝑑𝑢 = − ∗ 𝑑((𝑑𝑢)♯ ⅃ 𝑑𝑉𝑔) = − ∗ ((div grad 𝑢) 𝑑𝑉𝑔) = − div grad 𝑢. □

Thus to find a norm-minimizing representative of the cohomology class of 𝛼,
we need to solve the equation Δ𝑢 = −𝑑∗𝛼 for 𝑢. There is a necessary condition
for the equation Δ𝑢 = 𝑓 to have a solution on a compact manifold 𝑀 : if 𝑀0 is
any connected component of 𝑀 , then by the divergence theorem, ∫𝑀0

(Δ𝑢)𝑑𝑉𝑔 =
∫𝑀0

div(grad 𝑢)𝑑𝑉𝑔 = 0 since 𝜕𝑀0 is empty. But this is the only obstruction. The
essential fact about the Laplace–Beltrami operator is the following theorem.
Theorem 9.12. On a compact oriented Riemannian manifold 𝑀 , the equation
Δ𝑢 = 𝑓 has a solution 𝑢 if and only if the integral of 𝑓 over each connected com-
ponent of 𝑀 is zero.

We will prove this below, as a consequence of a much more general theorem
about differential operators. Accepting this for now, let 𝑀0 be any connected com-
ponent of 𝑀 and let 𝜒0 ∈ 𝐶∞(𝑀) be the function that is equal to 1 on 𝑀0 and 0
on all the other components of 𝑀 . Then since 𝜒0 is locally constant,

∫𝑀0
(𝑑∗𝛼)𝑑𝑉𝑔 = ∫𝑀

(𝑑∗𝛼)𝜒0 𝑑𝑉𝑔 = (𝑑∗𝛼, 𝜒0) = (𝛼, 𝑑𝜒0) = 0,

so 𝑑∗𝛼 satisfies the necessary and sufficient condition for the existence of a function
𝑢 satisfying Δ𝑢 = −𝑑∗𝛼 and thus 𝑑∗(𝛼 − 𝑑𝑢) = 0. The 1-form 𝛼 − 𝑑𝑢 is then the
(necessarily unique) norm-minimizing representative of the cohomology class [𝛼].

The feature of the Laplace–Beltrami operator that makes a characterization like
that of Theorem 9.12 possible is that it is elliptic, a condition we will define shortly.

To define ellipticity, we need to introduce the notion of the principal sym-
bol of a differential operator. To begin, for a linear differential operator 𝑃 of
order 𝑚, expressed in coordinates as in (9.2), we define the total symbol of 𝑷
in these coordinates to be the matrix-valued function 𝑝(𝑥, 𝜉) of 2𝑁 variables
(𝑥1, … , 𝑥𝑁 , 𝜉1, … , 𝜉𝑁 ) obtained by replacing every occurrence of 𝜕𝑗 in the formula
for 𝑃 with a new independent variable 𝜉𝑗 :

𝑝𝛽
𝛼(𝑥, 𝜉) =

𝑚

∑
𝑞=0

∑
1≤𝑗𝑖≤𝑁

𝑝𝛽𝑗1…𝑗𝑞
𝛼 (𝑥)𝜉𝑗1 ⋯ 𝜉𝑗𝑞 .
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The principal symbol is the matrix-valued function 𝜎𝑃 (𝑥, 𝜉) obtained by keeping
only the terms of highest order 𝑞 = 𝑚 in 𝜉:

(9.16) (𝜎𝑃 )𝛽
𝛼(𝑥, 𝜉) = ∑

1≤𝑗𝑖≤𝑁
𝑝𝛽𝑗1…𝑗𝑚

𝛼 (𝑥)𝜉𝑗1 ⋯ 𝜉𝑗𝑚 .

Each matrix entry is a homogeneous polynomial of degree 𝑚 in (𝜉1, … , 𝜉𝑁 ), with
coefficients that are smooth functions of 𝑥.

When we change to different coordinates or different local frames, the total
symbol transforms by a complicated formula involving derivatives of the coeffi-
cients and of the coordinate transition functions, so it is of limited use on mani-
folds. However, the principal symbol has a coordinate-independent interpretation.
Recall that if (𝑥1, … , 𝑥𝑁 ) are smooth local coordinates for 𝑀 , the natural coordi-
nates for 𝑻 ∗𝑴 are the coordinates (𝑥, 𝜉) = (𝑥1, … , 𝑥𝑁 , 𝜉1, … , 𝜉𝑁 ) defined by the
correspondence

𝜉𝑗𝑑𝑥𝑗|𝑝 ↔ (𝑥1(𝑝), … , 𝑥𝑁 (𝑝), 𝜉1, … , 𝜉𝑁 ).

(See [LeeSM, p. 277].)

Proposition 9.13. Suppose 𝐸 and 𝐹 are smooth complex vector bundles over a
smooth manifold 𝑀 , and 𝑃 ∶ Γ(𝐸) → Γ(𝐹 ) is a linear differential operator of
order 𝑚. There is a globally defined smooth map 𝜎𝑃 ∶ 𝑇 ∗𝑀 → Hom(𝐸, 𝐹 ) called
the principal symbol of 𝑷 , such that for each (𝑥, 𝜉) ∈ 𝑇 ∗𝑀 , 𝜎𝑃 (𝑥, 𝜉) is the linear
map from 𝐸𝑥 to 𝐹𝑥 whose matrix representation with respect to local frames for 𝐸
and 𝐹 and natural coordinates for 𝑇 ∗𝑀 is given by (9.16). For any point 𝑥0 ∈ 𝑀
and covector 𝜉0 ∈ 𝑇 ∗

𝑥0𝑀 , the linear map 𝜎𝑃 (𝑥0, 𝜉0)∶ 𝐸𝑥0 → 𝐹𝑥0 satisfies

(9.17) 𝜎𝑃 (𝑥0, 𝜉0)𝑢0 = 1
𝑚!𝑃 (𝑣𝑚𝑢)(𝑥0),

where 𝑢 is any smooth local section of 𝐸 that satisfies 𝑢(𝑥0) = 𝑢0 and 𝑣 is any
smooth real-valued function on a neighborhood of 𝑥0 that satisfies 𝑣(𝑥0) = 0 and
𝑑𝑣𝑥0 = 𝜉0.

Proof. It suffices to show that the map whose local matrix representation is defined
by (9.16) also satisfies (9.17), because then (9.17) shows it is independent of choices
of coordinates and frames, and (9.16) shows that it is smooth.

Thus given (𝑥0, 𝜉0) ∈ 𝑇 ∗𝑀 , let (𝑥𝑗) be local coordinates for 𝑀 and (𝑒𝛼) and
(𝑓𝛽) be local frames, and choose 𝑢 and 𝑣 as in the statement of the proposition.
We can write 𝑢0 = 𝑢(𝑥0) = ∑𝛼 𝑢𝛼(𝑥0)𝑒𝛼(𝑥0) and 𝜉0 = ∑𝑗 𝜉𝑗 𝑑𝑥𝑗|𝑥0 where 𝜉𝑗 =
𝜕𝑗𝑣(𝑥0). When we apply 𝑃 to 𝑣𝑚𝑢 and expand out the derivatives using the product
rule, every term in which fewer than 𝑚 derivatives fall on the 𝑣𝑚 factor will vanish
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when we set 𝑥 = 𝑥0 because 𝑣(𝑥0) = 0, so the only terms that remain are

𝑃 (𝑣𝑚𝑢)(𝑥0) = ∑
1≤𝑗𝑖≤𝑁

∑
𝛼,𝛽

𝑝𝛽𝑗1…𝑗𝑚
𝛼 (𝑥0)(𝜕𝑗1 ⋯ 𝜕𝑗𝑚(𝑣𝑚))|𝑥=𝑥0

𝑢𝛼(𝑥0)𝑓𝛽(𝑥0)

= 𝑚! ∑
1≤𝑗𝑖≤𝑁

∑
𝛼,𝛽

𝑝𝛽𝑗1…𝑗𝑚
𝛼 (𝑥0)𝜉𝑗1 ⋯ 𝜉𝑗𝑚𝑢𝛼(𝑥0)𝑓𝛽(𝑥0)

= 𝑚! 𝜎𝑃 (𝑥0, 𝜉0)𝑢0. □

We note that a linear differential operator of order zero is just a smooth bundle
homomorphism 𝑃 ∶ Γ(𝐸) → Γ(𝐹 ), in which case the principal symbol of 𝑃 is 𝑃
itself, and does not depend on 𝜉.

A linear differential operator 𝑃 ∶ Γ(𝐸) → Γ(𝐹 ) is said to be elliptic if for every
𝑥 ∈ 𝑀 and every nonzero 𝜉 ∈ 𝑇 ∗

𝑥 𝑀 , the homomorphism 𝜎𝑃 (𝑥, 𝜉)∶ 𝐸𝑥 → 𝐹𝑥
is invertible. Note that this is possible only if the bundles 𝐸 and 𝐹 have the same
rank. In particular, if 𝑃 ∶ ℰ(𝑀) → ℰ(𝑀) is an operator on scalar functions, we
can think of it as acting on sections of the trivial complex line bundle 𝑀 ×ℂ → 𝑀 ,
so its principal symbol at each point (𝑥, 𝜉) ∈ 𝑇 ∗𝑀 is just a linear map from ℂ to
itself, which is multiplication by a complex number. In that case, we can treat 𝜎𝑃
as a complex-valued function on 𝑇 ∗𝑀 , and 𝑃 is elliptic if and only if this function
is never zero for 𝜉 ≠ 0.

The term “elliptic” may seem mysterious in this context, so it is worth pointing
out where it comes from. The first linear partial differential operators to be studied
systematically were the constant-coefficient second-order operators acting on real
scalar functions on ℝ2. Such an operator has the form

𝑃 𝑢 = 𝐴 𝜕2𝑢
𝜕𝑥2 + 𝐵 𝜕2𝑢

𝜕𝑥𝜕𝑦 + 𝐶 𝜕2𝑢
𝜕𝑦2 + 𝐷 𝜕𝑢

𝜕𝑥 + 𝐸 𝜕𝑢
𝜕𝑦 + 𝐹 𝑢,

for some real constants 𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹 with 𝐴, 𝐵, 𝐶 not all zero. Because 𝑃 is a
scalar operator, its principal symbol is the scalar-valued function given by

𝜎𝑃 ((𝑥, 𝑦), (𝜉, 𝜂)) = 𝐴𝜉2 + 𝐵𝜉𝜂 + 𝐶𝜉2.

This is a homogeneous quadratic polynomial in (𝜉, 𝜂). It is invertible (as a linear
map on the 1-dimensional fibers) for a particular value of ((𝑥, 𝑦), (𝜉, 𝜂)) if and only
𝜎𝑃 ((𝑥, 𝑦), (𝜉, 𝜂)) ≠ 0. The only homogeneous quadratic polynomials in (𝜉, 𝜂) that
are never zero for (𝜉, 𝜂) ≠ 0 are the ones that are positive-definite or negative-
definite, which can be detected by the discriminant condition 𝐵2 − 4𝐴𝐶 < 0; thus
𝑃 is elliptic if and only if its principal symbol is positive- or negative-definite. These
are exactly the homogeneous quadratic polynomials whose level curves are ellipses,
hence the name. Problem 9-1 shows that such an operator can be transformed by a
linear change of coordinates to (plus or minus) the Laplace operator 𝜕2/𝜕𝑥2 +𝜕2/𝜕𝑦2

plus lower-order terms if and only if it is elliptic.
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The fundamental fact about elliptic operators on compact manifolds is the fol-
lowing theorem.

Theorem 9.14 (Fredholm Theorem for Elliptic Operators). Suppose 𝑀 is a
compact Riemannian manifold, 𝐸 and𝐹 are Hermitian vector bundles over𝑀 , and
𝑃 ∶ Γ(𝐸) → Γ(𝐹 ) is an elliptic linear differential operator. ThenKer𝑃 andKer𝑃 ∗

are finite-dimensional, and 𝑃 restricts to a bijection from (Ker𝑃 )⟂ to (Ker𝑃 ∗)⟂.

Developing the tools to prove this theorem would take us too far afield from
complex manifold theory, but here are some references where proofs can be found:
[Wel08, pp. 136–141], [GH94, pp. 80–100], [Bes87, pp. 456–467], or [War83,
pp. 220–251].

Theorem 9.12 will follow from this once we show that Δ is elliptic.

Lemma 9.15. The Laplace–Beltrami operator Δ on scalar functions is elliptic.

Proof. In any local coordinates (𝑥𝑖), the Laplace–Beltrami operator has the coor-
dinate representation

Δ𝑢 = 1
√det 𝑔

𝜕
𝜕𝑥𝑖 (𝑔𝑖𝑗√det 𝑔 𝜕𝑢

𝜕𝑥𝑗 ) = 𝑔𝑖𝑗 𝜕2𝑢
𝜕𝑥𝑖𝜕𝑥𝑗 + terms of order 1

(see [LeeRM, Prop. 2.46]). Thus its principal symbol is 𝜎Δ(𝑥, 𝜉) = 𝑔𝑖𝑗(𝑥)𝜉𝑖𝜉𝑗 =
|𝜉|2, which is invertible whenever 𝜉 ≠ 0. □

Proof of Theorem 9.12. The Fredholm theorem shows that Δ𝑢 = 𝑓 has a solution
if and only if 𝑓 is orthogonal to the kernel of Δ∗. Now Δ∗ = (−𝑑∗𝑑)∗ = −𝑑∗𝑑 =
Δ. Clearly any function that is constant on each connected component of 𝑀 is
in the kernel of Δ. Conversely, if Δ𝑢 = 0, then 0 = (Δ𝑢, 𝑢) = −(𝑑∗𝑑𝑢, 𝑢) =
−‖𝑑𝑢‖2, which shows that 𝑢 is constant on each connected component. It follows
that a function is orthogonal to KerΔ if and only if its integral over each connected
component of 𝑀 is zero. □

Hodge Theory on Riemannian Manifolds
When we try to apply the same method to differential forms of higher degree, we
run into a problem: the operator 𝑑∗𝑑 is not elliptic on forms of degree higher than 0.
One easy way to see that this is true is to note that every closed form is in the kernel
of 𝑑∗𝑑, so the kernel is infinite-dimensional on manifolds of positive dimension,
which would contradict the Fredholm theorem if it were elliptic.

To get around this problem, we define a new differential operator on differential
forms of all degrees. TheHodge Laplacian is the operator Δ𝑑 ∶ ℰ 𝑞(𝑀) → ℰ 𝑞(𝑀)
defined by

Δ𝑑𝜂 = 𝑑𝑑∗𝜂 + 𝑑∗𝑑𝜂,
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where we interpret 𝑑∗ to be the zero operator when acting on 0-forms. We define a
harmonic form to be a smooth differential form 𝜂 that satisfies Δ𝑑𝜂 = 0.

The next proposition describes some basic properties of the Hodge Laplacian.

Proposition 9.16. Let 𝑀 be a compact oriented Riemannian manifold.

(a) Δ𝑑 is formally self-adjoint (equal to its formal adjoint): Δ∗
𝑑 = Δ𝑑 .

(b) A differential form 𝛼 ∈ ℰ 𝑞(𝑀) is harmonic if and only if 𝑑𝛼 = 0 and
𝑑∗𝛼 = 0.

(c) A 0-form is harmonic if and only if its restriction to each connected com-
ponent of 𝑀 is constant.

Proof. Part (a) follows from the formula for the formal adjoint of a composition
(Proposition 9.5(b)).

For (b), if 𝑑𝛼 = 0 and 𝑑∗𝛼 = 0, then it follows immediately from the definition
of Δ𝑑 that Δ𝑑𝛼 = 0. Conversely, suppose Δ𝑑𝛼 = 0. Then

0 = (Δ𝑑𝛼, 𝛼) = (𝑑𝑑∗𝛼, 𝛼) + (𝑑∗𝑑𝛼, 𝛼) = ‖𝑑∗𝛼‖2 + ‖𝑑𝛼‖2,

which shows that 𝑑𝛼 = 0 and 𝑑∗𝛼 = 0.
Finally, part (c) follows from the fact that harmonic 0-forms are exactly the

functions that satisfy 𝑑𝑢 = 0, since 𝑑∗ is the zero map in this case. □

For a compact oriented Riemannian manifold 𝑀 , let ℋ 𝑞(𝑀) denote the space
of harmonic complex-valued 𝑞-forms, the kernel of Δ𝑑 ∶ ℰ 𝑞(𝑀) → ℰ 𝑞(𝑀). By
virtue of the preceding proposition, ℋ 𝑞(𝑀) is contained in the space 𝒵 𝑞(𝑀) of
closed 𝑞-forms.

We will show below that Δ𝑑 is elliptic in all degrees. But first, we need some
more facts about principal symbols, which will aid in computations.

Lemma 9.17. Suppose 𝐸 and 𝐹 are smooth Hermitian vector bundles over a Rie-
mannian manifold 𝑀 , and 𝑃 ∶ Γ(𝐸) → Γ(𝐹 ) is a linear differential operator of
order 𝑚. Then the principal symbol of its formal adjoint is given by

𝜎𝑃 ∗(𝑥, 𝜉) = (−1)𝑚(𝜎𝑃 (𝑥, 𝜉))
∗ ∶ 𝐹𝑥 → 𝐸𝑥.

Proof. The adjoint 𝑃 ∗ is given by 𝑃 ∗𝑣 = ∑𝑖 𝑄𝑖(𝜑𝑖𝑣), where (𝜑𝑖) is a partition of
unity and 𝑄𝑖 is defined by (9.4). When we ignore all terms in which the argument
𝑣 is differentiated fewer than 𝑚 times, 𝑃 ∗ has the local expression

𝑃 ∗𝑣 = (−1)𝑚
∑

𝑗𝑖
∑
𝛼𝛽𝛾𝜎

𝑝𝛽𝑗1…𝑗𝑚
𝛼 𝜕𝑗𝑚 ⋯ 𝜕𝑗1𝑣𝛾ℎ𝛽𝛾 𝐻𝜎𝛼𝑒𝜎 + lower-order terms.
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Now if we assume that the local frames for 𝐸 and 𝐹 are orthonormal (so that ℎ𝛽𝛾
and 𝐻𝜎𝛼 are identity matrices) and compute the principal symbol of 𝑃 ∗, we get the
matrix representation

(𝜎𝑃 ∗)
𝜎
𝛾 (𝑥, 𝜉) = (−1)𝑚

∑
𝑗𝑖

𝑝𝛾𝑗1…𝑗𝑚
𝜎 (𝑥)𝜉𝑗𝑞 ⋯ 𝜉𝑗1 ,

which is the transposed conjugate of that of (−1)𝑚𝜎𝑃 (𝑥, 𝜉). □

Lemma 9.18. Suppose 𝐸, 𝐹 , and 𝐺 are smooth vector bundles over a smooth
manifold 𝑀 , and 𝑃 ∶ Γ(𝐸) → Γ(𝐹 ), 𝑄∶ Γ(𝐹 ) → Γ(𝐺) are linear differential
operators. Then for all (𝑥, 𝜉) ∈ 𝑇 ∗𝑀 ,

𝜎𝑄∘𝑃 (𝑥, 𝜉) = 𝜎𝑄(𝑥, 𝜉) ∘ 𝜎𝑃 (𝑥, 𝜉).

► Exercise 9.19. Prove this lemma.

Proposition 9.20. On an oriented Riemannian manifold, the principal symbols of
𝑑, 𝑑∗, and Δ𝑑 are given by

𝜎𝑑(𝑥, 𝜉)𝛼 = 𝜉 ∧ 𝛼;(9.18)
𝜎𝑑∗(𝑥, 𝜉)𝛼 = −𝜉♯ ⅃ 𝛼;(9.19)
𝜎Δ𝑑 (𝑥, 𝜉)𝛼 = −|𝜉|2𝛼.(9.20)

Thus Δ𝑑 is elliptic.

Proof. To prove (9.18), we use (9.17). Thus given 𝑥 ∈ 𝑀 , 𝜉 ∈ 𝑇 ∗
𝑥 𝑀 , and 𝛼 ∈

(Λ𝑞
𝑥𝑀)ℂ, let 𝛼 be a smooth form on a neighborhood of 𝑥 whose value at 𝑥 is 𝛼, and

let 𝑣 be a smooth real-valued function such that 𝑣(𝑥) = 0 and 𝑑𝑣𝑥 = 𝜉. Since 𝑑 is
a first-order differential operator, (9.17) gives

𝜎𝑑(𝑥, 𝜉)𝛼 = 𝑑(𝑣𝛼)|𝑥 = (𝑑𝑣 ∧ 𝛼 +���𝑣 𝑑𝛼)|𝑥 = 𝜉 ∧ 𝛼.

Next, for (9.19), we use Lemma 9.17. Thus we need to show that for each real
covector 𝜉, the map 𝛽 ↦ 𝜉♯ ⅃ 𝛽 is the adjoint of 𝛼 ↦ 𝜉 ∧ 𝛼, or in other words, for
all 𝛼 ∈ (Λ𝑞−1

𝑥 𝑀)ℂ and 𝛽 ∈ (Λ𝑞
𝑥𝑀)ℂ,

(9.21) ⟨𝜉 ∧ 𝛼, 𝛽⟩ = ⟨𝛼, 𝜉♯ ⅃ 𝛽⟩.
Choose a local real orthonormal coframe (𝜀1, … , 𝜀𝑁 ) such that 𝜉 = 𝑎𝜀1|𝑥 for some
real number 𝑎, and let (𝐸1, … , 𝐸𝑁 ) be the dual orthonormal frame. Then 𝜉♯ = 𝑎𝐸1.
Both sides of (9.21) are linear over ℂ in 𝛼 and conjugate-linear in 𝛽, so it suffices
to prove it when 𝛼 = 𝜀𝐽 and 𝛽 = 𝜀𝐾 , where 𝐽 and 𝐾 are increasing multi-indices
of lengths 𝑞 − 1 and 𝑞, respectively. There are two cases: If (1, 𝑗1, … , 𝑗𝑞−1) =
(𝑘1, … , 𝑘𝑞), then both sides of (9.21) are equal to 𝑎. If not, then both sides are
equal to zero.
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Finally, (9.20) follows from (9.18) and (9.19) together with Lemma 9.18:
(9.22) 𝜎Δ𝑑 (𝑥, 𝜉)𝛼 = −𝜉 ∧ (𝜉♯ ⅃ 𝛼) − 𝜉♯ ⅃ (𝜉 ∧ 𝛼).

Because interior multiplication by 𝜉♯ is an antiderivation, we obtain
𝜉♯ ⅃ (𝜉 ∧ 𝛼) = (𝜉♯ ⅃ 𝜉) ∧ 𝛼 − 𝜉 ∧ (𝜉♯ ⅃ 𝛼) = |𝜉|2𝛼 − 𝜉 ∧ (𝜉♯ ⅃ 𝛼),

where we have used the definition of the sharp operator to obtain 𝜉♯ ⅃ 𝜉 = 𝜉(𝜉♯) =
𝑔(𝜉♯, 𝜉♯) = 𝑔(𝜉, 𝜉) = |𝜉|2. Substituting this into (9.22) yields (9.20). □

Here is the main theorem of this section.
Theorem 9.21 (Hodge Theorem for Riemannian Manifolds). Suppose 𝑀 is an
oriented compact Riemannian manifold. Then ℋ 𝑞(𝑀) is finite-dimensional for
each 𝑞, and the composite map

(9.23) ℋ 𝑞(𝑀) ↪ 𝒵 𝑞(𝑀) → 𝐻𝑞
dR(𝑀; ℂ)

is an isomorphism, where 𝒵 𝑞(𝑀) is the space of closed 𝑞-forms and the second
map is projection onto the quotient space. Thus every de Rham cohomology class
on 𝑀 has a unique harmonic representative.

Remark. The conclusion of the Hodge theorem holds also for nonoriented Rie-
mannian manifolds. The proof is very similar, but requires different techniques for
computing the adjoint of 𝑑 and showing that Δ𝑑 is elliptic. Since complex mani-
folds are always canonically oriented, it is easier for our purposes to stick with the
oriented case.

Proof. The finite-dimensionality of ℋ 𝑞(𝑀) follows immediately from the Fred-
holm theorem.

Proposition 9.16 showed, in particular, that ℋ 𝑞(𝑀) is contained in the space
of closed forms, so the composite map (9.23) makes sense. We just need to show
it is injective and surjective.

To see that it is injective, suppose 𝛼 is a harmonic form. Proposition 9.2 shows
that it is the unique form minimizing the Hodge norm within its cohomology class,
so no other harmonic form represents the same class.

To see that it is surjective, suppose 𝛼 is any closed 𝑞-form on 𝑀 . If 𝑞 = 0,
then 𝛼 is already harmonic. If 𝑞 ≥ 1, then 𝑑∗𝛼 is orthogonal to the kernel of 𝑑 by
Proposition 9.6, and therefore orthogonal to the kernel of Δ𝑑 = Δ∗

𝑑 , so the Fredholm
theorem for Δ𝑑 shows that there is a (𝑞 − 1)-form 𝛽 satisfying Δ𝑑𝛽 = 𝑑∗𝛼. This
means 𝑑𝑑∗𝛽 + 𝑑∗𝑑𝛽 = 𝑑∗𝛼, or

𝑑𝑑∗𝛽 = 𝑑∗𝛼 − 𝑑∗𝑑𝛽.
The right-hand side of this equation is an element of the image of 𝑑∗, and the left-
hand side is an element of the image of 𝑑 and hence also in the kernel of 𝑑. Since
the image of 𝑑∗ is orthogonal to the kernel of 𝑑, the two sides of this equation are



Hodge Theory on Riemannian Manifolds 273

orthogonal to each other and thus must both be zero. That implies 𝑑∗(𝛼 − 𝑑𝛽) = 0.
Since it is also the case that 𝑑(𝛼 − 𝑑𝛽) = 0, it follows that 𝛼 − 𝑑𝛽 is a harmonic
representative of the cohomology class of 𝛼. □

Here is an important application of theHodge theorem. For any vector spaces 𝑉
and 𝑊 , a bilinear map 𝐵 ∶ 𝑉 × 𝑊 → ℂ is said to be nondegenerate if 𝐵(𝑣, 𝑤) = 0
for all 𝑤 implies 𝑣 = 0, and 𝐵(𝑣, 𝑤) = 0 for all 𝑣 implies 𝑤 = 0.

Corollary 9.22 (Poincaré Duality). Let 𝑀 be a compact oriented smooth 𝑁-
dimensional anifold. There is a well-defined nondegenerate bilinear map from
𝐻𝑘(𝑀; ℂ) × 𝐻𝑁−𝑘(𝑀; ℂ) to ℂ given by

(9.24) (𝜂, 𝜁) ↦ ∫𝑀
𝜂 ∧ 𝜁

for any smooth forms 𝜂 and 𝜁 representing their de Rham cohomology classes. Thus
for each 𝑘 there is a complex-linear isomorphism

(9.25) 𝐻𝑘(𝑀; ℂ) ≅ 𝐻𝑁−𝑘(𝑀; ℂ)∗,

and the Betti numbers of 𝑀 satisfy 𝑏𝑘(𝑀) = 𝑏𝑁−𝑘(𝑀). Analogous results hold for
cohomology with real coefficients.

Proof. If 𝜂 and 𝜁 are closed and either one is exact, then 𝜂 ∧ 𝜁 is exact, so the
expression ∫𝑀 𝜂 ∧ 𝜁 depends only on the cohomology classes of 𝜂 and 𝜁 , and thus
descends to a well-defined bilinear map on cohomology.

To show it is nondegenerate, choose any Riemannian metric for 𝑀 , so that
𝐻𝑘(𝑀; ℂ) is isomorphic to ℋ 𝑘(𝑀; ℂ), which is finite dimensional for each 𝑘.
Suppose 𝜂 is a closed 𝑘-form such that ∫𝑀 𝜂 ∧ 𝜁 = 0 for all closed (𝑁 − 𝑘)-forms
𝜁 . Without loss of generality, we can take 𝜂 to be the harmonic representative of its
cohomology class. We wish to apply this with 𝜁 = ∗ 𝜂. To see that this is a closed
form, note that 𝜂 is also harmonic because Δ𝑑𝜂 = Δ𝑑𝜂 = 0, so 0 = 𝑑∗𝜂 = ± ∗ 𝑑 ∗ 𝜂,
and because ∗ is an isomorphism, this implies 𝑑 ∗ 𝜂 = 0. Thus 0 = ∫𝑀 𝜂 ∧ (∗ 𝜂) =
‖𝜂‖2, so 𝜂 = 0. The same argument shows that ∫𝑀 𝜂∧𝜁 = 0 for all closed 𝜂 implies
𝜁 = 0, thus proving that the bilinear form is nondegenerate.

The isomorphism in (9.25) is defined by sending [𝜂] ∈ 𝐻𝑘(𝑀; ℂ) to the linear
functional [𝜁] ↦ ∫𝑀 𝜂 ∧𝜁 in 𝐻𝑁−𝑘(𝑀; ℂ)∗. This is a well-defined complex-linear
map, and the nondegeneracy of (9.24) implies it is injective. On the other hand,
we also have an injective linear map from 𝐻𝑁−𝑘(𝑀; ℂ) to 𝐻𝑘(𝑀; ℂ)∗ given by
the same formula, which shows that the dimension of 𝐻𝑁−𝑘(𝑀; 𝐸) is less than or
equal to that of 𝐻𝑘(𝑀; 𝐸∗). Thus both maps are isomorphisms for dimensional
reasons, and the statement about Betti numbers follows from this. The argument
for real cohomology is essentially identical. □
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Hodge Theory on Complex Manifolds
Now suppose 𝑀 is a compact complex manifold of dimension 𝑛 endowed with
a Hermitian metric 𝑔. Then 𝑀 is, in particular, a smooth Riemannian manifold,
so the considerations of the previous section all apply. Since the real dimension
𝑁 = 2𝑛 is even, some of the formulas simplify. Here are the main properties of the
Hodge star operator in this case.

Lemma 9.23. Let 𝑀 be a compact Hermitian 𝑛-manifold.

(a) For 𝛼 ∈ ℰ𝑝+𝑞(𝑀), ∗ ∗ 𝛼 = (−1)𝑝+𝑞𝛼 and 𝑑∗𝛼 = − ∗ 𝑑 ∗ 𝛼.
(b) ∗ maps ℰ𝑝,𝑞(𝑀) isomorphically onto ℰ𝑛−𝑞,𝑛−𝑝(𝑀).

Proof. Part (a) follows immediately from (9.9) and (9.14). To prove (b), note first
that the fact that 𝑇 ′𝑀 is orthogonal to 𝑇 ″𝑀 under the fiber metric ⟨⋅, ⋅⟩ implies
that ℰ𝑝,𝑞(𝑀) is orthogonal to ℰ𝑝′,𝑞′(𝑀) under the Hodge inner product unless
(𝑝, 𝑞) = (𝑝′, 𝑞′). For 𝛼 ∈ ℰ𝑝,𝑞(𝑀), we will show that ∗ 𝛼 ∈ ℰ𝑛−𝑞,𝑛−𝑝(𝑀) by
showing that it is orthogonal to ℰ 𝑟,𝑠(𝑀) unless (𝑟 + 𝑞, 𝑠 + 𝑝) = (𝑛, 𝑛).

Thus let 𝛽 ∈ ℰ 𝑟,𝑠(𝑀) be arbitrary, and compute

⟨𝛽, ∗ 𝛼⟩𝑑𝑉𝑔 = 𝛽 ∧ ∗ ∗ 𝛼 = (−1)𝑝+𝑞𝛽 ∧ 𝛼.

Since 𝛼 is a (𝑞, 𝑝)-form, this last expression is a 2𝑛-form of bidegree (𝑟 + 𝑞, 𝑠 + 𝑝),
which is zero unless (𝑟 + 𝑞, 𝑠 + 𝑝) = (𝑛, 𝑛). □

Example 9.24 (Hodge Star on Riemann Surfaces). If 𝑀 is a Riemann surface
with a Kähler metric 𝑔, for any point 𝑝 ∈ 𝑀 we can choose a holomorphic coordi-
nate 𝑧 = 𝑥+𝑖𝑦 such that (𝜕𝑥, 𝜕𝑦) is an oriented orthonormal basis at 𝑝. It follows that
∗𝑑𝑥 = 𝑑𝑦 and ∗𝑑𝑦 = −𝑑𝑥, so ∗𝑑𝑧 = −𝑖𝑑𝑧 and ∗𝑑𝑧 = 𝑖𝑑𝑧. Since 𝑑𝑧 and 𝑑𝑧 span
the spaces of (1, 0)-forms and (0, 1)-forms, respectively, this implies ∗𝛼 = −𝑖𝛼 for
all (1, 0)-forms and ∗𝛽 = 𝑖𝛽 for all (0, 1)-forms. //

We define two new Laplace-type operators mapping (𝑝, 𝑞)-forms to (𝑝, 𝑞)-forms
on every complex manifold: the Dolbeault Laplacian

Δ𝜕𝛼 = 𝜕𝜕∗𝛼 + 𝜕∗𝜕𝛼,

and its conjugate
Δ𝜕𝛼 = 𝜕𝜕∗𝛼 + 𝜕∗𝜕𝛼.

(We interpret 𝜕∗ to be zero on (𝑝, 0)-forms, and 𝜕∗ to be zero on (0, 𝑞)-forms.) We
will mostly be concerned with the Dolbeault Laplacian Δ𝜕 because of its relation
with Dolbeault cohomology. The next result is the analogue of Proposition 9.16 for
the Dolbeault Laplacian and its conjugate.
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Proposition 9.25. Let (𝑀, 𝑔) be a compact Hermitian manifold.

(a) Δ𝜕 and Δ𝜕 are formally self-adjoint: Δ∗
𝜕 = Δ𝜕 and Δ∗

𝜕 = Δ𝜕 .
(b) A differential form 𝛼 is in the kernel of Δ𝜕 if and only 𝜕𝛼 = 0 and 𝜕∗𝛼 = 0,

and in the kernel of Δ𝜕 if and only 𝜕𝛼 = 0 and 𝜕∗𝛼 = 0.
(c) A (𝑝, 0)-form is in the kernel of Δ𝜕 if and only if it is holomorphic.

► Exercise 9.26. Prove this proposition.

Our next task is to prove that Δ𝜕 is elliptic, for which we need to compute the
formal adjoint of 𝜕.

Proposition 9.27. For 𝛼 ∈ ℰ𝑝,𝑞(𝑀), 𝜕∗𝛼 = − ∗ 𝜕 ∗ 𝛼.

Proof. This is just like the proof of Proposition 9.10, with a little more attention
paid to the types of forms. Let 𝛼 ∈ ℰ𝑝,𝑞(𝑀) and 𝛽 ∈ ℰ𝑝,𝑞−1(𝑀), and note that
𝛽 ∧ ∗ 𝛼 is an (𝑛, 𝑛 − 1)-form, so 𝑑(𝛽 ∧ ∗ 𝛼) = 𝜕(𝛽 ∧ ∗ 𝛼). Stokes’s theorem gives

0 = ∫𝑀
𝑑(𝛽 ∧ ∗ 𝛼)

= ∫𝑀
𝜕(𝛽 ∧ ∗ 𝛼)

= ∫𝑀
𝜕𝛽 ∧ ∗ 𝛼 + (−1)𝑝+𝑞−1

∫𝑀
𝛽 ∧ 𝜕 ∗ 𝛼

= ∫𝑀
𝜕𝛽 ∧ ∗ 𝛼 + ∫𝑀

𝛽 ∧ ∗ ∗ 𝜕 ∗ 𝛼

= (𝜕𝛽, 𝛼) + (𝛽, ∗ 𝜕 ∗ 𝛼). □

Proposition 9.28. The principal symbols of 𝜕, 𝜕∗, and Δ𝜕 are

𝜎𝜕(𝑥, 𝜉)𝛼 = 𝜉0,1 ∧ 𝛼,

𝜎𝜕∗(𝑥, 𝜉)𝛼 = −(𝜉1,0)
♯

⅃ 𝛼,

𝜎Δ𝜕 (𝑥, 𝜉)𝛼 = −|𝜉0,1|
2𝛼 = − 1

2 |𝜉|2𝛼,

where the real covector 𝜉 is decomposed as 𝜉 = 𝜉0,1 + 𝜉1,0 = 𝜉0,1 + 𝜉0,1. Thus Δ𝜕
is elliptic.

Proof. Problem 9-2. □

For a compact Hermitian manifold 𝑀 , we define ℋ 𝑝,𝑞(𝑀) to be the kernel of
Δ𝜕 ∶ ℰ𝑝,𝑞(𝑀) → ℰ𝑝,𝑞(𝑀). Elements of ℋ 𝑝,𝑞(𝑀) are called 𝝏-harmonic forms;
by Proposition 9.25, they are the forms that satisfy 𝜕𝛼 = 0 and 𝜕∗𝛼 = 0. Similarly
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𝛼 is 𝝏-harmonic if Δ𝜕𝛼 = 0. To avoid confusion, sometimes we will refer to
forms that are harmonic in the sense defined earlier (i.e., in the kernel of Δ𝑑) as
𝒅-harmonic forms.

The next proposition is proved exactly like its counterpart for 𝑑.

Proposition 9.29. A 𝜕-closed (𝑝, 𝑞)-form 𝛼 is the unique minimizer of the Hodge
norm within its Dolbeault cohomology class if and only if it is 𝜕-harmonic.

The next theorem, like its Riemannian counterpart, was also proved by Hodge
[Hod41]. Its proof is just like that of Theorem 9.21.

Theorem 9.30 (Hodge–Dolbeault Theorem). Let 𝑀 be a compact Hermitian
manifold. Then ℋ 𝑝,𝑞(𝑀) is finite-dimensional for each 𝑝 and 𝑞, and the composite
map

ℋ 𝑝,𝑞(𝑀) ↪ 𝒵 𝑝,𝑞(𝑀) → 𝐻𝑝,𝑞(𝑀)
is an isomorphism, where 𝒵 𝑝,𝑞(𝑀) is the space of 𝜕-closed (𝑝, 𝑞)-forms and the
second map is projection onto the quotient space. Thus every Dolbeault cohomol-
ogy class on 𝑀 has a unique 𝜕-harmonic representative.

► Exercise 9.31. Prove Proposition 9.29 and Theorem 9.30.

For a compact complex manifold 𝑀 , recall that the Hodge numbers of 𝑴 are

ℎ𝑝,𝑞(𝑀) = dim𝐻𝑝,𝑞(𝑀) = dim𝐻𝑞(𝑀; Ω𝑝).

The Hodge–Dolbeault theorem shows that ℎ𝑝,𝑞(𝑀) = dimℋ 𝑝,𝑞(𝑀) and therefore
the Hodge numbers are finite for all 𝑝 and 𝑞.

Bundle-Valued Forms

There is an important generalizaton of the Hodge–Dolbeault theorem to bun-
dle-valued forms. Suppose 𝑀 is a complex manifold and 𝐸 → 𝑀 is a holomor-
phic vector bundle. Recall that the Cauchy–Riemann operator 𝜕𝐸 ∶ ℰ𝑝,𝑞(𝑀; 𝐸) →
ℰ𝑝,𝑞+1(𝑀; 𝐸) is used to define the Dolbeault cohomology groups 𝐻𝑝,𝑞(𝑀; 𝐸) with
coefficients in 𝐸, and the Dolbeault theorem (Thm. 6.19) shows that these are iso-
morphic to the sheaf cohomology groups 𝐻𝑞(𝑀; Ω𝑝(𝐸)).

To apply Hodge theory to these groups, we start by choosing a Hermitianmetric
𝑔 on 𝑀 and a Hermitian fiber metric ⟨⋅, ⋅⟩ on 𝐸. We use these to define a Hermitian
fiber metric on the bundle Λ𝑝,𝑞 ⊗ 𝐸 of 𝐸-valued forms by setting

(9.26) ⟨𝛼 ⊗ 𝜎, 𝛽 ⊗ 𝜏⟩ = ⟨𝛼, 𝛽⟩ ⟨𝜎, 𝜏⟩

and extending by complex linearity in the first argument and conjugate linearity in
the second. Here ⟨𝛼, 𝛽⟩ is the pointwise Hodge inner product of the ordinary (𝑝, 𝑞)-
forms 𝛼 and 𝛽, and ⟨𝜎, 𝜏⟩ is the inner product of 𝜎 and 𝜏 defined by the chosen
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Hermitian fiber metric on 𝐸. This defines as usual a global Hermitian inner product
on the space of compactly supported 𝐸-valued forms:

(9.27) (𝜂1, 𝜂2) = ∫𝑀
⟨𝜂1, 𝜂2⟩ 𝑑𝑉𝑔 .

Using this inner product, we define the adjoint operator 𝜕∗
𝐸 and the 𝑬-valued Dol-

beault Laplacian Δ𝜕𝐸 ∶ ℰ𝑝,𝑞(𝑀; 𝐸) → ℰ𝑝,𝑞(𝑀; 𝐸) given by
(9.28) Δ𝜕𝐸 = 𝜕𝐸𝜕∗

𝐸 + 𝜕∗
𝐸𝜕𝐸 .

An 𝐸-valued differential form in the kernel of Δ𝜕𝐸 is said to be 𝝏𝑬-harmonic.
Lemma 9.32. If 𝐸 is a holomorphic vector bundle, an 𝐸-valued differential form
𝛼 is 𝜕𝐸-harmonic if and only if 𝜕𝐸𝛼 = 0 and 𝜕∗

𝐸𝛼 = 0.

► Exercise 9.33. Prove this lemma.

Proposition 9.34. If 𝐸 is a holomorphic vector bundle, the operator Δ𝜕𝐸 is elliptic.

Proof. Let (𝑠𝑗) be a holomorphic local frame for 𝐸 over an open set 𝑈 ⊆ 𝑀 . From
(4.20), in terms of this frame 𝜕𝐸 has the local expression

𝜕𝐸(𝛼𝑗 ⊗ 𝑠𝑗) = (𝜕𝛼𝑗) ⊗ 𝑠𝑗 .
Since the principal symbol of 𝜕𝐸 is independent of the choice of frame, this shows
that the principal symbol of 𝜕𝐸 is the same as that of 𝜕 on scalar-valued forms,
namely

𝜎𝜕𝐸 (𝑥, 𝜉)𝜂 = 𝜉0,1 ∧ 𝜂.
It then follows from Lemma 9.17 that the principal symbol of 𝜕∗

𝐸 is the same as that
of 𝜕∗, and therefore

𝜎Δ𝜕𝐸
(𝑥, 𝜉)𝜂 = 𝜎Δ𝜕 (𝑥, 𝜉)𝜂 = − 1

2 |𝜉|2𝜂,
which proves the lemma. □

Theorem 9.35 (Hodge–Dolbeault Theorem for Bundle-Valued Forms). Sup-
pose 𝑀 is a compact Hermitian manifold and 𝐸 → 𝑀 is a Hermitian holomorphic
vector bundle. Then the space ℋ 𝑝,𝑞(𝑀; 𝐸) of 𝜕𝐸-harmonic 𝐸-valued (𝑝, 𝑞)-forms
is finite-dimensional for each 𝑝 and 𝑞, and the composite map

ℋ 𝑝,𝑞(𝑀; 𝐸) ↪ 𝒵 𝑝,𝑞(𝑀; 𝐸) → 𝐻𝑝,𝑞(𝑀; 𝐸)
is an isomorphism. Thus every 𝐸-valued Dolbeault cohomology class has a unique
𝜕𝐸-harmonic representative.

Proof. Just like the proof of Theorem 9.30. □

One application of this theorem is to provide another proof that the space of
holomorphic sections of a holomorphic vector bundle on a compact manifold is
finite-dimensional.
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Another Proof of Theorem 3.13. Suppose 𝑀 is a compact manifold and 𝐸 → 𝑀
is a holomorphic vector bundle. Smooth sections of 𝐸 are elements of ℰ0,0(𝑀; 𝐸),
and they are holomorphic if and only if they are in the kernel of 𝜕𝐸 . Because 𝜕∗

𝐸
acts trivially on (0, 0)-forms, the holomorphic sections are exactly the elements of
ℋ 0,0(𝑀; 𝐸). Finite-dimensionality then follows from the Hodge–Dolbeault theo-
rem. □

Another application is the following finiteness theorem for sheaf cohomology
groups.

Proposition 9.36 (Finiteness Theorem). Suppose 𝑀 is a compact complex man-
ifold and 𝐸 → 𝑀 is a holomorphic vector bundle. Then the sheaf cohomology
groups 𝐻𝑞(𝑀; Ω𝑝(𝐸)) are all finite-dimensional, and are zero unless 0 ≤ 𝑝, 𝑞 ≤
dim𝑀 .

Proof. The Dolbeault theorem shows that 𝐻𝑞(𝑀; Ω𝑝(𝐸)) ≅ 𝐻𝑝,𝑞(𝑀; 𝐸) for each
𝑝 and 𝑞. Once we endow 𝑀 with a Hermitianmetric, the Hodge–Dolbeault theorem
then shows that 𝐻𝑝,𝑞(𝑀; 𝐸) ≅ ℋ 𝑝,𝑞(𝑀; 𝐸), which is finite-dimensional. More-
over since there are no nontrivial (𝑝, 𝑞) forms unless 0 ≤ 𝑝, 𝑞 ≤ dim𝑀 , those are the
only values of 𝑝 and 𝑞 for which the groups 𝐻𝑞(𝑀; Ω𝑝(𝐸)) can be nontrivial. □

Using different techniques, one can prove a much more general version of this
finiteness theorem, which says that every coherent analytic sheaf on a compact com-
plex manifold has finite-dimensional cohomology in all degrees. For Stein man-
ifolds, there is an even stronger result: the French mathematician Henri Cartan
proved in 1953 [Car53] that if 𝒮 is any coherent analytic sheaf on a Stein manifold
𝑀 , then 𝐻𝑞(𝑀; 𝒮 ) = 0 for all 𝑞 > 0. This fact is now known as Cartan’s the-
orem B. (Theorem A, proved in the same paper, showed that for every such sheaf
𝒮 , each stalk 𝒮𝑥 is generated as an 𝒪𝑥-module by global sections of 𝒮 .) Proofs
of the general finiteness theorem and Cartan’s theorems A and B can be found in
[GR09, pp. 243–246].

Serre Duality

There is an analogue of Poincaré duality for Dolbeault cohomology, and more
generally for Dolbeault cohomology with coefficients in a holomorphic vector bun-
dle 𝐸 → 𝑀 . Recall the wedge product operation between 𝐸-valued forms and
𝐸∗-valued forms defined by (4.16). When applied to sections 𝜂 ∈ ℰ𝑝,𝑞(𝑀; 𝐸) and
𝜁 ∈ ℰ𝑛−𝑝,𝑛−𝑞(𝑀; 𝐸∗), it yields a scalar-valued (𝑛, 𝑛)-form 𝜂 ∧ 𝜁 , which can be in-
tegrated over 𝑀 (assuming 𝑛 = dimℂ 𝑀). The following theorem was proved in
1955 by Jean-Pierre Serre [Ser55a].

Theorem 9.37 (Serre Duality). Let 𝑀 be a compact complex 𝑛-manifold and let
𝐸 → 𝑀 be a holomorphic vector bundle. There is a well-defined nondegenerate
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bilinear map from 𝐻𝑝,𝑞(𝑀; 𝐸) × 𝐻𝑛−𝑝,𝑛−𝑞(𝑀; 𝐸∗) to ℂ given by

(9.29) (𝜂, 𝜁) ↦ ∫𝑀
𝜂 ∧ 𝜁

for any smooth bundle-valued forms 𝜂 and 𝜁 representing their Dolbeault cohomol-
ogy classes. Consequently, we have the following complex-linear isomorphisms for
all 𝑝 and 𝑞:

𝐻𝑝,𝑞(𝑀; 𝐸)∗ ≅ 𝐻𝑛−𝑝,𝑛−𝑞(𝑀; 𝐸∗);(9.30)
𝐻𝑞(𝑀; Ω𝑝(𝐸))∗ ≅ 𝐻𝑛−𝑞(𝑀; Ω𝑛−𝑝(𝐸∗));(9.31)
𝐻𝑞(𝑀; 𝒪(𝐸))∗ ≅ 𝐻𝑛−𝑞(𝑀; 𝒪(𝐾𝑀 ⊗ 𝐸∗)).(9.32)

In addition, the Hodge numbers of 𝑀 satisfy

(9.33) ℎ𝑝,𝑞(𝑀) = ℎ𝑛−𝑝,𝑛−𝑞(𝑀).

Proof. First we show that (9.29) is well defined on cohomology classes. Suppose
𝜂 ∈ ℰ𝑝,𝑞(𝑀; 𝐸) is 𝜕𝐸-closed and 𝜁 ∈ ℰ𝑛−𝑝,𝑛−𝑞(𝑀; 𝐸∗) is 𝜕𝐸∗-closed. If 𝜂 = 𝜕𝐸𝛾 ,
then it follows from Proposition 4.16(iii) and Stokes’s theorem that

∫𝑀
𝜂 ∧ 𝜁 = ∫𝑀

𝜕𝐸𝛾 ∧ 𝜂 = ∫𝑀
𝜕(𝛾 ∧ 𝜂) = ∫𝑀

𝑑(𝛾 ∧ 𝜂) = 0.

Similarly, the integral is zero when 𝜁 is 𝜕𝐸∗-exact.
Choose any Hermitian metric 𝑔 on 𝑀 and a Hermitian fiber metric ⟨⋅, ⋅⟩ℎ on 𝐸,

and let ⟨⋅, ⋅⟩ℎ∗ be the dual metric on 𝐸∗ (Problem 7-3). Use these metrics to define
𝜕𝐸 , 𝜕∗

𝐸 , Δ𝜕𝐸 , and ℋ 𝑝,𝑞(𝑀; 𝐸), and let ℎ̂∶ 𝐸 → 𝐸∗ be the conjugate-linear bundle
isomorphism defined in Problem 7-3. We also define a conjugate-linear bundle map

∗𝐸 ∶ ℰ𝑝,𝑞(𝑀; 𝐸) → ℰ𝑛−𝑝,𝑛−𝑞(𝑀; 𝐸∗)
by

∗𝐸(𝛼 ⊗ 𝜎) = ∗𝛼 ⊗ ℎ̂(𝜎) for 𝛼 ∈ ℰ𝑝,𝑞(𝑀), 𝜎 ∈ Γ(𝐸),
extended bilinearly. The map ∗𝐸∗ ∶ ℰ𝑝,𝑞(𝑀; 𝐸∗) → ℰ𝑛−𝑝,𝑛−𝑞(𝑀; 𝐸) is defined
similarly, using the conjugate-linear isomorphism ℎ̂∗ ∶ 𝐸∗ → 𝐸∗∗, which is equal
to ℎ̂−1 under the canonical identification 𝐸∗∗ ≅ 𝐸. Straightforward computations
using Lemma 9.23 show that

∗𝐸∗∗𝐸𝜂 = (−1)𝑝+𝑞𝜂 for 𝜂 ∈ ℰ𝑝,𝑞(𝑀; 𝐸),(9.34)
∗𝐸∗𝐸∗𝜁 = (−1)𝑝+𝑞𝜁 for 𝜁 ∈ ℰ𝑝,𝑞(𝑀; 𝐸∗).(9.35)

We also have an analogue of formula (9.7) for ∗𝐸 acting on ℰ𝑝,𝑞(𝑀; 𝐸):
(𝛼 ⊗ 𝜎) ∧ ∗𝐸(𝛽 ⊗ 𝜏) = (𝛼 ⊗ 𝜎) ∧ (∗𝛽 ⊗ ℎ̂(𝜏))

= ℎ̂(𝜏)(𝜎)𝛼 ∧ ∗𝛽
= ⟨𝜎, 𝜏⟩ℎ ⟨𝛼, 𝛽⟩𝑑𝑉𝑔
= ⟨𝛼 ⊗ 𝜎, 𝛽 ⊗ 𝜏⟩ 𝑑𝑉𝑔 ,
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where the expression in the last line is the Hermitian fiber metric on 𝐸-valued forms
defined by (9.26).

We need to compute an explicit expression for the formal adjoint 𝜕∗
𝐸 . Let

𝜂 ∈ ℰ𝑝,𝑞−1(𝑀; 𝐸) and 𝜁 ∈ ℰ𝑝,𝑞(𝑀; 𝐸). As in the proof of Proposition 9.27,
we compute

0 = ∫𝑀
𝑑(𝜂 ∧ ∗𝐸𝜁)

= ∫𝑀
𝜕(𝜂 ∧ ∗𝐸𝜁)

= ∫𝑀
𝜕𝐸𝜂 ∧ ∗𝐸𝜁 + (−1)𝑝+𝑞−1

∫𝑀
𝜂 ∧ 𝜕𝐸∗(∗𝐸𝜁)

= ∫𝑀
𝜕𝐸𝜂 ∧ ∗𝐸𝜁 + ∫𝑀

𝜂 ∧ ∗𝐸∗𝐸∗𝜕𝐸∗(∗𝐸𝜁)

= (𝜕𝐸𝜂, 𝜁) + (𝜂, ∗𝐸∗𝜕𝐸∗∗𝐸𝜁),
which shows that

𝜕∗
𝐸 = −∗𝐸∗𝜕𝐸∗∗𝐸 on ℰ𝑝,𝑞(𝑀; 𝐸).

To show that (9.29) is nondegenerate, suppose the cohomology class [𝜂] ∈
𝐻𝑝,𝑞(𝑀; 𝐸) satisfies ∫𝑀 𝜂 ∧ 𝜁 = 0 for all [𝜁] ∈ 𝐻𝑛−𝑝,𝑛−𝑞(𝑀; 𝐸∗). We can take
𝜂 to be the Δ𝜕𝐸 -harmonic representative of its cohomology class, so that 𝜕𝐸𝜂 = 0
and 𝜕∗

𝐸𝜂 = 0. Note that ∗𝐸𝜂 ∈ ℰ𝑛−𝑝,𝑛−𝑞(𝑀; 𝐸∗) satisfies
𝜕𝐸∗(∗𝐸𝜂) = ±∗𝐸∗𝐸∗𝜕𝐸∗(∗𝐸𝜂) = ±∗𝐸(−𝜕∗

𝐸𝜂) = 0.
Thus ∗𝐸𝜂 represents a cohomology class in 𝐻𝑛−𝑝,𝑛−𝑞(𝑀; 𝐸∗), and our hypothesis
implies

0 = ∫𝑀
𝜂 ∧ ∗𝐸𝜂 = ∫𝑀

⟨𝜂, 𝜂⟩ 𝑑𝑉𝑔 = ‖𝜂‖2,

so [𝜂] = 0. A nearly identical argument shows that ∫𝑀 𝜂 ∧ 𝜁 = 0 for all 𝜂 implies
[𝜁] = 0.

The isomorphism in (9.30) is defined by sending [𝜁] ∈ 𝐻𝑛−𝑝,𝑛−𝑞(𝑀; 𝐸∗) to the
linear functional [𝜂] ↦ ∫𝑀 𝜂 ∧ 𝜁 in 𝐻𝑝,𝑞(𝑀; 𝐸)∗. This is a well-defined complex-
linear map, and the Serre duality theorem implies it is injective.

On the other hand, we also have an injective linear map from 𝐻𝑝,𝑞(𝑀; 𝐸) to
𝐻𝑛−𝑝,𝑛−𝑞(𝑀; 𝐸∗)∗ that sends [𝜂] to ([𝜁] ↦ ∫𝑀 𝜂 ∧𝜁), which shows that the dimen-
sion of 𝐻𝑝,𝑞(𝑀; 𝐸) is less than or equal to that of 𝐻𝑛−𝑝,𝑛−𝑞(𝑀; 𝐸∗). Thus both
maps are isomorphisms for dimensional reasons.

The isomorphism (9.31) follows directly from (9.30) and the Dolbeault theo-
rem, and (9.32) is the 𝑝 = 0 case of (9.30), noting that the canonical bundle 𝐾𝑀 is
equal to Λ𝑛,0𝑀 . Finally, (9.33) follows from (9.30) in the special case in which 𝐸
is the trivial line bundle. □
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Hodge Theory on Kähler Manifolds
In general on complex manifolds, there is no direct relation between Hodge num-
bers and Betti numbers. But in the special case of a Kähler manifold, it turns out
that there is a very close relationship between them. This should not be surprising,
because the whole idea of Kähler manifolds is that they are the Hermitian mani-
folds in which the relationship between the Riemannian metric structure and the
holomorphic structure is as close as it can be.

The key is a set of technical identities that hold on every Kähler manifold. Sup-
pose (𝑀, 𝑔) is a Kähler manifold with Kähler form 𝜔. Define a complex-linear bun-
dle homomorphism 𝐿𝜔 ∶ ℰ𝑝,𝑞(𝑀) → ℰ𝑝+1,𝑞+1(𝑀), called the Lefschetz operator,
by

𝐿𝜔𝜂 = 𝜔 ∧ 𝜂,
and let 𝐿∗

𝜔 ∶ ℰ𝑝+1,𝑞+1(𝑀) → ℰ𝑝,𝑞(𝑀) be its adjoint, so that ⟨𝐿𝜔𝛼, 𝛽⟩ = ⟨𝛼, 𝐿∗
𝜔𝛽⟩

for all forms 𝛼, 𝛽. The Lefschetz operator is named after Solomon Lefschetz, who
introduced it as part of his statement of the hard Lefschetz theorem (Thm. 9.46 be-
low). The following identities were first proved by Hodge [Hod41]. In this propo-
sition, we use square brackets to denote commutators: for two operators 𝑃 and 𝑄,
the notation [𝑃 , 𝑄] represents 𝑃 ∘ 𝑄 − 𝑄 ∘ 𝑃 .

Proposition 9.38 (The Kähler Identities). On every Kähler manifold, the follow-
ing identities hold:

(a) [𝜕∗, 𝐿𝜔] = 𝑖𝜕.
(b) [𝜕∗, 𝐿𝜔] = −𝑖𝜕.
(c) [𝐿∗

𝜔, 𝜕] = −𝑖𝜕∗.
(d) [𝐿∗

𝜔, 𝜕] = 𝑖𝜕∗.

Proof. We need only prove (a), for then (b) follows by conjugation, and (c) and (d)
follow by taking adjoints, noting that (𝑖𝐴)∗ = −𝑖𝐴∗ and [𝐴, 𝐵]∗ = [𝐵∗, 𝐴∗] for any
operators 𝐴 and 𝐵.

To prove (a), we begin by working on ℂ𝑛 with its Euclidean metric. In standard
holomorphic coordinates, the Kähler metric is 𝑔 = ∑𝑗 𝑑𝑧𝑗 𝑑𝑧𝑗 and its associated
Kähler form is 𝜔 = 𝑖

2 ∑𝑗 𝑑𝑧𝑗 ∧ 𝑑𝑧𝑗 (see (8.7)). We will derive a simple expression
for 𝜕∗ on Euclidean space.

For a differential form 𝛼 = ∑′
𝐽 ,𝐾 𝛼𝐽𝐾𝑑𝑧𝐽 ∧ 𝑑𝑧𝐾 , we define 𝜕𝑗𝛼 to be the form

obtained by applying 𝜕/𝜕𝑧𝑗 to the coefficients of 𝛼 in standard coordinates, and 𝜕𝑗𝛼
is defined similarly:

𝜕𝑗𝛼 = ∑
′

𝐽 ,𝐾

𝜕𝛼𝐽𝐾
𝜕𝑧𝑗 𝑑𝑧𝐽 ∧ 𝑑𝑧𝐾 , 𝜕𝑗𝛼 = ∑

′

𝐽 ,𝐾

𝜕𝛼𝐽𝐾
𝜕𝑧𝑗 𝑑𝑧𝐽 ∧ 𝑑𝑧𝐾 .
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The following identities are straightforward computations once everything is ex-
panded in standard coordinates, using the fact that the coefficients of the metric are
constants:

𝜕𝛼 = ∑
𝑗

𝑑𝑧𝑗 ∧ 𝜕𝑗𝛼,(9.36)

𝜕𝛼 = ∑
𝑗

𝑑𝑧𝑗 ∧ 𝜕𝑗𝛼,(9.37)

𝜕𝑗(𝜕𝑘 ⅃ 𝛼) = 𝜕𝑘 ⅃ (𝜕𝑗𝛼),(9.38)
𝜕𝑗⟨𝛼, 𝛽⟩ = ⟨𝜕𝑗𝛼, 𝛽⟩ + ⟨𝛼, 𝜕𝑗𝛽⟩.(9.39)

One more identity we will need is

(9.40) ⟨𝑑𝑧𝑗 ∧ 𝛼, 𝛽⟩ = 2⟨𝛼, 𝜕𝑗 ⅃ 𝛽⟩.

We proved in (9.21) that ⟨𝜉 ∧𝛼, 𝛽⟩ = ⟨𝛼, 𝜉♯ ⅃𝛽⟩ for a real covector 𝜉; if 𝜉 is complex,
it follows by splitting it into its real and imaginary parts that ⟨𝜉 ∧𝛼, 𝛽⟩ = ⟨𝛼, 𝜉♯ ⅃ 𝛽⟩.
Applying this to 𝜉 = 𝑑𝑧𝑗 and noting that 𝜉♯ = 2𝜕𝑗 because the metric coefficients
are 𝑔𝑗𝑘 = 1

2 𝛿𝑗𝑘, we obtain (9.40).
Using these identities, we will show that the formal adjoint of 𝜕 on ℂ𝑛 is given

by

(9.41) 𝜕∗𝛽 = − ∑
𝑗

2𝜕𝑗 ⅃ (𝜕𝑗𝛽).

First note that for any smooth, compactly supported function 𝑓 on ℂ𝑛,

∫ℂ𝑛
𝜕𝑗𝑓 𝑑𝑉𝑔 = 0,

as can be seen easily by applying the fundamental theorem of calculus to the real
and imaginary parts. Therefore if 𝛼 is a smooth 𝑞-form and 𝛽 is a smooth (𝑞 − 1)-
form, both compactly supported,

0 = ∑
𝑗 ∫ℂ𝑛

𝜕𝑗⟨𝑑𝑧𝑗 ∧ 𝛼, 𝛽⟩ 𝑑𝑉𝑔

= ∑
𝑗 ∫ℂ𝑛

⟨𝜕𝑗(𝑑𝑧𝑗 ∧ 𝛼), 𝛽⟩ 𝑑𝑉𝑔 + ∑
𝑗 ∫ℂ𝑛

⟨𝑑𝑧𝑗 ∧ 𝛼, 𝜕𝑗𝛽⟩ 𝑑𝑉𝑔

= ∑
𝑗 ∫ℂ𝑛

⟨𝑑𝑧𝑗 ∧ (𝜕𝑗𝛼), 𝛽⟩ 𝑑𝑉𝑔 + ∑
𝑗 ∫ℂ𝑛

⟨𝛼, 2𝜕𝑗 ⅃ (𝜕𝑗𝛽)⟩ 𝑑𝑉𝑔

= (𝜕𝛼, 𝛽) + (𝛼, ∑
𝑗

2𝜕𝑗 ⅃ (𝜕𝑗𝛽)).

This proves (9.41).
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Using these identities together with the fact that interior multiplication is an
antiderivation, we compute

𝜕∗(𝜔 ∧ 𝛽) = − ∑
𝑗

2𝜕𝑗 ⅃ 𝜕𝑗(
𝑖
2 ∑

𝑘
𝑑𝑧𝑘 ∧ 𝑑𝑧𝑘 ∧ 𝛽)

= −𝑖 ∑
𝑗,𝑘

𝜕𝑗 ⅃ ( 𝑑𝑧𝑘 ∧ 𝑑𝑧𝑘 ∧ 𝜕𝑗𝛽)

= −𝑖 ∑
𝑗,𝑘

((((((((𝑑𝑧𝑘(𝜕𝑗)𝑑𝑧𝑘 ∧ 𝜕𝑗𝛽 + 𝑖 ∑
𝑗,𝑘

𝑑𝑧𝑘(𝜕𝑗)𝑑𝑧𝑘 ∧ 𝜕𝑗𝛽

− 𝑖 ∑
𝑗,𝑘

𝑑𝑧𝑘 ∧ 𝑑𝑧𝑘 ∧ (𝜕𝑗 ⅃ 𝜕𝑗𝛽)

= 𝑖 ∑
𝑗

𝑑𝑧𝑗 ∧ 𝜕𝑗𝛽 + (∑
𝑘

𝑖
2 𝑑𝑧𝑘 ∧ 𝑑𝑧𝑘

) ∧ (− ∑
𝑗

2𝜕𝑗 ⅃ 𝜕𝑗𝛽)

= 𝑖𝜕𝛽 + 𝜔 ∧ (𝜕∗𝛽),
which proves (a) in the case of ℂ𝑛 with its Euclidean metric.

Now let (𝑀, 𝑔) be an arbitrary Kähler manifold with Kähler form 𝜔. Since both
operators 𝜕∗ and 𝐿𝜔 are defined independently of coordinates, we may compute
[𝜕∗, 𝐿𝜔] at a point 𝑥 ∈ 𝑀 in any coordinates we choose. Because 𝑔 is Kähler,
we can choose holomorphic coordinates such that the metric coefficients and their
first derivatives at 𝑥 match those of the Euclidean metric (Thm. 8.10(e)). Then the
above computation shows that [𝜕∗, 𝐿𝜔] = 𝑖𝜕 at 𝑥, because 𝜕∗ = − ∗ 𝜕 ∗ involves
only one derivative of the metric coefficients, and 𝐿𝜔 involves no differentiation at
all. □

For later use, we also note the following two facts about the Lefschetz operator.

Lemma 9.39. Let (𝑀, 𝑔) be an 𝑛-dimensional Kähler manifold, let 𝜔 be its Käh-
ler form, and let 𝐿𝜔 ∶ ℰ𝑝,𝑞(𝑀) → ℰ𝑝+1,𝑞+1(𝑀) be the corresponding Lefschetz
operator.

(a) For 𝛼 ∈ ℰ𝑝,𝑞(𝑀), [𝐿𝜔, 𝐿∗
𝜔]𝛼 = (𝑝 + 𝑞 − 𝑛)𝛼.

(b) For every 0 ≤ 𝑘 ≤ 𝑛, the operator 𝐿𝑘
𝜔 = 𝐿𝜔 ∘ ⋯ ∘ 𝐿𝜔 ∶ ℰ𝑛−𝑘(𝑀) →

ℰ𝑛+𝑘(𝑀) is an isomorphism.

Proof. Given 𝑥0 ∈ 𝑀 , Theorem 8.10(d) shows that we can find holomorphic co-
ordinates (𝑧𝑗) on a neighborhood of 𝑥0 such that 𝑔𝑗𝑘(𝑥0) = 1

2 𝛿𝑗𝑘 and thus

𝜔𝑥0 = 𝑖
2 ∑

𝑗
𝑑𝑧𝑗 ∧ 𝑑𝑧𝑗|𝑥0

.

Equation (9.40) shows that the adjoint of the operator 𝛼 ↦ 𝑑𝑧𝑗 ∧ 𝛼 is 𝛽 ↦ 2𝜕𝑗 ⅃ 𝛽.
Using this together with its conjugate, we conclude that the following formula holds
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at 𝑥0:

𝐿∗
𝜔𝛼 = − 𝑖

2 ∑
𝑗

(𝑑𝑧𝑗∧)∗(𝑑𝑧𝑗∧)∗𝛼 = −2𝑖 ∑
𝑗

𝜕𝑗 ⅃ 𝜕𝑗 ⅃ 𝛼.

Using the fact that interior multiplication is an antiderivation, we get

(9.42)

𝐿∗
𝜔𝐿𝜔𝛼 = −2𝑖 ∑

𝑗
𝜕𝑗 ⅃ 𝜕𝑗 ⅃ (

𝑖
2 ∑

𝑘
𝑑𝑧𝑘 ∧ 𝑑𝑧𝑘 ∧ 𝛼)

= ∑
𝑗,𝑘

𝜕𝑗 ⅃ (𝛿𝑘
𝑗 𝑑𝑧𝑘 ∧ 𝛼 + 𝑑𝑧𝑘 ∧ 𝑑𝑧𝑘 ∧ (𝜕𝑗 ⅃ 𝛼))

= ∑
𝑗,𝑘

(𝛿𝑘
𝑗 𝛿𝑘

𝑗 𝛼 − 𝛿𝑘
𝑗 𝑑𝑧𝑘 ∧ (𝜕𝑗 ⅃ 𝛼) − 𝛿𝑘

𝑗 𝑑𝑧𝑘 ∧ (𝜕𝑗 ⅃ 𝛼)

+ 𝑑𝑧𝑘 ∧ 𝑑𝑧𝑘 ∧ (𝜕𝑗 ⅃ 𝜕𝑗 ⅃ 𝛼))
= 𝑛𝛼 − ∑

𝑘
𝑑𝑧𝑘 ∧ (𝜕𝑘 ⅃ 𝛼) − ∑

𝑗
𝑑𝑧𝑗 ∧ (𝜕𝑗 ⅃ 𝛼) + 𝐿𝜔𝐿∗

𝜔𝛼.

To interpret the two intermediate terms, note that for 𝛼 of the form

𝛼 = 𝑑𝑧𝑗1 ∧ ⋯ ∧ 𝑑𝑧𝑗𝑝 ∧ 𝑑𝑧𝑘1 ∧ ⋯ ∧ 𝑑𝑧𝑘𝑞 ,

and for a particular index 𝑗, we have 𝜕𝑗 ⅃ 𝛼 = 0 if 𝑗 is not one of the indices
{𝑗1, … , 𝑗𝑝}; while if 𝑗 = 𝑗𝑠, then

𝑑𝑧𝑗𝑠 ∧ (𝜕𝑗𝑠 ⅃ 𝛼) = (−1)𝑠−1𝑑𝑧𝑗𝑠 ∧ (𝑑𝑧𝑗1 ∧ ⋯ ∧ 𝑑𝑧𝑗𝑠 ∧ ⋯ ∧ 𝑑𝑧𝑘𝑞 )
= 𝛼.

Since 𝛼 is a (𝑝, 𝑞)-form, there are 𝑝 indices for which this expression is equal to
𝛼 and the rest are zero, so ∑𝑗 𝑑𝑧𝑗 ∧ (𝜕𝑗 ⅃ 𝛼) = 𝑝𝛼 for 𝛼 of this form; and since
every (𝑝, 𝑞)-form is a linear combination of forms of this type, this holds for all
𝛼 ∈ ℰ𝑝,𝑞(𝑀). Similarly ∑𝑘 𝑑𝑧𝑘 ∧ (𝜕𝑘 ⅃ 𝛼) = 𝑞𝛼. Inserting these formulas into
(9.42) finishes the proof of (a).

To prove (b), we note that 𝐿𝑘
𝜔 is a smooth bundle homomorphism and Λ𝑛−𝑘

ℂ (𝑀)
and Λ𝑛+𝑘

ℂ (𝑀) are vector bundles with the same rank, so it suffices to show 𝐿𝑘
𝜔 is

injective. Writing 𝑘 = 𝑛 − 𝑗, we will show by induction on 𝑗 that 𝐿𝑛−𝑗
𝜔 ∶ Λ𝑗

ℂ(𝑀) →
Λ2𝑛−𝑗

ℂ (𝑀) is injective.
The case 𝑗 = 0 is immediate, because 𝐿𝑛

𝜔 is just multiplication by 𝜔𝑛 = 𝑛!𝑑𝑉𝑔 .
Assume that 𝐿𝑛−𝑗+1

𝜔 is injective on (𝑗 − 1)-forms, and suppose 𝛼 is a 𝑗-form such
that 𝐿𝑛−𝑗

𝜔 𝛼 = 0. Then 𝐿𝑛−𝑗+1
𝜔 𝛼 = 0, and the fact that interior multiplication is an
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antiderivation implies that for every complex vector field 𝑋,
0 = 𝑋 ⅃ 𝐿𝑛−𝑗+1

𝜔 𝛼
= 𝑋 ⅃ (𝜔 ∧ ⋯ ∧ 𝜔 ∧ 𝛼)
= (𝑛 − 𝑗 + 1)(𝑋 ⅃ 𝜔) ∧ 𝐿𝑛−𝑗

𝜔 𝛼 + 𝐿𝑛−𝑗+1
𝜔 (𝑋 ⅃ 𝛼)

= 𝐿𝑛−𝑗+1
𝜔 (𝑋 ⅃ 𝛼),

so the inductive hypothesis shows that 𝑋 ⅃ 𝛼 = 0. Since this is true for every
complex vector field 𝑋, it follows that 𝛼 = 0. □
Remark. We proved the preceding lemma for Kähler manifolds because that is the
only case we will need. But the proof actually works when (𝑀, 𝑔) is merely Her-
mitian and 𝜔 is its fundamental 2-form, because the computations were all carried
out pointwise and did not involve any derivatives of 𝜔.

The next three lemmas and the theorem following them are the main applica-
tions of the Kähler identities.
Lemma 9.40. On every Kähler manifold, the following identities hold:

𝜕∗𝜕 + 𝜕𝜕∗ = 0,
𝜕∗𝜕 + 𝜕𝜕∗ = 0.

Proof. Proposition 9.38 shows that 𝜕∗ = −𝑖[𝐿∗
𝜔, 𝜕]. Using this and the fact that

𝜕 ∘ 𝜕 = 0, we compute
𝜕∗𝜕 + 𝜕𝜕∗ = −𝑖[𝐿∗

𝜔, 𝜕]𝜕 − 𝑖𝜕[𝐿∗
𝜔, 𝜕]

= −𝑖𝐿∗
𝜔𝜕𝜕 + 𝑖𝜕𝐿∗

𝜔𝜕 − 𝑖𝜕𝐿∗
𝜔𝜕 + 𝑖𝜕𝜕𝐿∗

𝜔 = 0.
The second identity follows from the first by conjugation. □
Lemma 9.41. On every Kähler manifold, Δ𝑑 = Δ𝜕 + Δ𝜕 .

Proof. Lemma 9.40 yields
Δ𝑑 = (𝜕 + 𝜕)(𝜕∗ + 𝜕∗) + (𝜕∗ + 𝜕∗)(𝜕 + 𝜕)

= 𝜕𝜕∗ + 𝜕𝜕∗ + 𝜕𝜕∗ + 𝜕𝜕∗ + 𝜕∗𝜕 + 𝜕∗𝜕 + 𝜕∗𝜕 + 𝜕∗𝜕
= (𝜕𝜕∗ + 𝜕∗𝜕) +(((((((𝜕𝜕∗ + 𝜕∗𝜕) +(((((((𝜕𝜕∗ + 𝜕∗𝜕) + (𝜕𝜕∗ + 𝜕∗𝜕)
= Δ𝜕 + Δ𝜕 . □

Lemma 9.42. On every Kähler manifold, Δ𝜕 = Δ𝜕 .

Proof. From Proposition 9.38 again we get 𝜕∗ = 𝑖[𝐿∗
𝜔, 𝜕]. Thus

Δ𝜕 = 𝜕𝜕∗ + 𝜕∗𝜕
= 𝑖𝜕[𝐿∗

𝜔, 𝜕] + 𝑖[𝐿∗
𝜔, 𝜕]𝜕

= 𝑖𝜕𝐿∗
𝜔𝜕 − 𝑖𝜕𝜕𝐿∗

𝜔 + 𝑖𝐿∗
𝜔𝜕𝜕 − 𝑖𝜕𝐿∗

𝜔𝜕.
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On the other hand, since 𝜕∗ = −𝑖[𝐿∗
𝜔, 𝜕],

Δ𝜕 = 𝜕𝜕∗ + 𝜕∗𝜕
= −𝑖𝜕[𝐿∗

𝜔, 𝜕] − 𝑖[𝐿∗
𝜔, 𝜕]𝜕

= −𝑖𝜕𝐿∗
𝜔𝜕 + 𝑖𝜕𝜕𝐿∗

𝜔 − 𝑖𝐿∗
𝜔𝜕𝜕 + 𝑖𝜕𝐿∗

𝜔𝜕.

Because 𝜕𝜕 = −𝜕𝜕, these two expressions are equal. □

Theorem 9.43. On every Kähler manifold, Δ𝑑 = 2Δ𝜕 = 2Δ𝜕 .

Proof. Just combine Lemmas 9.41 and 9.42. □

Here is the main theorem in this section.

Theorem 9.44 (Hodge Theorem for Kähler Manifolds). Let 𝑀 be a compact
𝑛-dimensional Kähler manifold.

(a) HODGE DECOMPOSITION: For each 𝑘 = 0, … , 2𝑛, the harmonic forms of
degree 𝑘 have the following direct sum decomposition:

ℋ 𝑘(𝑀) = ⨁
𝑝+𝑞=𝑘

ℋ 𝑝,𝑞(𝑀).

Therefore, the de Rham groups have a corresponding decomposition

𝐻𝑘
dR(𝑀; ℂ) ≅ ⨁

𝑝+𝑞=𝑘
𝐻𝑝,𝑞(𝑀),

and the Betti numbers and Hodge numbers of 𝑀 are related by

𝑏𝑘(𝑀) = ℎ𝑘,0(𝑀) + ℎ𝑘−1,1(𝑀) + ⋯ + ℎ1,𝑘−1(𝑀) + ℎ0,𝑘(𝑀).

(b) HODGE DUALITY: For each 𝑝 and 𝑞, conjugation gives a conjugate-linear
bijection from ℋ 𝑝,𝑞(𝑀) to ℋ 𝑞,𝑝(𝑀). Thus ℎ𝑝,𝑞(𝑀) = ℎ𝑞,𝑝(𝑀).

Proof. Let 𝛼 be a harmonic 𝑘-form, and for each 𝑝 + 𝑞 = 𝑘 let 𝛼𝑝,𝑞 be its projec-
tion onto ℰ𝑝,𝑞(𝑀). Because Δ𝑑 = 2Δ𝜕 , which maps ℰ𝑝,𝑞 to itself, it follows that
each component 𝛼𝑝,𝑞 is 𝜕-harmonic and therefore lies in ℋ 𝑝,𝑞(𝑀). This shows that
ℋ 𝑘(𝑀) is the sum of the spaces ℋ 𝑝,𝑞(𝑀) for 𝑝 + 𝑞 = 𝑘, and since any two such
spaces have trivial intersection, the sum is direct. Hodge duality follows from the
fact that conjugation maps 𝜕-harmonic (𝑝, 𝑞)-forms to 𝜕-harmonic (𝑞, 𝑝)-forms; but
since Δ𝜕 = Δ𝜕 , these are also 𝜕-harmonic. □



Applications of Hodge Theory 287

Applications of Hodge Theory
The Hodge numbers of a compact complex 𝑛-manifold can be arranged in the fol-
lowing array, called the Hodge diamond:

ℎ𝑛,𝑛

ℎ𝑛,𝑛−1 ℎ𝑛−1,𝑛

. .
. ⋮ ⋱

ℎ𝑛,0 ⋯ ⋯ ℎ0,𝑛

⋱ ⋮ . .
.

ℎ1,0 ℎ0,1

ℎ0,0.
Serre duality shows that the diamond is symmetric under 180∘ rotation: ℎ𝑝,𝑞 =
ℎ𝑛−𝑝,𝑛−𝑞 . If the manifold is Kähler, then Hodge duality shows that the diamond
is symmetric about its vertical axis (ℎ𝑝,𝑞 = ℎ𝑞,𝑝), and combining these two sym-
metries shows that it is also symmetric about its horizontal axis: ℎ𝑝,𝑞 = ℎ𝑛−𝑞,𝑛−𝑝.
In addition, in the Kähler case, the sum of the Hodge numbers in each horizontal
row equals the corresponding Betti number. This leads to additional topological
obstructions to the existence of a Kähler metric, described in the next corollary.

Corollary 9.45. On a compact Kähler manifold, the odd Betti numbers are even
and the even Betti numbers are positive.

Proof. The statement about the even Betti numbers is Theorem 8.18. If 𝑘 = 2𝑚+1
is odd, the Hodge decomposition theorem gives

𝑏𝑘 = (ℎ2𝑚+1,0 + ℎ2𝑚,1 + ⋯ + ℎ𝑚+1,1) + (ℎ𝑚,𝑚+1 + ⋯ + ℎ1,2𝑚 + ℎ0,2𝑚+1),

and Hodge duality shows that the two sums in parentheses are equal. (If 𝑘 >
dimℂ 𝑀 , some of the numbers in this expression are automatically zero, but the
result still holds.) □

We have already seen examples of compact complex manifolds (the Hopf man-
ifolds) that admit no Kähler structure because their second Betti numbers are zero
(Example 8.20). An application of the requirement that odd Betti numbers are even
was discovered in 1976 by William Thurston. If (𝑀, 𝜔) is a symplectic manifold
(a smooth manifold 𝑀 endowed with a symplectic form 𝜔), an almost complex
structure 𝐽 on 𝑀 is said to be compatible with 𝝎 if 𝜔(𝐽𝑋, 𝐽𝑌 ) = 𝜔(𝑋, 𝑌 ) and
𝜔(𝑋, 𝐽𝑋) > 0 for all 𝑋 and 𝑌 . If in addition 𝐽 is integrable, then 𝑔(𝑋, 𝑌 ) =
𝜔(𝑋, 𝐽𝑌 ) is a Kähler metric. It can be shown that every symplectic manifold admits
a compatible almost complex structure, and it had been conjectured for some time
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that perhaps every compact symplectic manifold had a compatible Kähler struc-
ture. A counterexample, called the Kodaira–Thurston manifold, was discovered in
1976 by William Thurston: it is a compact symplectic 4-manifold whose first Betti
number is 3, so it does not have any Kähler structure. See [CdS01, p. 121] for
details.

Here is another important application.
Theorem 9.46 (Hard Lefschetz Theorem). Let 𝑀 be a compact 𝑛-dimensional
Kähler manifold with Kähler form 𝜔, and let 𝐿𝜔 be its Lefschetz operator. Then for
each 𝑘, 𝐿𝑘

𝜔 descends to an isomorphism from 𝐻𝑛−𝑘
dR (𝑀; ℂ) to 𝐻𝑛+𝑘

dR (𝑀; ℂ).

Proof. Because 𝜔 is closed, 𝑑(𝐿𝜔𝛼) = 𝑑(𝜔 ∧ 𝛼) = 𝜔 ∧ 𝑑𝛼 = 𝐿𝜔(𝑑𝛼) for every
differential form 𝛼, so 𝐿𝜔 commutes with 𝑑. The same argument shows that 𝐿𝜔
commutes with 𝜕. Using theKähler identities together with the fact that 𝜕𝜕+𝜕𝜕 = 0,
we can show that 𝐿𝜔 also commutes with the Dolbeault Laplacian:

Δ𝜕𝐿𝜔𝛼 = 𝜕𝜕∗𝐿𝜔𝛼 + 𝜕∗𝜕𝐿𝜔𝛼
= 𝜕(𝐿𝜔𝜕∗𝛼 + 𝑖𝜕𝛼) + 𝜕∗𝐿𝜔(𝜕𝛼)
= 𝐿𝜔𝜕𝜕∗𝛼 + 𝑖𝜕𝜕𝛼 + 𝐿𝜔𝜕∗𝜕𝛼 + 𝑖𝜕𝜕𝛼
= 𝐿𝜔Δ𝜕𝛼.

Since Δ𝑑 = 2Δ𝜕 , 𝐿𝜔 also commutes with the Hodge Laplacian Δ𝑑 .
The fact that 𝐿𝜔 commutes with 𝑑 implies that it descends to a linear map from

𝐻𝑘
dR(𝑀; ℂ) to 𝐻𝑘+2

dR (𝑀; ℂ) (still denoted by 𝐿𝜔), defined by 𝐿𝜔([𝛼]) = [𝜔 ∧ 𝛼].
To show that 𝐿𝑘

𝜔 ∶ 𝐻𝑛−𝑘
dR (𝑀; ℂ) → 𝐻𝑛+𝑘

dR (𝑀; ℂ) is injective, suppose 𝐿𝑘
𝜔[𝛼] = 0

for [𝛼] ∈ 𝐻𝑛−𝑘
dR (𝑀). By the Hodge theorem, we can choose 𝛼 to be the harmonic

representative of its cohomology class. Then 𝐿𝑘
𝜔𝛼 = 𝑑𝛽 for some (𝑛 + 𝑘 − 1)-form

𝛽. Because 𝐿𝜔 commutes with Δ𝑑 , we have Δ𝑑(𝑑𝛽) = Δ𝑑(𝐿𝑘
𝜔𝛼) = 𝐿𝑘

𝜔(Δ𝑑𝛼) = 0.
Thus 𝑑𝛽 is harmonic. But all harmonic forms are in the kernel of 𝑑∗, which is
orthogonal to the image of 𝑑, so 𝑑𝛽 is both harmonic and orthogonal to the space
of harmonic forms; thus it is zero. Because 𝐿𝑘

𝜔𝛼 = 0, injectivity of 𝐿𝑘
𝜔 on (𝑛 − 𝑘)-

forms (Lemma 9.39(b)) implies 𝛼 = 0.
To show that 𝐿𝑘

𝜔 is surjective, let [𝛽] ∈ 𝐻𝑛+𝑘
dR (𝑀; ℂ) be arbitrary. Again,

we can assume 𝛽 is the harmonic representative of its cohomology class. Lemma
9.39(b) shows that there is some (𝑛 − 𝑘)-form 𝛼 such that 𝐿𝑘

𝜔𝛼 = 𝛽. Then
𝐿𝑘

𝜔(Δ𝑑𝛼) = Δ𝑑(𝐿𝑘
𝜔𝛼) = Δ𝑑𝛽 = 0, and injectivity of 𝐿𝑘

𝜔 shows that Δ𝑑𝛼 = 0.
Thus 𝛼 represents a cohomology class such that 𝐿𝑘

𝜔[𝛼] = [𝛽]. □

This result was claimed by Solomon Lefschetz in 1924 [Lef24], with a proof
that is generally considered to be incorrect, so the theorem was considered “hard”
by Lefschetz’s contemporaries. (According to the Italian-American mathematician
Gian-Carlo Rota, who was an undergraduate at Princeton when Lefschetz was chair
of the Mathematics Department there, it was said that Lefschetz “had never given
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a completely correct proof, but had never made a wrong guess either” [Rot08, p.
19].) As you can see, with our modern machinery of Hodge theory and Kähler
identities the proof is quite straightforward; but the nickname of the theorem has
stuck anyway.

One immediate consequence of the hard Lefschetz theorem is the following
additional topological constraint on Kähler manifolds.

Corollary 9.47. Let 𝑀 be a compact Kähler 𝑛-manifold. The Lefschetz operator
𝐿𝜔 ∶ 𝐻𝑘

dR(𝑀; ℂ) → 𝐻𝑘+2
dR (𝑀; ℂ) is injective for 𝑘 ≤ 𝑛 − 1 and surjective for

𝑘 ≥ 𝑛 − 1. Thus the Betti numbers of 𝑀 satisfy 𝑏𝑘(𝑀) ≤ 𝑏𝑘+2(𝑀) for 𝑘 ≤ 𝑛 − 1,
and 𝑏𝑘(𝑀) ≥ 𝑏𝑘+2(𝑀) for 𝑘 ≥ 𝑛 − 1. □

Because the Kähler form is of type (1, 1), it follows that 𝐿𝜔 maps 𝐻𝑝,𝑞(𝑀) to
𝐻𝑝+1,𝑞+1(𝑀), so the following corollary is also immediate.

Corollary 9.48. Let 𝑀 be a compact Kähler 𝑛-manifold and let 𝐿𝜔 be its Lefschetz
operator. For each 𝑝 and 𝑞, the operator 𝐿𝑛−𝑝−𝑞

𝜔 restricts to an isomorphism from
𝐻𝑝,𝑞(𝑀) to 𝐻𝑛−𝑞,𝑛−𝑝(𝑀). Thus 𝐿𝜔 ∶ 𝐻𝑝,𝑞(𝑀) → 𝐻𝑝+1,𝑞+1(𝑀) is injective for
𝑝 + 𝑞 ≤ 𝑛 − 1 and surjective for 𝑝 + 𝑞 ≥ 𝑛 − 1; and the Hodge numbers satisfy
ℎ𝑝,𝑞(𝑀) ≤ ℎ𝑝+1,𝑞+1(𝑀) for 𝑝 + 𝑞 ≤ 𝑛 − 1 and ℎ𝑝,𝑞(𝑀) ≥ ℎ𝑝+1,𝑞+1(𝑀) for 𝑝 + 𝑞 ≥
𝑛 − 1. □

Note that this corollary gives another proof that the Hodge diamond is symmet-
ric about its horizontal axis (which we previously deduced from Serre duality and
Hodge symmetry). In addition, it says that in order for a compact complex manifold
to admit a Kähler metric, its Hodge diamond must have the property that the Hodge
numbers in each vertical column are nondecreasing below the horizontal axis and
nonincreasing above it.

As another application of Hodge theory, we can determine all the Hodge num-
bers of compact Riemann surfaces and complex projective spaces.

Proposition 9.49 (Hodge Numbers of a Riemann Surface). Let 𝑀 be a con-
nected compact Riemann surface of genus 𝑔. The Hodge numbers of 𝑀 are
ℎ0,0 = ℎ1,1 = 1 and ℎ0,1 = ℎ1,0 = 𝑔.

Proof. Example 8.13 showed that 𝑀 admits a Kähler metric. Since 𝑀 is con-
nected and compact, 𝐻0

dR(𝑀; ℂ) ≅ 𝐻2
dR(𝑀; ℂ) ≅ ℂ [LeeSM, Prop. 17.6 and

Thm. 17.31]. Thus the Hodge decomposition theorem gives ℎ0,0 = 𝑏0 = 1 and
ℎ1,1 = 𝑏2 = 1.

On the other hand, 𝐻1(𝑀) is a free abelian group of rank 2𝑔 [LeeTM, Cor.
13.15], so by the universal coefficient theorem, 𝐻1

dR(𝑀; ℂ) ≅ Hom(𝐻1(𝑀), ℂ) ≅
ℂ2𝑔 . The statement about ℎ0,1 and ℎ1,0 then follows from the Hodge decomposition
theorem. □
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Proposition 9.50 (Hodge Numbers of Projective Spaces). The Hodge numbers
of ℂℙ𝑛 are ℎ𝑝,𝑞 = 0 for 𝑝 ≠ 𝑞, and ℎ𝑝,𝑝 = 1 for 0 ≤ 𝑝 ≤ 𝑛.

Proof. From algebraic topology, 𝐻𝑘(ℂℙ𝑛) ≅ ℤ when 𝑘 is even and 0 ≤ 𝑘 ≤ 2𝑛,
and it is zero otherwise (see, for example, [LeeTM, Example 13.35(a)] or [Hat02,
p. 140]). Thus 𝐻𝑘

dR(ℂℙ𝑛; ℂ) ≅ Hom(𝐻𝑘(ℂℙ𝑛), ℂ) is 1-dimensional for 𝑘 even and
0 ≤ 𝑘 ≤ 2𝑛, and zero otherwise.

If any one of the Hodge numbers ℎ𝑝,𝑞 were nonzero for 𝑝 ≠ 𝑞, then the corre-
sponding Betti number would satisfy 𝑏𝑝+𝑞 ≥ ℎ𝑝,𝑞 + ℎ𝑞,𝑝 ≥ 2, so only ℎ𝑝,𝑝 can be
nonzero. The Hodge decomposition theorem then shows that ℎ𝑝,𝑝 = 𝑏2𝑝 = 1 for
0 ≤ 𝑝 ≤ 𝑛. □

For our next application, recall that smooth complex line bundles on a complex
manifold are classified up to smooth isomorphism by their sheaf-theoretic Chern
classes, 𝑐(𝐿) ∈ 𝐻2

Sing(𝑀; ℤ). In most cases, the classification of holomorphic line
bundles is different—there may be smooth line bundles that have no holomorphic
structure, or ones that have two or more inequivalent holomorphic structures. The
next proposition says, though, that for projective spaces, the holomorphic classifi-
cation is the same as the smooth classification.

Proposition 9.51 (Classification of Line Bundles on Projective Space). For each
projective space ℂℙ𝑛, the sheaf-theoretic Chern class map

𝑐 ∶ Pic(ℂℙ𝑛) → 𝐻2
Sing(ℂℙ𝑛; ℤ)

is an isomorphism. Thus Pic(ℂℙ𝑛) ≅ ℤ and Pic0(ℂℙ𝑛) = {0}. It follows that
every smooth complex line bundle on ℂℙ𝑛 has a unique holomorphic structure up
to isomorphism, and every holomorphic line bundle is isomorphic to 𝐻𝑑 for some
integer 𝑑.

Proof. The long exact sequence associated with the exponential sheaf sequence
(5.20) contains the following portion:

𝐻1(ℂℙ𝑛; 𝒪) → 𝐻1(ℂℙ𝑛; 𝒪∗)
𝛿∗⟶ 𝐻2(ℂℙ𝑛; ℤ) → 𝐻2(ℂℙ𝑛; 𝒪).

By the Dolbeault theorem, the groups on the left and right ends are isomorphic to
𝐻0,1(ℂℙ𝑛) and 𝐻0,2(ℂℙ𝑛), respectively, which are both zero by Proposition 9.50.
Since 𝐻1(ℂℙ𝑛; 𝒪∗) is isomorphic to the Picard group of ℂℙ𝑛 and the Chern class
map is 𝑐 = −𝛿∗, it follows that 𝑐 is an isomorphism fromPic(ℂℙ𝑛) to𝐻2(ℂℙ𝑛; ℤ) ≅
𝐻2

Sing(ℂℙ𝑛; ℤ).
As noted in the proof of Proposition 9.50, 𝐻2(ℂℙ𝑛) ≅ ℤ and 𝐻1(ℂℙ𝑛) =

0, so it follows from the universal coefficient theorem that 𝐻2
Sing(ℂℙ𝑛; ℤ) ≅

Hom(𝐻2(ℂℙ𝑛), ℤ) ≅ ℤ. Thus Pic(ℂℙ𝑛) ≅ ℤ, and since the Chern class map is
injective, its kernel Pic0(ℂℙ𝑛) is trivial. Thus holomorphic line bundles on ℂℙ𝑛
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are classified by their Chern classes. Since smooth line bundles are also classified
by their Chern classes (Thm. 6.29), it follows that every smooth line bundle has
exactly one holomorphic structure up to isomorphism.

It remains only to prove that every holomorphic bundle is isomorphic to 𝐻𝑑 for
some 𝑑. In the case of ℂℙ1, Proposition 6.30 shows that smooth line bundles are
classified by their degrees, and since we now know that the smooth classification
is the same as the holomorphic classification, it follows that there is exactly one
holomorphic line bundle on ℂℙ1 of each degree (up to isomorphism). Since 𝐻𝑑 has
degree 𝑑 by Example 7.27, this shows that every line bundle on ℂℙ1 is isomorphic
to 𝐻𝑑 for some 𝑑.

For ℂℙ𝑛 with 𝑛 > 1, we know from the first part of the proof that the Picard
group is isomorphic to ℤ, so there is a holomorphic line bundle 𝐿 → ℂℙ𝑛 that
represents a generator of the group. The hyperplane bundle 𝐻 is thus isomorphic
to 𝐿𝑘 for some integer 𝑘. Problem 3-2 shows that 𝐻 pulls back to the hyperplane
bundle of ℂℙ1 under an embedding 𝐹 ∶ ℂℙ1 → ℂℙ𝑛; and 𝐿 pulls back to a bundle
𝐹 ∗𝐿 → ℂℙ1 whose 𝑘th tensor power is isomorphic to 𝐹 ∗𝐻 . Since 𝐹 ∗𝐻 generates
Pic(ℂℙ1) by the argument in the preceding paragraph, it follows that 𝑘 must be ±1,
which shows that 𝐻 generates Pic(ℂℙ𝑛). □

Now we can prove Proposition 2.31, which asserts that every nonsingular pro-
jective algebraic hypersurface is defined by a single homogeneous polynomial. It
is a consequence of the following slightly more general result.

Corollary 9.52. If 𝑆 ⊆ ℂℙ𝑛 is a closed codimension-1 complex submanifold, then
𝑆 is the variety defined by a single homogeneous polynomial 𝑝∶ ℂ𝑛+1 → ℂ.

Proof. Given such an 𝑆, Theorem 3.39 shows that there is a holomorphic line bun-
dle 𝐿𝑆 → ℂℙ𝑛 and a holomorphic section 𝜎 ∶ ℂℙ𝑛 → 𝐿𝑆 that vanishes simply
on 𝑆 and nowhere else. By Proposition 9.51, 𝐿𝑆 is isomorphic to 𝐻𝑑 for some
integer 𝑑, which must be positive because 𝐿𝑆 has a nontrivial holomorphic section
that vanishes somewhere. Theorem 3.36 showed that 𝜎 is the section determined
by a homogeneous polynomial 𝑝 of degree 𝑑 on ℂ𝑛+1, and thus 𝑆 is the variety
determined by 𝑝. □

Recall Chow’s theorem (Thm. 2.29), which says that every closed complex
submanifold of ℂℙ𝑛 is algebraic. We can now prove it in the special case of hyper-
surfaces.

Corollary 9.53 (Chow’s Theorem for Hypersurfaces). Suppose 𝑆 ⊆ ℂℙ𝑛 is a
closed complex submanifold of codimension 1. Then 𝑆 is algebraic.

Proof. This follows immediately from Corollary 9.52. □
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Corollary 9.54 (Projective Hypersurfaces are Connected). Suppose 𝑆 ⊆ ℂℙ𝑛

is a closed complex submanifold of codimension 1. Then 𝑆 is connected.

Proof. Assume for the sake of contradiction that 𝑆 is disconnected, and write 𝑆 =
𝑆1 ∪ 𝑆2, where 𝑆1, 𝑆2 are open and closed in 𝑆 and disjoint. Since 𝑆1 and 𝑆2
are closed complex hypersurfaces in ℂℙ𝑛, Corollary 9.52 shows that each is cut
out by a single homogeneous polynomial. But then Lemma 2.40 implies they must
intersect, which is a contradiction. □

Corollary 9.55 (Holomorphic Forms are Closed and Harmonic). Let 𝜂 be a
smooth (𝑝, 0)-form on a compact Kähler manifold. The following are equivalent:

(a) 𝜂 is holomorphic.
(b) 𝜂 is harmonic.
(c) 𝜂 is closed.

Proof. First assume 𝜂 is holomorphic, that is, 𝜕𝜂 = 0. Proposition 9.25(c) shows
that 𝜂 is 𝜕-harmonic, and therefore also 𝑑-harmonic by Theorem 9.43. Next, if 𝜂
is harmonic, it satisfies 𝑑𝜂 = 0 by Proposition 9.16(b). Finally, if 𝜂 is closed, then
0 = 𝑑𝜂 = 𝜕𝜂 +𝜕𝜂, and taking the (𝑝, 1) part of this equation shows that 𝜂 is 𝜕-closed
and thus holomorphic. □

Example 9.56 (Iwasawa Manifolds are Not Kähler). Let 𝑀 = 𝐺/Γ be an Iwa-
sawamanifold as described in Example 1.20. The holomorphic 1-form 𝑑𝑧3−𝑧2 𝑑𝑧1

is right-invariant on 𝐺 and therefore preserved by the right action of Γ, so it de-
scends to a holomorphic form on 𝐺/Γ which is not closed. Thus 𝐺/Γ has no Kähler
metric. //

The local 𝜕𝜕-lemma (Cor. 4.15) showed that every closed (𝑝, 𝑞)-form is locally
in the image of 𝑖𝜕𝜕. The next corollary shows that on a compact Kähler manifold,
the same is true globally provided the form is exact.

Corollary 9.57 (Global 𝝏𝝏-Lemma). Suppose 𝑀 is a compact Kähler manifold
and 𝜃 is a 𝑑-exact (𝑝, 𝑞)-form on 𝑀 , with 𝑝 and 𝑞 both positive. Then there exists a
smooth (𝑝 − 1, 𝑞 − 1)-form 𝛼 defined on all of 𝑀 such that 𝜃 = 𝑖𝜕𝜕𝛼. If 𝜃 is a real
(𝑝, 𝑝)-form, then 𝛼 can be chosen to be real.

Proof. Because 𝜃 is exact, there is a complex-valued (𝑝 + 𝑞 − 1)-form 𝜂 such that
𝜃 = 𝑑𝜂. As in the proof of the local 𝜕𝜕-lemma (Corollary 4.15), we can assume 𝜂
decomposes as 𝜂 = 𝜂𝑝,𝑞−1 + 𝜂𝑝−1,𝑞 . We can also decompose 𝜃 = 𝑑𝜂 into bidegrees
as

𝜃 = 𝜕𝜂𝑝−1,𝑞 + (𝜕𝜂𝑝−1,𝑞 + 𝜕𝜂𝑝,𝑞−1) + 𝜕𝜂𝑝,𝑞−1,
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and the fact that 𝜃 is of type (𝑝, 𝑞) implies that the first and last terms on the right-
hand side are zero. In particular, both 𝜂𝑝−1,𝑞 and 𝜂𝑝,𝑞−1 are 𝜕-closed. By the Hodge–
Dolbeault theorem, there are 𝜕-harmonic representatives 𝜎 and 𝜌 for the same Dol-
beault cohomology classes as 𝜂𝑝−1,𝑞 and 𝜂𝑝,𝑞−1, respectively, which means there
exist a (𝑝 − 1, 𝑞 − 1)-form 𝛽 and a (𝑞 − 1, 𝑝 − 1)-form 𝛾 such that

𝜂𝑝−1,𝑞 = 𝜎 + 𝜕𝛽,

𝜂𝑝,𝑞−1 = 𝜌 + 𝜕𝛾.

Since 𝜕-harmonic forms on a Kähler manifold are also 𝜕-harmonic, it follows that
𝜎 and 𝜌 are both 𝜕-closed and 𝜕-closed. Therefore, if we set 𝛼 = 𝑖𝛾 − 𝑖𝛽, we have

𝑖𝜕𝜕𝛼 = 𝑖𝜕𝜕(𝑖𝛾) − 𝑖𝜕𝜕(𝑖𝛽)
= 𝜕(𝜕𝛾) + 𝜕(𝜕𝛽)
= 𝜕(𝜂𝑝,𝑞−1 − 𝜌) + 𝜕(𝜂𝑝−1,𝑞 − 𝜎)
= 𝜃.

As in the local case, if 𝜃 is a real (𝑝, 𝑝)-form, we can choose 𝜂 to be real and then
take 𝛾 = 𝛽, so that 𝛼 = 𝑖𝛽 − 𝑖𝛽 is real. □

Corollary 9.58. Let 𝑀 be a compact Kähler manifold and 𝐿 → 𝑀 a holomor-
phic line bundle. If 𝜂 is any closed real (1, 1)-form representing the cohomology
class 𝑐ℝ

1 (𝐿), there is a Hermitian fiber metric on 𝐿 whose Chern connection has
curvature Θ satisfying 𝑖

2𝜋 Θ = 𝜂.

Proof. Begin by choosing an arbitrary Hermitian fiber metric ℎ on 𝐿, and let Θ be
the curvature form of its Chern connection. Both 𝑖

2𝜋 Θ and 𝜂 are real (1, 1)-forms
representing the first real Chern class of 𝐿, so they differ by an exact form. There-
fore, by the global 𝜕𝜕-lemma, we can find a smooth real function 𝑢 that satisfies

𝑖𝜕𝜕( 1
2𝜋 𝑢) = 𝑖

2𝜋 Θ − 𝜂.

Define a new fiber metric by ℎ̃ = 𝑒𝑢ℎ, and let Θ̃ be the curvature form of its
Chern connection. In terms of any holomorphic local frame 𝑠, (7.20) shows that
the curvature forms Θ and Θ̃ can be expressed as

Θ = 𝜕𝜕 log |𝑠|2
ℎ,

Θ̃ = 𝜕𝜕 log |𝑠|2
ℎ̃

= 𝜕𝜕 log(𝑒𝑢|𝑠|2
ℎ) = 𝜕𝜕𝑢 + Θ = 2𝜋

𝑖 𝜂.

Thus ℎ̃ satisfies the conclusion of the corollary. □
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The Lefschetz Theorem on (1, 1)-Classes

For our next application of Hodge theory, we return to the question of classi-
fying holomorphic line bundles. Let 𝑀 be a complex manifold and 𝐿 → 𝑀 be a
holomorphic line bundle, and let 𝑐ℝ

1 (𝐿) ∈ 𝐻𝑘
dR(𝑀; ℝ) ⊆ 𝐻𝑘

dR(𝑀; ℂ) be its first
real Chern class.

By Theorem 7.14, when 𝑐ℝ
1 (𝐿) is identifiedwith an element of 𝐻2(𝑀; ℂ) under

the de Rham isomorphism, it is the image of the sheaf-theoretic Chern class under
the coefficient homomorphism 𝐻2(𝑀; ℤ) → 𝐻2(𝑀; ℂ). Thus it is integral in the
sense defined in Chapter 6. In addition, it is always represented by a form 𝑖

2𝜋 Θ of
type (1, 1). If 𝑀 is a compact Kähler manifold, let us say that a cohomology class in
𝐻𝑘(𝑀; ℂ) ≅ 𝐻𝑘

dR(𝑀; ℂ) is of type (𝒑, 𝒒) if it lies in the direct summand 𝐻𝑝,𝑞(𝑀)
under the Hodge decomposition.

Theorem 9.59 (Lefschetz Theorem on (1, 1)-Classes). Let 𝑀 be a compact Käh-
ler manifold. Every integral cohomology class of type (1, 1) is the first real Chern
class of a holomorphic line bundle.

Proof. Let [𝜂] ∈ 𝐻2
dR(𝑀; ℂ) be both integral and of type (1, 1). The hypothesis

that [𝜂] is integral means there is a class 𝛾0 ∈ 𝐻2(𝑀; ℤ) that maps to the image
of [𝜂] in 𝐻2(𝑀; ℂ) under the coefficient homomorphism. From the long exact
sequence associated to the exponential sheaf sequence, we have

Pic(𝑀) → 𝐻2(𝑀; ℤ)
𝑖∗⟶ 𝐻2(𝑀; 𝒪),

where 𝑖∶ ℤ ↪ 𝒪 is inclusion. We will show that 𝑖∗(𝛾0) = 0; by exactness of the
sequence above, this implies that 𝛾0 is the sheaf-theoretic Chern class of a holo-
morphic line bundle, and then Theorem 7.14 shows that [𝜂] is its first real Chern
class.

Consider the following commutative diagram of sheaf inclusions:

ℂ

𝑘
��

ℤ 𝑖
//

𝑗
@@��������
𝒪.

This yields the following diagram of cohomology groups:

(9.43)

𝐻2(𝑀; ℂ)

𝑘∗
��

𝐻2
dR(𝑀; ℂ)ℛ

oo

𝜋0,2
��

𝐻2(𝑀; ℤ) 𝑖∗
//

𝑗∗
88qqqqqqqqqq

𝐻2(𝑀; 𝒪) 𝐻0,2(𝑀),𝒟
oo
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where ℛ and 𝒟 are the isomorphisms given by the de Rham–Weil theorem. The
left-hand triangle commutes by functoriality of sheaf cohomology, and the right-
hand square commutes by Proposition 6.21.

In our current situation, we are given 𝛾0 ∈ 𝐻2(𝑀; ℤ) and [𝜂] ∈ 𝐻2
dR(𝑀; ℂ)

such that 𝑗∗𝛾0 = ℛ[𝜂] and 𝜂 is of type (1, 1). This implies 𝜋0,2[𝜂] = 0, and therefore
𝑖∗𝛾0 = 𝑘∗𝑗∗𝛾0 = 𝑘∗ℛ[𝜂] = 𝒟𝜋0,2[𝜂] = 0. □

The Riemann–Roch Theorem

As another application of Hodge theory, we will prove two important theorems
regarding holomorphic line bundles on Riemann surfaces. The first is a proof that
the mapping from divisors to the Picard group described in Theorem 3.41 is sur-
jective; the second is the Riemann–Roch theorem, which gives a formula for the
dimension of the space of sections of a holomorphic line bundle.

Both proofs make use of the following lemma about Euler characteristics of
sheaves of sections. Recall the definition of the Euler characteristic of a sheaf 𝒮
of vector spaces: 𝜒(𝒮 ) = ∑𝑘(−1)𝑘 dim𝐻𝑘(𝑀; 𝒮 ), provided 𝐻𝑘(𝑀; 𝒮 ) is finite-
dimensional for all 𝑘 and zero for for all but finitely many values of 𝑘.
Lemma 9.60. Let𝑀 be a compact Riemann surface and𝐿 → 𝑀 be a holomorphic
line bundle. For any 𝑝 ∈ 𝑀 , let 𝐿{𝑝} denote the point bundle associated with the
hypersurface {𝑝}. Then

𝜒(𝒪(𝐿 ⊗ 𝐿{𝑝})) = 𝜒(𝒪(𝐿)) + 1,(9.44)
𝜒(𝒪(𝐿 ⊗ 𝐿∗

{𝑝})) = 𝜒(𝒪(𝐿)) − 1.(9.45)

Proof. Note that these Euler characteristics are all well defined due to Proposition
9.36. We begin by proving (9.45). Consider the following exact sheaf sequence:

(9.46) 0 → ℐ{𝑝}(𝐿) ↪ 𝒪(𝐿) 𝑒⟶ (𝐿𝑝)𝑝 → 0,
where ℐ{𝑝}(𝐿) is the sheaf of holomorphic sections of 𝐿 that vanish at 𝑝; (𝐿𝑝)𝑝
is the skyscraper sheaf whose stalk at 𝑝 is the fiber 𝐿𝑝, with all other stalks zero;
and 𝑒 is the sheaf morphism defined be evaluating a section at 𝑝: for any open set
𝑈 ⊆ 𝑀 , if 𝑝 ∈ 𝑈 , then 𝑒𝑈 (𝜎) = 𝜎(𝑝), and otherwise 𝑒𝑈 is the zero map.

Proposition 5.16 showed that ℐ{𝑝}(𝐿) ≅ 𝒪(𝐿⊗𝐿∗
{𝑝}), so its Euler characteristic

is defined. Example 6.13(c) showed that (𝐿𝑝)𝑝 is a fine sheaf, so its cohomology
groups are all zero except for 𝐻0(𝑀; (𝐿𝑝)𝑝) ≅ 𝐿𝑝; thus 𝜒((𝐿𝑝)𝑝) = dim𝐿𝑝 = 1.

Proposition 6.10 then implies
(9.47) 𝜒(𝒪(𝐿)) = 𝜒(ℐ{𝑝}(𝐿)) + 𝜒((𝐿𝑝)𝑝) = 𝜒(𝒪(𝐿 ⊗ 𝐿∗

{𝑝})) + 1,
which is equivalent to (9.45). Then (9.44) follows by applying (9.45) to the sheaf
𝐿′ = 𝐿 ⊗ 𝐿{𝑝} and noting that 𝐿′ ⊗ 𝐿∗

{𝑝} ≅ 𝐿. □
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Here is our first main result about Riemann surfaces.

Theorem 9.61. Let 𝑀 be a compact Riemann surface. The mapping from divi-
sors to the Picard group of 𝑀 that sends a divisor to the isomorphism class of its
associated line bundle is surjective.

Proof. Let 𝐿 → 𝑀 be a holomorphic line bundle. The Dolbeault theorem shows
that for any nonnegative integer 𝑞, 𝐻𝑞(𝑀; 𝒪(𝐿)) ≅ 𝐻0,𝑞(𝑀; 𝐿). Since there are no
nontrivial (0, 𝑞) forms on a Riemann surface for 𝑞 ≥ 2, this implies 𝐻𝑞(𝑀; 𝒪(𝐿)) =
0 for 𝑞 ≥ 2, and thus 𝜒(𝒪(𝐿)) = dim𝐻0(𝑀; 𝒪(𝐿)) − dim𝐻1(𝑀; 𝒪(𝐿)).

Let 𝑝 ∈ 𝑀 be arbitrary. An easy induction based on Lemma 9.60 shows that
𝜒(𝐿 ⊗ 𝐿𝑘

{𝑝}) = 𝜒(𝐿) + 𝑘 for any positive integer 𝑘. Thus

dim𝒪(𝑀; 𝐿 ⊗ 𝐿𝑘
{𝑝}) = dim𝐻0(𝑀; 𝐿 ⊗ 𝐿𝑘

{𝑝})
= 𝜒(𝒪(𝐿 ⊗ 𝐿𝑘

{𝑝})) + dim𝐻1(𝑀; 𝐿 ⊗ 𝐿𝑘
{𝑝})

≥ 𝜒(𝒪(𝐿 ⊗ 𝐿𝑘
{𝑝})) = 𝜒(𝒪(𝐿)) + 𝑘,

which is strictly positive for 𝑘 large enough. This implies that 𝐿 ⊗ 𝐿𝑘
{𝑝} has a

nontrivial holomorphic section 𝜎. The uniqueness assertion of Theorem 3.41 shows
that 𝐿 ⊗ 𝐿𝑘

{𝑝} ≅ 𝐿𝐷1 , where 𝐷1 is the divisor of 𝜎.
If we let 𝐷2 be the divisor 𝑘𝑝, the fact that the mapping from divisors to the

Picard group is a homomorphism implies that 𝐿𝑘
{𝑝} ≅ 𝐿𝐷2 and thus (𝐿𝑘

{𝑝})∗ ≅
𝐿−𝐷2 . It follows that

𝐿 ≅ (𝐿 ⊗ 𝐿𝑘
{𝑝}) ⊗ (𝐿𝑘

{𝑝})∗ ≅ 𝐿𝐷1 ⊗ 𝐿−𝐷2 ≅ 𝐿𝐷1−𝐷2 . □

Corollary 9.62. Every holomorphic line bundle on a connected compact Riemann
surface admits a nontrivial meromorphic section.

Proof. Let 𝐿 → 𝑀 be such a bundle. Theorem 9.61 shows that there is a divisor
𝐷 such that 𝐿 ≅ 𝐿𝐷, and then Theorem 3.41 shows that there is a meromorphic
section 𝜎 of 𝐿 whose divisor is 𝐷. Since 𝜎 has only finitely many zeros, it is not
trivial. □

Recall the notations from Chapter 3: for a connected compact Riemann surface
𝑀 , Div(𝑀) is the group of divisors on 𝑀 , Cl(𝑀) (the divisor class group of 𝑀)
is the group of divisors on 𝑀 modulo linear equivalence, and Pic(𝑀) (the Picard
group of 𝑀) is the group of isomorphism classes of holomorphic line bundles on
𝑀 . We also define Div0(𝑀) ⊆ Div(𝑀) to be the subgroup of divisors of degree
zero, and Cl0(𝑀) ⊆ Cl(𝑀) to be the image of Div0(𝑀) in Cl(𝑀). As in Chap-
ter 6, Pic0(𝑀) (the Picard variety of 𝑀) is the subgroup of Pic(𝑀) consisting of
isomorphism classes of line bundles with zero Chern class; for a Riemann surface,
these are exactly the line bundles of degree zero.
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Corollary 9.63 (The Divisor Class Group and the Picard Group). Suppose 𝑀
is a connected compact Riemann surface. The map from Div(𝑀) to Pic(𝑀) that
sends a divisor to the isomorphism class of its associated line bundle descends to
an isomorphism from Cl(𝑀) to Pic(𝑀), taking Cl0(𝑀) to Pic0(𝑀).

Proof. Theorem 3.41 showed that the natural map from Div(𝑀) to Pic(𝑀) de-
scends to an injective homomorphism from Cl(𝑀) to Pic(𝑀), and Theorem 9.61
shows that it is surjective. Because the degree of a divisor is equal to the degree
of its associated line bundle by Theorem 7.22, the image of Cl0(𝑀) is exactly
Pic0(𝑀). □

Because of this result, in the algebraic geometry literature, the Picard group is
sometimes defined to be the group Cl(𝑀) of divisors modulo linear equivalence.

The following theorem is fundamental to the study of Riemann surfaces. It
was first stated in 1857 by Bernhard Riemann [Rie57] as an inequality (without the
term involving 𝐾 ⊗ 𝐿∗); the full strength of the theorem was proved in 1865 by
Riemann’s student Gustav Roch [Roc65].

Theorem 9.64 (Riemann–Roch). Suppose 𝑀 is a connected compact Riemann
surface of genus 𝑔, and 𝐿 → 𝑀 is a holomorphic line bundle. Then

dim𝒪(𝑀; 𝐿) = deg𝐿 + 1 − 𝑔 + dim𝒪(𝑀; 𝐾 ⊗ 𝐿∗).

Proof. As we observed in the proof of Theorem 9.61, for a line bundle 𝐿 on a
compact Riemann surface 𝑀 the Euler characteristic reduces to

𝜒(𝒪(𝐿)) = dim𝐻0(𝑀; 𝒪(𝐿)) − dim𝐻1(𝑀; 𝒪(𝐿)).

Serre duality shows that dim𝐻1(𝑀; 𝒪(𝐿)) = dim𝐻0(𝑀; 𝒪(𝐾 ⊗ 𝐿∗)); thus

𝜒(𝒪(𝐿)) = dim𝐻0(𝑀; 𝒪(𝐿)) − dim𝐻0(𝑀; 𝒪(𝐾 ⊗ 𝐿∗)
= dim𝒪(𝑀; 𝐿) − dim𝒪(𝑀; 𝐾 ⊗ 𝐿∗),

and the Riemann–Roch theorem is equivalent to the claim that

(9.48) 𝜒(𝒪(𝐿)) = deg𝐿 + 1 − 𝑔

for every holomorphic line bundle 𝐿 → 𝑀 .
Note that we already have a formula for dim𝒪(𝑀; 𝐾). Because 𝐾 ≅ Λ1,0𝑀 ,

the holomorphic sections of 𝐾 are exactly the harmonic (1, 0)-forms by Corollary
9.55, and then Proposition 9.49 shows that dim𝒪(𝑀; 𝐾) = ℎ1,0(𝑀) = 𝑔.

Theorem 9.61 shows that 𝐿 is isomorphic to the line bundle associated with
some divisor𝐷. We beginwith the case inwhich𝐷 = ∑𝑗 𝑛𝑗𝑝𝑗 is effective (meaning
that all of its coefficients are nonnegative). We will prove (9.48) by induction on
deg𝐷 = ∑𝑗 𝑛𝑗 .
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The base case is deg𝐷 = 0. For an effective divisor this means 𝐷 = 0, so 𝐿 is
the trivial bundle. In that case, dim𝒪(𝑀; 𝐿) = 1 (because the only holomorphic
sections of the trivial line bundle are the constants), and dim𝒪(𝑀; 𝐾 ⊗ 𝐿∗) =
dim𝒪(𝑀; 𝐾) = 𝑔, so (9.48) holds.

Now let 𝑘 ≥ 1, and assume (9.48) holds for every line bundle 𝐿𝐷 in which 𝐷
is effective and has degree less than 𝑘. Let 𝐷 be an effective divisor of degree 𝑘,
and write 𝐷 in the form 𝐷 = 𝐷′ + 𝑝0, where 𝐷′ has degree 𝑘 − 1 and 𝑝0 is some
point in 𝑀 . Then 𝐿𝐷 ≅ 𝐿𝐷′ ⊗ 𝐿{𝑝0} and deg𝐿𝐷 = deg𝐿𝐷′ + 1.

The inductive hypothesis implies 𝜒(𝒪(𝐿𝐷′)) = deg𝐿𝐷′ + 1 − 𝑔, and then
Lemma 9.60 gives

𝜒(𝒪(𝐿𝐷)) = 𝜒(𝒪(𝐿𝐷′)) + 1 = deg𝐿𝐷 + 1 − 𝑔.
This completes the proof in the case that 𝐷 is effective.

For a general divisor 𝐷, by separating the terms with positive and negative
coefficients we can write 𝐷 = 𝐷1 − 𝐷2, where 𝐷1 and 𝐷2 are effective; thus
𝐿𝐷 ≅ 𝐿𝐷1 ⊗ 𝐿∗

𝐷2
. It follows from Lemma 9.60 and induction that 𝜒(𝒪((𝐿𝐷)) =

𝜒(𝒪(𝐿𝐷1)) − deg𝐿𝐷2 , and therefore the result of the previous paragraph gives

𝜒(𝒪((𝐿𝐷)) = deg𝐿𝐷1 + 1 − 𝑔 − deg𝐿𝐷2 = deg𝐿𝐷 + 1 − 𝑔. □

Wewill see quite a few applications of the Riemann–Roch theorem in the prob-
lems at the end of this chapter and the next; here is one to get us started.

Corollary 9.65 (Uniqueness of the Holomorphic Structure on ℂℙ1). If 𝑀 is a
connected compact Riemann surface of genus 0, then 𝑀 is biholomorphic to ℂℙ1.

Proof. Suppose 𝑀 has genus 0. Let 𝑝 ∈ 𝑀 be arbitrary, and let 𝐿 denote the
degree-1 bundle 𝐿{𝑝}. Problem 8-15 shows that deg𝐾𝑀 = 𝑔−2 = −2, so 𝐾𝑀 ⊗𝐿∗

has degree −3 and therefore no nontrivial holomorphic sections. The Riemann–
Roch theorem then shows that dim𝒪(𝑀; 𝐿) = 2, and Proposition 7.25 shows that
𝑀 is biholomorphic to ℂℙ1. □

The Picard and Albanese Varieties

If 𝑀 is a complex manifold, recall that the Picard variety Pic0(𝑀) ⊆ Pic(𝑀)
is defined as the group of isomorphism classes of line bundles on 𝑀 whose sheaf-
theoretic Chern classes are zero. In this section, wewill prove that if 𝑀 is a compact
Kähler manifold, then Pic0(𝑀) has a natural structure as a complex torus. We will
also introduce another complex torus canonically associated with 𝑀 , called the
Albanese variety, and prove that these tori are isomorphic when 𝑀 is a connected
compact Riemann surface.

Theorem 9.66. Let 𝑀 be a compact Kähler manifold. The Picard variety Pic0(𝑀)
has a natural structure as a complex torus whose dimension is equal to ℎ0,1(𝑀).
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Proof. The long exact sequence associated with the exponential sheaf sequence
(6.35) reads in part

𝐻1(𝑀; ℤ)
𝑖∗⟶ 𝐻1(𝑀; 𝒪)

𝜀∗⟶ Pic(𝑀)
𝛿∗⟶ 𝐻2(𝑀; ℤ).

The subgroup Pic0(𝑀) is the kernel of 𝛿∗ in the sequence above, and by exactness
it is isomorphic to the quotient group 𝐻1(𝑀; 𝒪)/𝑖∗𝐻1(𝑀; ℤ). By the Dolbeault
theorem, 𝐻1(𝑀; 𝒪) is a complex vector space isomorphic to 𝐻0,1(𝑀), whose di-
mension is ℎ0,1(𝑀). So we need only show that 𝑖∗𝐻1(𝑀; ℤ) is a lattice in this
space.

Consider the following commutative diagram of cohomology groups analogous
to (9.43):

(9.49)

𝐻1(𝑀; ℂ)

𝑘∗
��

𝐻1
dR(𝑀; ℂ)ℛ

oo

𝜋0,1
��

𝐻1(𝑀; ℤ) 𝑖∗
//

𝑗∗
88qqqqqqqqqq

𝐻1(𝑀; 𝒪) 𝐻0,1(𝑀).𝒟
oo

Since 𝒟 is an isomorphism, it suffices to show that the image of 𝜋0,1 ∘ ℛ−1 ∘ 𝑗∗ is
a lattice in 𝐻0,1(𝑀).

Let 𝑞 = ℎ0,1(𝑀) = dim𝐻0,1(𝑀). By the Hodge decomposition theorem, the
dimension of 𝐻1

dR(𝑀; ℂ) is 2𝑞. Lemma 6.27 shows that ℛ−1𝑗∗𝐻1(𝑀; ℤ) is a free
abelian subgroup of 𝐻1

dR(𝑀; ℂ) of rank 2𝑞; and we can choose closed real 1-forms
(𝜂1, … , 𝜂2𝑞) whose cohomology classes form a basis for this subgroup over ℤ, and
also a basis for 𝐻1

dR(𝑀; ℂ) over ℂ. By the Hodge theorem, we may choose them
to be harmonic. Then (𝜋0,1𝜂1, … , 𝜋0,1𝜂2𝑞) are 𝜕-harmonic forms whose Dolbeault
cohomology classes generate the image of 𝜋0,1 ∘ ℛ−1 ∘ 𝑗∗ in 𝐻0,1(𝑀). It remains
only to prove that these cohomology classes are linearly independent over ℝ.

Suppose there are real constants 𝑎1, … , 𝑎2𝑞 such that ∑2𝑞
𝑗=1 𝑎𝑗𝜋0,1𝜂𝑗 represents

the zero Dolbeault cohomology class. Because the harmonic representative of a
cohomology class is unique, that means the form ∑2𝑞

𝑗=1 𝑎𝑗𝜋0,1𝜂𝑗 is identically zero,
and by conjugation ∑2𝑞

𝑗=1 𝑎𝑗𝜋1,0𝜂𝑗 = 0 as well. This implies ∑2𝑞
𝑗=1 𝑎𝑗𝜂𝑗 = 0, and

thus all of the 𝑎𝑗’s are zero because the 𝜂𝑗’s are linearly independent over ℂ. □

The other torus canonically associated with a compact Kähler manifold is de-
fined as follows. Let Ω1(𝑀) be the complex vector space of global holomorphic
1-forms on 𝑀 , and let Ω1(𝑀)∗ be its dual space, that is, the space of complex-linear
functions from Ω1(𝑀) to ℂ. Define a homomorphism 𝜑∶ 𝐻1(𝑀) → Ω1(𝑀)∗ as
follows: for each singular homology class 𝛾 ∈ 𝐻1(𝑀), let 𝜑(𝛾) ∈ Ω1(𝑀)∗ be the
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linear functional

(9.50) 𝜑(𝛾)(𝜂) = ∫𝛾
𝜂,

where the integral is interpreted by integrating over a smooth singular cycle repre-
senting 𝛾 . TheAlbanese variety of𝑴 denoted by Alb(𝑀), is the following quotient
group:

Alb(𝑀) = Ω1(𝑀)∗/𝜑(𝐻1(𝑀)).

Theorem 9.67. Let 𝑀 be a compact Kähler manifold. The Albanese variety
Alb(𝑀) is a complex torus whose dimension is equal to ℎ0,1(𝑀).

Proof. Because there are no nontrivial 𝜕-exact (1, 0)-forms, Ω1(𝑀) = 𝐻1,0(𝑀).
Let 𝑞 = dimΩ1(𝑀) = ℎ1,0(𝑀) = ℎ0,1(𝑀). By the Hodge decomposition theorem,
the dimension of 𝐻1

dR(𝑀; ℂ) is 2𝑞.
Because 𝑀 is compact, 𝐻1(𝑀) is finitely generated (see [Hat02, Corollaries

A.8 and A.9]). Let 𝑇 ⊆ 𝐻1(𝑀) denote the torsion subgroup of 𝐻1(𝑀), so the quo-
tient group 𝐻1(𝑀)/𝑇 is a finitely generated free abelian group. By the de Rham
and universal coefficient theorems, 𝐻1

dR(𝑀; ℂ) is isomorphic to Hom(𝐻1(𝑀), ℂ),
which in turn is isomorphic to Hom(𝐻1(𝑀)/𝑇 , ℂ). Since 𝐻1

dR(𝑀; ℂ) has dimen-
sion 2𝑞, it follows that 𝐻1(𝑀)/𝑇 has rank 2𝑞.

Choose homology classes (𝛾1, … , 𝛾2𝑞) in 𝐻1(𝑀) that descend to a basis for
the free abelian group 𝐻1(𝑀)/𝑇 , and choose a basis (𝜂1, … , 𝜂𝑞) for the complex
vector space Ω1(𝑀). Let (𝜀1, … , 𝜀𝑞) be the dual basis for Ω1(𝑀)∗, defined by
𝜀𝑗(𝜂𝑘) = 𝛿𝑘

𝑗 . The subgroup 𝜑(𝐻1(𝑀)) ⊆ Ω1(𝑀)∗ is generated by the 2𝑞 elements
𝜑(𝛾1), … , 𝜑(𝛾2𝑞). In terms of the dual basis (𝜀𝑗), the linear functional 𝜑(𝛾𝑖) has
coordinate representation 𝜑(𝛾𝑖) = ∑𝑗 Π𝑗

𝑖 𝜀𝑗 , where Π𝑗
𝑖 = 𝜑(𝛾𝑖)(𝜂𝑗) = ∫𝛾𝑖

𝜂𝑗 .

Let Π be the 𝑞 × 2𝑞 matrix whose entries are Π𝑗
𝑖 ; concretely, it is

Π =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

∫𝛾1
𝜂1 … ∫𝛾2𝑞

𝜂1

⋮ ⋱ ⋮

∫𝛾1
𝜂𝑞 … ∫𝛾2𝑞

𝜂𝑞

⎞
⎟
⎟
⎟
⎟
⎟
⎠

.

This is called the periodmatrix of 𝑀 with respect to the chosen bases. The columns
of Π, called the periods of 𝑀 with respect to these bases, represent the linear func-
tionals 𝜑(𝛾1), … , 𝜑(𝛾2𝑞) in terms of the dual basis (𝜀𝑗); thus to complete the proof,
we just need to show that these columns are linearly independent over ℝ, so they
generate a lattice in Ω1(𝑀)∗, called the period lattice.
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Corollary 9.55 shows that each holomorphic 1-form 𝜂𝑗 is harmonic. The
conjugate forms 𝜂𝑗 are therefore also harmonic, and thus the Hodge decompo-
sition theorem shows that the cohomology classes of (𝜂1, … , 𝜂𝑞 , 𝜂1, … , 𝜂𝑞) form
a basis for 𝐻1

dR(𝑀; ℂ) over ℂ. To show that the elements 𝜑(𝛾𝑖) are indepen-
dent, suppose ∑2𝑞

𝑖=1 𝑎𝑖𝜑(𝛾𝑖) = 0 for some real constants 𝑎1, … , 𝑎2𝑞 . This means
∑𝑖 𝑎𝑖 ∫𝛾𝑖

𝜂𝑗 = 0 for each 𝑗, and by conjugation ∑𝑖 𝑎𝑖 ∫𝛾𝑖
𝜂𝑗 = 0 as well. Since

𝐻1
dR(𝑀; ℂ) ≅ Hom(𝐻1(𝑀)/𝑇 ; ℂ), this means that 𝛾 = ∑𝑖 𝑎𝑖𝛾𝑖 is in the kernel of

every homomorphism from 𝐻1(𝑀)/𝑇 to ℂ; and since 𝐻1(𝑀)/𝑇 is a free abelian
group, this can only occur if the image of 𝛾 in 𝐻1(𝑀)/𝑇 is zero. Since the 𝛾𝑖’s form
a basis for 𝐻1(𝑀)/𝑇 , it follows that the coefficients 𝑎𝑖 are all zero. Thus the images
𝜑(𝛾𝑖) are ℝ-linearly independent elements of Ω1(𝑀)∗, so they span a lattice, which
shows that Alb(𝑀) is a complex 𝑞-torus. □

When we specialize to Riemann surfaces, these two tori are always isomorphic.
The following theorem was essentially proved (in a somewhat different form) by
Niels Henrik Abel and Carl Gustav Jacob Jacobi in the first half of the nineteenth
century. (See also Problem 9-14.)
Theorem 9.68 (Abel–Jacobi). Let 𝑀 be a connected compact Riemann surface.
The complex Lie groups Pic0(𝑀) and Alb(𝑀) are holomorphically isomorphic,
and both have dimension equal to the genus of 𝑀 .

Proof. Example 8.13 showed that every Riemann surface admits Kähler metrics,
so fix such a metric on 𝑀 .

Let 𝑞 be the genus of 𝑀 , which is equal to ℎ0,1(𝑀) by Proposition 9.49. If
𝑞 = 0, then both Pic0(𝑀) and Alb(𝑀) are trivial groups. Assume from now on
that 𝑞 ≥ 1.

The proof of Theorem 9.66 shows that for any real 1-forms (𝜂1, … , 𝜂2𝑞) rep-
resenting a basis for the integral classes in 𝐻1

dR(𝑀; ℂ), Pic0(𝑀) is isomorphic to
the quotient group 𝐻0,1(𝑀)/Λ, where Λ is the lattice generated by the cohomol-
ogy classes ([𝜋0,1𝜂1], … , [𝜋0,1𝜂2𝑞]). On the other hand, Alb(𝑀) is the quotient
of Ω1(𝑀)∗ by the lattice Γ generated by the linear functionals 𝜂 ↦ ∫𝛾𝑖

𝜂 for some
homology classes (𝛾1, … , 𝛾2𝑞) in 𝐻1(𝑀) that form a basis for 𝐻1(𝑀)/𝑇 (which is
equal to 𝐻1(𝑀) itself in this case).

Since Ω1(𝑀) = 𝐻1,0(𝑀), it follows from the 𝑛 = 1 case of Serre duality
that 𝐻0,1(𝑀) is isomorphic to Ω1(𝑀)∗ via the map 𝜎 ∶ 𝐻0,1(𝑀) → Ω1(𝑀)∗ that
sends the cohomology class of a 𝜕-closed (0, 1) form 𝛼 to the linear functional 𝜎([𝛼])
defined by

𝜎([𝛼])(𝜂) = ∫𝑀
𝛼 ∧ 𝜂.

We just need to show that 𝜎(Λ) = Γ. To do so, we begin by introducing a more
careful choice of basis for 𝐻1(𝑀).
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𝑎1

𝑎1

𝑎2

𝑎2

̃𝑎1

̃𝑎2
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𝑏1

𝑏2

𝑏2

𝑏̃1

𝑏̃2

Figure 9.1. A polygon whose quotient is a surface of genus 2

Since 𝑀 is a compact, connected, orientable topological 2-manifold of genus
𝑞, the classification theorem for compact surfaces [LeeTM, Thm. 6.15] shows that
it is homeomorphic to a quotient space of a 4𝑞-sided polygon with edges identified
in pairs according to the scheme 𝑎1, 𝑏1, 𝑎−1

1 , 𝑏−1
1 , … , 𝑎𝑞 , 𝑏𝑞 , 𝑎−1

𝑞 , 𝑏−1
𝑞 (see Fig. 9.1

for the case 𝑞 = 2). The images of the 4𝑞 sides in the quotient space (with suitable
parametrizations) are 2𝑞 simple closed curves (thus singular cycles) whose homol-
ogy classes represent a basis for the free abelian group𝐻1(𝑀). (See [LeeTM, Thm.
13.14 and Cor. 13.15].)

Any two closed curves in 𝑀 that are freely homotopic represent the same ele-
ment in 𝐻1(𝑀). One way to see this is to note that a closed curve 𝑎∶ [0, 1] → 𝑀
descends to a continuous map ̂𝑎∶ 𝕊1 → 𝑀 , and the homology class represented
by the cycle 𝑎 is equal to ̂𝑎∗(𝜀), where 𝜀 is a generator of the infinite cyclic group
𝐻1(𝕊1) and 𝑎∗ ∶ 𝐻1(𝕊1) → 𝐻1(𝑀) is the induced homology homomorphism; then
the claim follows from the fact that homotopic continuous maps induce the same
homology homomorphism [LeeTM, Thm. 13.8]. By replacing the cycles 𝑎𝑗 and 𝑏𝑗
with freely homotopic cycles ̃𝑎𝑗 and 𝑏̃𝑗 as in Fig. 9.1, we can arrange that for each
𝑗, the images of ̃𝑎𝑗 and ̃𝑏𝑗 intersect exactly once, and otherwise the images of all
the cycles are pairwise disjoint. Moreover, by the Whitney approximation theorem
[LeeSM, Thm. 6.26], we can arrange that the cycles ̃𝑎𝑗 and 𝑏̃𝑗 are smooth cycles
whose images are embedded smooth submanifolds, and by the transversality homo-
topy theorem [LeeSM, Thm. 6.36] we can arrange that the curves ̃𝑎𝑗 and 𝑏̃𝑗 meet
transversely. From now on, we will drop the tildes and refer to these smooth curves
as 𝑎𝑗 and 𝑏𝑗 . Choose smooth constant-speed parametrizations 𝑎𝑗 , 𝑏𝑗 ∶ [0, 1] → 𝑀
in such a way that 𝑝𝑗 = 𝑎𝑗(0) = 𝑏𝑗(0) = 𝑎𝑗(1) = 𝑏𝑗(1) is the point where the curves
meet, and the velocity vectors (𝑎′

𝑗(0), 𝑏′
𝑗(0)) = (𝑎′

𝑗(1), 𝑏′
𝑗(1)) form an oriented basis

for 𝑇𝑝𝑗 𝑀 .
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𝑎𝑗
𝑏𝑗

𝐴𝑗

𝑁

Figure 9.2. The support of 𝛼𝑗 (the darker shaded region)

For each 𝑗, we will construct closed real 1-forms 𝛼𝑗 and 𝛽𝑗 on 𝑀 with the
following properties for all 𝑗, 𝑘 = 1, … , 𝑛:

∫𝑎𝑗
𝛼𝑘 = ∫𝑏𝑗

𝛽𝑘 = 0;(9.51)

∫𝑎𝑗
𝛽𝑘 = − ∫𝑏𝑗

𝛼𝑘 = 𝛿𝑘
𝑗 ;(9.52)

∫𝑎𝑗
𝜂 = ∫𝑀

𝛼𝑗 ∧ 𝜂 for every closed 1-form 𝜂;(9.53)

∫𝑏𝑗
𝜂 = ∫𝑀

𝛽𝑗 ∧ 𝜂 for every closed 1-form 𝜂.(9.54)

First we choose a compact subset 𝐴𝑗 ⊆ 𝑀 diffeomorphic to 𝕊1 ×[0, 1], with the
image of 𝑎𝑗 as one of its boundary components, such that the parametrization of 𝑎𝑗
is consistent with the Stokes orientation of 𝜕𝐴𝑗 . This can be done by letting 𝑁 be
the unit normal vector field along 𝑎𝑗 such that (𝑎′

𝑗(𝑡), 𝑁(𝑡)) is an oriented basis at
each point 𝑎𝑗(𝑡), and letting 𝐴𝑗 be the set

𝐴𝑗 = {exp𝑎𝑗 (𝑡)(𝑠𝑁(𝑡)) ∶ 𝑡 ∈ [0, 1], 𝑠 ∈ [0, 𝜀]}

for some small 𝜀 > 0 (see Fig. 9.2). By choosing 𝜀 small enough, we can ensure
that 𝐴𝑗 is disjoint from all of the curves 𝑎𝑘 and 𝑏𝑘 for 𝑘 ≠ 𝑗, and such that the curve
𝑏𝑗 enters 𝐴𝑗 on one boundary component exactly once and leaves exactly once on
the other boundary component. (It is an easy consequence of transversality that this
is possible.)
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Now let 𝑓 ∶ 𝐴𝑗 → [0, 1] be a smooth function such that 𝑓 ≡ 1 in a neigh-
borhood of the image of 𝑎𝑗 and 𝑓 ≡ 0 in a neighborhood of the other boundary
component of 𝐴𝑗 , and define a smooth closed 1-form 𝛼𝑗 on 𝑀 by

𝛼𝑗 =
{

𝑑𝑓, on 𝐴𝑗 ,
0, on 𝑀 ∖ supp(𝑑𝑓).

This form satisfies ∫𝑎𝑘
𝛼𝑗 = 0 for all 𝑘 because the image of each 𝑎𝑘 is disjoint

from the support of 𝛼𝑗 . Similarly, ∫𝑏𝑘
𝛼𝑗 = 0 for 𝑘 ≠ 𝑗. For 𝑘 = 𝑗, our choices of

orientations guarantee that 𝑏′
𝑗(0) points into 𝐴𝑗 , so there is some 𝑡1 > 0 such that

𝑏𝑗(𝑡) lies in 𝐴𝑗 exactly when 𝑡 ∈ [0, 𝑡1], and 𝑏𝑗(𝑡1) is on the boundary component
of 𝐴𝑗 where 𝑓 = 0. Thus

∫𝑏𝑗
𝛼𝑗 = ∫𝑏𝑗 |[0,𝑡1]

𝛼𝑗 = ∫𝑏𝑗 |[0,𝑡1]
𝑑𝑓 = 𝑓(𝑏𝑗(𝑡1)) − 𝑓(𝑏𝑗(0)) = −1.

Now suppose 𝜂 is an arbitrary closed (real or complex) 1-form on 𝑀 . Since
𝛼𝑗 ∧ 𝜂 is supported in 𝐴𝑗 , by Stokes’s theorem we have

∫𝑀
𝛼𝑗 ∧ 𝜂 = ∫𝐴𝑗

𝛼𝑗 ∧ 𝜂 = ∫𝐴𝑗
𝑑𝑓 ∧ 𝜂 = ∫𝐴𝑗

𝑑(𝑓 ∧ 𝜂) = ∫𝜕𝐴𝑗
𝑓𝜂 = ∫𝑎𝑗

𝜂.

Finally, we use the same technique to construct an annulus 𝐵𝑗 for each 𝑏𝑗 and
a corresponding 1-form 𝛽𝑗 satisfying ∫𝑏𝑘

𝛽𝑗 = 0 for all 𝑘 and ∫𝑎𝑘
𝛽𝑗 = 0 for all

𝑘 ≠ 𝑗, and ∫𝑀 𝛽𝑗 ∧ 𝜂 = ∫𝑏𝑗
𝜂 for every closed 1-form 𝜂. In this case our choices

of orientations ensure that the velocity vector 𝑎′
𝑗(0) = 𝑎′

𝑗(1) is outward-pointing at
the point where 𝑎𝑗 and 𝑏𝑗 meet, so there is a time 𝑠1 < 1 such that 𝑎𝑗(𝑠) ∈ 𝐵𝑗 for
𝑠 ∈ [𝑠1, 1], and we conclude that ∫𝑎𝑗

𝛽𝑗 = +1. This completes the proof of the
existence of forms satisfying (9.51)–(9.54).

It follows from (9.51)–(9.52) that 𝛼𝑗 and 𝛽𝑗 yield integer values when integrated
over smooth singular cycles, so they determine integral cohomology classes. We
need to check that they generate all such cohomology classes. Since 𝐻0(𝑀) ≅ ℤ
is free abelian, the universal coefficient theorem implies that 𝐻1

Sing(𝑀; ℤ) ≅
Hom(𝐻1(𝑀), ℤ). It follows from (9.51) and (9.52) that the de Rham cohomol-
ogy classes ([𝛽1], … , [𝛽𝑛], [−𝛼1], … , [−𝛼𝑛]) serve as the dual basis in the group
Hom(𝐻1(𝑀), ℤ) to the homology basis ([𝑎1], … , [𝑎𝑛], [𝑏1], … , [𝑏𝑛]). Thus, con-
sidered as elements of 𝐻1

dR(𝑀; ℂ), they span the subgroup of integral cohomology
classes, and as noted above, their (0, 1)-parts span the lattice Λ.

Let 𝜂 ∈ Ω1(𝑀) be arbitrary. Corollary 9.55 shows that 𝜂 is closed. It then
follows from (9.53) that when 𝜎([(𝛼𝑖)0,1]) is applied to 𝜂, the result is

𝜎([(𝛼𝑖)0,1])(𝜂) = ∫𝑀
(𝛼𝑖)0,1 ∧ 𝜂 = ∫𝑀

𝛼𝑖 ∧ 𝜂 = ∫𝑎𝑖
𝜂.
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Similarly, 𝜎([(𝛽𝑖)0,1])(𝜂) = ∫𝑏𝑖
𝜂. Thus the image of Λ under 𝜎 is exactly the lattice

Γ. □

In the case of a connected compact Riemann surface 𝑀 , the torus Alb(𝑀) is
usually called the Jacobian variety (or sometimes just the Jacobian) of 𝑀 , denoted
by Jac(𝑀). (Because of the preceding theorem, some authors define the Jacobian
instead to be the isomorphic torus Pic0(𝑀).)

Historically, Jacobian varieties of Riemann surfaces were constructed first; the
Albanese and Picard varieties came later as generalizations to higher-dimensional
Kähler manifolds. In higher dimensions, the Albanese and Picard varieties may
not be isomorphic, but they are dual to each other in a sense described in Problem
9-13. (The reason for the word “variety” in the names is because they are always
projective algebraic varieties when 𝑀 is projective; see Problem 10-12 for a proof
in the Riemann surface case.)

Here is an important application of the Jacobian variety of a curve.
Theorem 9.69. Every connected compact Riemann surface of genus 1 is biholo-
morphic to its Jacobian variety. Therefore, every holomorphic structure on 𝕊1 × 𝕊1

is biholomorphic to a quotient ℂ/Λ for some lattice Λ ⊆ ℂ.

Proof. Let 𝑀 be a connected compact Riemann surface of genus 1. Since the
space Ω1(𝑀) = 𝐻1,0(𝑀) is 1-dimensional, we can choose a holomorphic section
𝜁 spanning Ω1(𝑀). Note that Λ1,0𝑀 is equal to the canonical bundle 𝐾 , which has
degree 0 in this case by the result of Problem 8-15. It follows that 𝜁 cannot have
any zeros, because if it did, the degree of 𝐾 would be equal to the number of zeros
counted with multiplicity by Theorem 7.22.

As in the proof of Proposition 9.67, we will represent Jac(𝑀) as the quotient
ℂ/Γ, where Γ ⊆ ℂ is the lattice spanned by the numbers ( ∫𝑎 𝜁, ∫𝑏 𝜁) for some
piecewise-smooth loops 𝑎, 𝑏 representing a basis for 𝐻1(𝑀).

Choose a point 𝑝0 ∈ 𝑀 , and define a map Φ∶ 𝑀 → Jac(𝑀) as follows: for
each 𝑞 ∈ 𝑀 , Φ(𝑞) is the image in ℂ/Γ of ∫𝑞

𝑝0
𝜁 , where the integral is interpreted

as the line integral ∫𝛾 𝜁 for some piecewise smooth curve segment 𝛾 from 𝑝0 to 𝑞.
First we note that Φ is well defined. If 𝛾1 and 𝛾2 are two such curves, then the path
product 𝛾1 ⋅ 𝛾−1

2 is a loop and therefore represents a homology class in 𝐻1(𝑀);
thus ∫𝛾1

𝜁 and ∫𝛾2
𝜁 differ by an element of the lattice Γ and their projections onto

Jac(𝑀) are equal.
To see that Φ is holomorphic, let 𝑞0 ∈ 𝑀 be arbitrary and choose a holomor-

phic coordinate 𝑧 on a disk 𝑈 ⊆ 𝑀 centered at 𝑞0. Because 𝜁 is a closed (1, 0)-form,
there is some holomorphic function ℎ defined on 𝑈 such that 𝜁|𝑈 = 𝑑ℎ. Because
the quotient map ℂ → Jac(𝑀) is a holomorphic covering map, we can use the stan-
dard coordinate in ℂ as a local holomorphic coordinate on Jac(𝑀); let Φ̂ denote the
coordinate representation of Φ with respect to these coordinates. For 𝑧 ∈ 𝑈 , the
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fundamental theorem of calculus gives

Φ̂(𝑧) = Φ̂(𝑞0) + ∫𝛾𝑧
𝜁 = Φ̂(𝑞0) + ℎ(𝑧) − ℎ(𝑞0),

where 𝛾𝑧 is, say, the radial path in 𝑈 from 𝑞0 to 𝑧. This shows that Φ is holomorphic
in 𝑈 . Moreover, since the coordinate representation of Φ in this chart is given by a
line integral of the closed form 𝜁 , its differential there is equal to 𝜁 ; so the fact that
𝜁 never vanishes implies that Φ is a holomorphic immersion.

Next we show that Φ is injective. Suppose 𝑝, 𝑞 are distinct points in 𝑀 such
that Φ(𝑝) = Φ(𝑞). Letting 𝛾1 and 𝛾2 be piecewise smooth paths from 𝑝0 to 𝑝 and 𝑞,
respectively, this means ∫𝛾1

𝜁 differs from ∫𝛾2
𝜁 by an element of Γ, or equivalently

that ∫𝛾−1
1 ⋅𝛾2

𝜁 ∈ Γ. Since every element of Γ is the integral of 𝜁 over some piecewise
smooth closed curve in 𝑀 , by setting 𝛾 = 𝛾−1

1 ⋅ 𝛾2 ⋅ 𝜎 for some loop 𝜎 based at 𝑞,
we can arrange that ∫𝛾 𝜁 = 0 for a path 𝛾 from 𝑝 to 𝑞.

The key fact is Lemma 9.70 below, which shows that under this hypothesis,
there is a global meromorphic function 𝑓 on 𝑀 whose divisor is equal to 𝑝 − 𝑞. It
then follows from Proposition 7.25 that 𝑀 is biholomorphic to ℂℙ1. This contra-
dicts the assumption that 𝑀 has genus 1, and completes the proof that Φ is injec-
tive. Since Φ is an injective holomorphic immersion between connected compact
manifolds of the same dimension, it is an open and closed map and therefore also
surjective. Thus it is a biholomorphism, and the theorem is proved. □

Here is the lemma that was used in the preceding proof.
Lemma 9.70. Let 𝑀 be a compact Riemann surface, and 𝑝, 𝑞 ∈ 𝑀 be distinct
points. Suppose there is a piecewise-smooth curve 𝛾 from 𝑝 to 𝑞 such that ∫𝛾 𝜁 =
0 for every holomorphic (1, 0)-form 𝜁 . Then there exists a global meromorphic
function on 𝑀 whose divisor is equal to 𝑝 − 𝑞.

Proof. We first consider the case in which the image of 𝛾 ∶ [0, 1] → 𝑀 is con-
tained in a holomorphic coordinate chart 𝑈 biholomorphic to the unit disk. Let 𝑧
be the coordinate function in 𝑈 , and let 𝑎, 𝑏 be the coordinates of the points 𝑝 and
𝑞, respectively. Let 𝜓 ∈ 𝐶∞(𝑀; [0, 1]) be a smooth bump function that is sup-
ported in 𝑈 and equal to 1 on a smaller disk 𝐷𝑟 = {𝑧 ∈ 𝑈 ∶ |𝑧| < 𝑟} for some
1 > 𝑟 > max(|𝑎|, |𝑏|); and define a smooth function 𝑢∶ 𝑀 ∖ {𝑝, 𝑞} → ℂ by setting

𝑢(𝑧) = 𝜓(𝑧)𝑧 − 𝑎
𝑧 − 𝑏 + 1 − 𝜓(𝑧)

for 𝑧 ∈ 𝑈 ∖ {𝑎, 𝑏} and extending it to be equal to 1 outside the support of 𝜓 . Then
𝑢 does not vanish anywhere on 𝑀 ∖ {𝑝, 𝑞}, because it is equal to 1 away from the
support of 𝜓 , is nonvanishing by definition in 𝐷𝑟(0) ∖ {𝑎, 𝑏}, and if 𝑢(𝑧) = 0 for
some 𝑟 ≤ |𝑧| ≤ 1, we would have 𝑧 = 𝜓(𝑧)𝑎 + (1 − 𝜓(𝑧))𝑏 by direct computation,
meaning that 𝑧 is on the line segment connecting 𝑎 and 𝑏, contradicting our choice
of 𝑟. Thus the (0, 1)-form 𝛼 = 𝜕𝑢/𝑢 is smooth everywhere outside of 𝐷𝑟(0) and
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vanishes identically on 𝐷𝑟(0) ∖ {𝑎, 𝑏}, so it extends to a smooth, 𝜕-closed (0, 1)-
form on all of 𝑀 .

Choose some Kähler metric on 𝑀 . We will show that 𝛼 is orthogonal to the
space of 𝜕-harmonic (0, 1)-forms. Because each holomorphic (1, 0)-form 𝜁 is 𝜕-
harmonic and conjugation takes ℋ 1,0(𝑀) to ℋ 0,1(𝑀), the 𝜕-harmonic (0, 1)-forms
are exactly those of the form 𝜁 for 𝜁 ∈ Ω1(𝑀). Thus we have to show (𝛼, 𝜁) =
∫𝑀 𝛼 ∧ ∗𝜁 = 0 for all such 𝜁 . Since ∗𝜁 = −𝑖𝜁 by the result of Example 9.24, this
is equivalent to ∫𝑀 𝛼 ∧ 𝜁 = 0.

For small 𝜀 > 0, let 𝐷𝜀(𝑎), 𝐷𝜀(𝑏) ⊆ 𝑈 be the coordinate disks of radius 𝜀 cen-
tered at 𝑎 and 𝑏, respectively, and let 𝑈𝜀 = 𝑈 ∖(𝐷𝜀(𝑎)∪𝐷𝜀(𝑏)). For any holomorphic
1-form 𝜁 , using the fact that 𝛼 is supported in 𝑈 , we compute

∫𝑀
𝛼 ∧ 𝜁 = lim

𝜀→0 ∫𝑈𝜀
𝛼 ∧ 𝜁 = lim

𝜀→0 ∫𝑈𝜀

𝜕𝑢
𝑢 ∧ 𝜁 = lim

𝜀→0 ∫𝑈𝜀

𝑑𝑢
𝑢 ∧ 𝜁.

Because 𝜁 is closed, there is a holomorphic function ℎ on 𝑈 such that 𝜁|𝑈 = 𝑑ℎ,
so Stokes’s theorem gives

∫𝑈𝜀

𝑑𝑢
𝑢 ∧ 𝜁 = ∫𝑈𝜀

𝑑𝑢
𝑢 ∧ 𝑑ℎ = − ∫𝑈𝜀

𝑑 (ℎ𝑑𝑢
𝑢 )

= − ∫𝜕𝑈𝜀
ℎ𝑑𝑢

𝑢 = ∫𝜕𝐷𝜀(𝑎)
ℎ𝑑𝑢

𝑢 + ∫𝜕𝐷𝜀(𝑏)
ℎ𝑑𝑢

𝑢 .

To compute these last integrals, note that on 𝜕𝐷𝜀(𝑎) and 𝜕𝐷𝜀(𝑎), we have 𝑑𝑢/𝑢 =
𝑑𝑧/(𝑧 − 𝑏) − 𝑑𝑧/(𝑧 − 𝑎). We parametrize 𝜕𝐷𝜀(𝑎) by 𝑧 = 𝑎 + 𝜀𝑒𝑖𝜃 for 𝜃 ∈ [0, 2𝜋],
which yields

∫𝜕𝐷𝜀(𝑎)
ℎ𝑑𝑢

𝑢 = ∫
2𝜋

0
ℎ(𝑎 + 𝜀𝑒𝑖𝜃) (

𝜀𝑖𝑒𝑖𝜃𝑑𝜃
𝑎 − 𝑏 + 𝜀𝑒𝑖𝜃 − 𝑖 𝑑𝜃) .

As 𝜀 → 0, this approaches −2𝜋𝑖ℎ(𝑎). Similarly, the integral over 𝜕𝐷𝜀(𝑏) ap-
proaches 2𝜋𝑖ℎ(𝑏). Putting these results together, we obtain ∫𝑀 𝛼 ∧ 𝜁 = 2𝜋𝑖(ℎ(𝑏) −
ℎ(𝑎)). But our hypothesis is that 0 = ∫𝛾 𝜁 = ℎ(𝑏) − ℎ(𝑎) for each such 𝜁 , so it
follows that 𝛼 ⟂ KerΔ𝜕 .

The Fredholm theorem then shows that there is some smooth (0, 1)-form 𝛽 such
that 𝛼 = Δ𝜕𝛽, which is equal to 𝜕𝜕∗𝛽 because 𝜕 = 0 on (0, 1)-forms. Let 𝑣 = 𝜕∗𝛽
and 𝑓 = 𝑒−𝑣𝑢 on 𝑀 ∖ {𝑝, 𝑞}. Then 𝜕𝑓 = 𝑒−𝑣(𝜕𝑢 − 𝑢𝜕𝑣) = 0, so 𝑓 is holomorphic
away from 𝑝 and 𝑞. Since it agrees with (𝑧 − 𝑎)/(𝑧 − 𝑏) in a neighborhood of 𝑝 and
𝑞, it is meromorphic on 𝑀 and its divisor is equal to 𝑝 − 𝑞.
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It remains only to consider the general case in which the image of 𝛾 is not
necessarily contained in a coordinate disk. In that case, we can choose numbers
0 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑘 = 1 such that the image of 𝛾𝑗 = 𝛾|[𝑡𝑗−1,𝑡𝑗 ] is contained in a
coordinate disk. The construction above yields a function 𝑢𝑗 for each 𝑗 that has a
zero at 𝛾𝑗(𝑡𝑗−1) and a pole at 𝛾𝑗(𝑡𝑗); but 𝛼𝑗 = 𝜕𝑢𝑗 /𝑢𝑗 no longer satisfies ∫𝑀 𝛼𝑗 ∧𝜁 = 0
for holomorphic 1-forms. Instead, the calculation above shows that ∫𝑀 𝛼𝑗 ∧ 𝜁 =
2𝜋𝑖(ℎ(𝛾𝑗(𝑡𝑗)) − ℎ(𝛾𝑗(𝑡𝑗−1))) = 2𝜋𝑖 ∫𝛾𝑗

𝜁 . Letting 𝑢 denote the product of the 𝑢𝑗’s
and 𝛼 = 𝜕𝑢/𝑢, we see that the intermediate poles and zeros cancel, and we have
∫𝑀 𝛼 ∧ 𝜁 = ∑𝑗 ∫𝑀 𝛼𝑗 ∧ 𝜁 = ∑𝑗 ∫𝛾𝑗

𝜁 = ∫𝛾 𝜁 = 0. The previous argument then
applies to prove the existence of the desired meromorphic function 𝑓 . □

It follows from Theorem 9.69 that every connected compact Riemann surface
𝑀 of genus 1 can be given the structure of an abelian Lie group, once a particular
point 𝑝0 ∈ 𝑀 is chosen to define the map 𝑀 → Jac(𝑀) (so that 𝑝0 becomes the
identity in the induced Lie group structure). A connected compact Riemann surface
of genus 1 (sometimes endowed with a specific choice of 𝑝0, depending on whose
definition you read) is called an elliptic curve. The name derives from the fact
that elliptic integrals (certain indefinite integrals that appear in the computation of
the arc length of an ellipse) were used by Abel and Jacobi in the early nineteenth
century to show that nonsingular cubic curves in ℂℙ2 are biholomorphic to complex
tori (Problem 10-4). (See [Jos06, Section 5.10] for a discussion of this.) Just for
the record, it should be noted that an ellipse is not an elliptic curve: an ellipse (or
rather a complex curve in ℂℙ2 with the same equation as an ellipse) is a nonsingular
quadric, which as we have seen is always biholomorphic to ℂℙ1.

Problems
9-1. Suppose 𝑃 is a constant-coefficient second-order scalar differential oper-

ator acting on smooth real-valued functions on ℝ2. Show that 𝑃 is elliptic
if and only if there is a linear change of coordinates that transforms 𝑃 into
±Δ plus lower-order terms, where Δ is the Laplace–Beltrami operator
with respect to the Euclidean metric.

9-2. Prove Proposition 9.28 (principal symbols of 𝜕, 𝜕∗, and Δ𝜕).

9-3. Let (𝑀, 𝑔) be a Kähler manifold. Prove that in every holomorphic coor-
dinate chart, the Laplace–Beltrami operator on scalar functions is given
by the following formula:

Δ𝑢 = 𝑔𝑗𝑘 𝜕2𝑢
𝜕𝑧𝑗𝜕𝑧𝑘 .
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9-4. Let (𝑀, 𝑔) be a Kähler manifold, and let 𝜔 be its Kähler form, 𝜌 its Ricci
form, and 𝑆 its scalar curvature. Let 𝐿𝜔 be the Lefschetz operator and 𝐿∗

𝜔
its adjoint.
(a) Show that 𝐿∗

𝜔 ∶ ℰ1,1(𝑀) → ℰ0,0(𝑀) has the coordinate formula

𝐿∗
𝜔 (𝑖𝜂𝑗𝑘𝑑𝑧𝑗 ∧ 𝑑𝑧𝑘) = 𝑔𝑗𝑘𝜂𝑗𝑘.

(b) Use part (a) to derive the following formulas:

𝐿∗
𝜔𝜔 = dim𝑀,

𝐿∗
𝜔𝜌 = 1

2 𝑆,
𝐿∗

𝜔(𝑖𝜕𝜕𝑢) = Δ𝑢 for 𝑢 ∈ 𝐶∞(𝑀; ℂ).

9-5. Let (𝑀, 𝑔) be a Kähler manifold and 𝜔 its Kähler form. Show that 𝜔 is
harmonic.

9-6. A cohomology class 𝛾 ∈ 𝐻𝑘
dR(𝑀; ℂ)) on an 𝑛-dimensional Kähler mani-

fold 𝑀 is said to be primitive if 𝐿𝑛−𝑘+1
𝜔 𝛾 = 0, where 𝐿𝜔 is the Lefschetz

operator. Let 𝑃 𝑘(𝑀) ⊆ 𝐻𝑘
dR(𝑀; ℂ) denote the space of primitive degree-

𝑘 cohomology classes, and 𝑃 𝑝,𝑞(𝑀) ⊆ 𝐻𝑝,𝑞(𝑀) the space of primitive
(𝑝, 𝑞)-classes. Prove the Lefschetz decomposition theorem: Let 𝑀 be a
compact 𝑛-dimensional Kähler manifold. There are direct sum decompo-
sitions

𝐻𝑘
dR(𝑀; ℂ) = ⨁

0≤𝑟≤𝑘/2
𝐿𝑟

𝜔𝑃 𝑘−2𝑟(𝑀),

𝐻𝑝,𝑞(𝑀) = ⨁
0≤𝑟≤(𝑝+𝑞)/2

𝐿𝑟
𝜔𝑃 𝑝−𝑟,𝑞−𝑟(𝑀).

[Hint: Use the hard Lefschetz theorem and induction on 𝑘.]
9-7. Let (𝑀, 𝑔) be a Riemannian manifold.

(a) Prove that every harmonic 1-form 𝜂 on 𝑀 satisfies the following
identity:

Δ|𝜂|2 = |∇𝜂|2 + ⟨𝑅𝑐♯(𝜂), 𝜂⟩,

where 𝑅𝑐♯ ∶ Λ1𝑀 → Λ1𝑀 is the bundle homomorphism given by
𝑅𝑐♯(𝜂)(𝑣) = 𝑅𝑐(𝜂♯, 𝑣). [Hint: Do the computation in Riemannian
normal coordinates.]

(b) Use the result of part (a) to prove the Bochner vanishing theorem,
due to Salomon Bochner [Boc46]: If (𝑀, 𝑔) is a compact Riemann-
ian 𝑛-manifold with nonnegative Ricci curvature, then 𝑏1(𝑀) ≤
𝑛. If in addition the Ricci curvature is positive somewhere, then
𝑏1(𝑀) = 0.
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9-8. Let (𝑀, 𝑔) be a Kähler manifold.
(a) Prove that every holomorphic 𝑝-form 𝜂 on 𝑀 satisfies the following

identity:

Δ|𝜂|2 = |∇𝜂|2 + ⟨𝑅𝑐♯(𝜂), 𝜂⟩,

where 𝑅𝑐♯ ∶ Λ𝑝,0𝑀 → Λ𝑝,0𝑀 is the bundle endomorphism given in
holomorphic coordinates by

𝑅𝑐♯(𝜂)𝑗1…𝑗𝑝 =
𝑝

∑
𝑠=1

𝑔𝑚𝑘𝑅𝑗𝑠𝑘𝜂𝑗1…𝑚…𝑗𝑝 .

[Hint: One way to do this is to compute in coordinates satisfying
(8.8) at an arbitrary point 𝑎, and use the result of Problem 8-11.]

(b) Prove the following theorem, also due to Bochner [Boc46]: If (𝑀, 𝑔)
is a compact Kähler manifold with nonnegative Ricci curvature, then
every holomorphic differential form on 𝑀 is parallel. If in addition
the Ricci curvature is positive somewhere, then ℎ𝑝,0(𝑀) = 0 for all
𝑝 > 0.

9-9. Prove that every automorphism of ℂℙ𝑛 is a projective transformation.
[Hint: Given an automorphism 𝐹 ∶ ℂℙ𝑛 → ℂℙ𝑛, prove that 𝐹 ∗𝑇 ≅ 𝑇 ,
where 𝑇 → ℂℙ𝑛 is the tautological bundle, and use this fact to construct
a holomorphic map 𝐹 ∶ 𝑇 → 𝑇 , linear on fibers, such that the following
diagram commutes:

𝑇 𝐹 //

��

𝑇
��

ℂℙ𝑛
𝐹
// ℂℙ𝑛.]

9-10. Prove that a holomorphic line bundle on a compact complex manifold
cannot be both positive and negative.

9-11. Show that there is an orientation-reversing diffeomorphism 𝐹 ∶ ℂℙ𝑛 →
ℂℙ𝑛 if and only if 𝑛 is odd. Together with the result of Problem 3-10,
this shows that the blowup of a complex 𝑛-manifold 𝑀 at a point is dif-
feomorphic to 𝑀 # ℂℙ𝑛 when 𝑛 is odd, but not necessarily when 𝑛 is
even. [Hint: In the even case, consider the de Rham cohomology class of
𝐹 ∗(𝜔𝑛), where 𝜔 is a Kähler form on ℂℙ𝑛.]

9-12. Suppose (𝑀, 𝑔) is a compact Kähler manifold with constant scalar cur-
vature whose Kähler class is equal to a multiple of 𝑐ℝ

1 (𝑀). Prove that
𝑀 is Kähler-Einstein. [Hint: Show that a constant multiple of the Ricci
form is equal to 𝜔 + 𝑖𝜕𝜕𝑢 for some scalar function 𝑢, and use the result of
Problem 9-4 to conclude that Δ𝑢 is constant. Conclude from this that 𝑢 is
constant.]
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9-13. Suppose 𝑇 = 𝑉 /Λ is a complex torus of dimension 𝑛. Define the dual
torus to be the group 𝑇 ∗ = Hom(𝑇 ,U(1)) (the set of homomorphisms
from 𝑇 to the circle group, which is a group under pointwise multiplica-
tion).
(a) Let 𝑉 ∗ denote the complex vector space of conjugate-linear func-

tionals from 𝑉 to ℂ. Show there is a surjective group homomor-
phism Φ∶ 𝑉 ∗ → 𝑇 ∗ that sends 𝑓 to the homomorphism Φ(𝑓)(𝑣) =
𝑒2𝜋𝑖 Im 𝑓(𝑣), and its kernel is the lattice

Λ∗ = {𝑓 ∈ 𝑉 ∗ ∶ Im 𝑓(𝑣) ∈ ℤ for all 𝑣 ∈ Λ}.

Conclude that 𝑇 ∗ also has the structure of a complex torus of dimen-
sion 𝑛, isomorphic to 𝑉 ∗/Λ∗.

(b) For a compact Kähler manifold 𝑀 , show that Alb(𝑀) is holomor-
phically isomorphic to the dual torus of Pic0(𝑀).

9-14. Let 𝑀 be a connected compact Riemann surface of genus 𝑔 ≥ 1, and
let Div0(𝑀) be the group of divisors of degree 0 on 𝑀 . Define a map
𝜇 ∶ Div0(𝑀) → Jac(𝑀) = Ω1(𝑀)∗/Λ by choosing a point 𝑝0 ∈ 𝑀 and
setting

𝜇(∑
𝑗

𝑛𝑗𝑞𝑗) = (𝜁 ↦ ∑
𝑗

𝑛𝑗 ∫
𝑞𝑗

𝑝0
𝜁) mod Λ.

Prove Abel’s theorem: A divisor 𝐷 ∈ Div0(𝑀) is a principal divisor if
and only if 𝜇(𝐷) = 0. [Hint: For the “only if” part, assume 𝐷 = (𝑓) and
construct a map Φ∶ ℂℙ1 → Jac(𝑀) by Φ([𝑡0, 𝑡1]) = 𝜇((𝑡0𝑓 + 𝑡1)); then
use the result of Problem 4-6 to show Φ is constant. For the “if” part, adapt
the proof of Lemma 9.70.] [Remark: This was Abel’s half of the original
proof of the Abel–Jacobi theorem (Thm. 9.68). Abel’s theorem shows that
the map 𝜇 defined above descends to an injective homomorphism from
Cl0(𝑀) (which is isomorphic to Pic0(𝑀) by Corollary 9.63) to Jac(𝑀).
The other half of the theorem, surjectivity of 𝜇, is known as the Jacobi
inversion theorem. For a proof, see [GH94, p. 235].]

9-15. Let 𝑀 be a connected compact Riemann surface of genus 𝑔 ≥ 1. Prove
that the canonical bundle 𝐾 → 𝑀 has no base points. [Hint: Assuming
𝑝 is a base point, show that 𝒪(𝐾) ≅ ℐ{𝑝}(𝐾) ≅ 𝒪(𝐾 ⊗ 𝐿∗

{𝑝}), and use
Riemann–Roch to calculate dim𝒪(𝑀; 𝐿{𝑝}).]

9-16. Let 𝑀 be a compact Kähler manifold. Define amap 𝐴𝑀 ∶ 𝑀 → Alb(𝑀),
called the Albanese map, by choosing a point 𝑝0 ∈ 𝑀 and setting

𝐴𝑀 (𝑞) = (𝜁 ↦ ∫
𝑞

𝑝0
𝜁) mod Λ.

(This generalizes the map defined in the proof of Theorem 9.69.)
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(a) Show that 𝐴𝑀 is holomorphic.
(b) Show that if 𝑀 is a compact Riemann surface of genus 𝑔 ≥ 1, then

𝐴𝑀 is a holomorphic embedding.
(c) Show that if 𝑀 = ℂ𝑛/Λ0 is a complex torus, then 𝐴𝑀 is a biholo-

morphism.
(d) Let 𝐹 ∶ 𝑀 → 𝑁 be a holomorphic map between compact Kähler

manifolds. Show that there is a holomorphic map 𝐹 ∶ Alb(𝑀) →
Alb(𝑁) such that the following diagram commutes:

𝑀 𝐹 //

𝐴𝑀
��

𝑁
𝐴𝑁
��

Alb(𝑀) 𝐹 // Alb(𝑁).

[Hint: Begin by defining 𝐹 ∶ Ω1(𝑀)∗ → Ω1(𝑁)∗ by 𝐹 (𝜑)(𝜂) =
𝜑(𝐹 ∗𝜂). You will need to choose the base points for the Albanese
maps carefully.]

(e) Prove the universal property of the Albanese variety: If 𝑀 is a
compact Kähler manifold and 𝐹 ∶ 𝑀 → 𝑇 is a holomorphic map
to a complex torus, then 𝐹 factors through the Albanese variety of
𝑀 ; that is, there is a holomorphic map 𝜓 ∶ Alb(𝑀) → 𝑇 such that
𝐹 = 𝜓 ∘ 𝐴𝑀 .

9-17. Suppose 𝐸, 𝐹 are smooth Hermitian vector bundles on a Riemannian
manifold 𝑀 , and 𝑃 ∶ Γ(𝐸) → Γ(𝐹 ) is a differential operator. We say
𝑃 has injective symbol if the principal symbol map 𝜎𝑃 (𝑥, 𝜉)∶ 𝐸𝑥 → 𝐹𝑥
is injective for every 𝑥 ∈ 𝑀 and every nonzero 𝜉 ∈ 𝑇 ∗

𝑥 𝑀 . Prove the
following Fredholm theorem for operators with injective symbol: If 𝑀
is compact and 𝑃 ∶ Γ(𝐸) → Γ(𝐹 ) has injective symbol, then Ker𝑃 is
finite-dimensional and there is an orthogonal direct sum decomposition

Γ(𝐸) = Ker𝑃 ⊕ Im𝑃 ∗.

[Hint: Consider the principal symbol of 𝑃 ∗𝑃 .]
9-18. Let 𝑀 be a Riemannian manifold and 𝐸0, 𝐸1, … a sequence of Hermitian

vector bundles on 𝑀 . A sequence of first-order linear differential opera-
tors

(9.55) 0 → Γ(𝐸0)
𝑃0⟶ Γ(𝐸1)

𝑃1⟶ Γ(𝐸2)
𝑃2⟶ ⋯

is called an elliptic complex if for each 𝑗, 𝑃𝑗+1 ∘ 𝑃𝑗 = 0 and the principal
symbol sequence

⋯ → 𝐸𝑗|𝑥

𝜎𝑃𝑗 (𝑥,𝜉)
−−−−−−→ 𝐸𝑗+1|𝑥

𝜎𝑃𝑗+1 (𝑥,𝜉)
−−−−−−−→ 𝐸𝑗+2|𝑥 → ⋯
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is exact for every 𝑥 ∈ 𝑀 and every nonzero 𝜉 ∈ 𝑇 ∗
𝑥 𝑀 . Given such a

complex, define
ℋ 𝑗(𝐸∗) = {𝜎 ∈ Γ(𝐸𝑗) ∶ 𝑃𝑗𝜎 = 0 and 𝑃 ∗

𝑗−1𝜎 = 0};

𝐻 𝑗(𝐸∗) =
Ker (𝑃𝑗 ∶ Γ(𝐸𝑗) → Γ(𝐸𝑗+1))
Im (𝑃𝑗−1 ∶ Γ(𝐸𝑗−1) → Γ(𝐸𝑗))

.

Prove the following Hodge theorem for elliptic complexes: If 𝑀 is com-
pact and (9.55) is an elliptic complex on 𝑀 , then for every 𝑗, ℋ 𝑗(𝐸∗) is
finite-dimensional, and we have an orthogonal direct sum decomposition

Γ(𝐸𝑗) = ℋ 𝑗(𝐸∗) ⊕ Im𝑃𝑗−1 ⊕ Im𝑃 ∗
𝑗+1,

and an isomorphism

𝐻 𝑗(𝐸∗) ≅ ℋ 𝑗(𝐸∗).
[Hint: First show that 𝑃𝑗 ⊕ 𝑃 ∗

𝑗−1 ∶ Γ(𝐸𝑗) → Γ(𝐸𝑗+1 ⊕ 𝐸𝑗−1) has injective
symbol.]





Chapter 10

The Kodaira Embedding
Theorem

In this chapter, we present the proof of the Kodaira embedding theorem, which
completely characterizes those compact complex manifolds that can be holomor-
phically embedded in projective spaces. The theorem comes in two versions: The
first, more technical version states that a compact complex manifold is projective
if and only if it carries a positive line bundle, meaning one whose first real Chern
class is represented by a positive (1, 1)-form. The second, more geometric version
states that a compact complex manifold is projective if and only if it admits a Käh-
ler metric whose Kähler class is integral, meaning it lies in the image of integral
cohomology under the coefficient homomorphism.

The proof of this theorem uses most of the tools we have developed in this book:
blowups, Hartogs’s theorem, holomorphic line bundles, Chern connections, sheaf
cohomology, and Hodge theory. It was first published in 1954 by Kunihiko Kodaira
[Kod54].

Preliminaries
The heart of Kodaira’s embedding theorem is the statement that every positive holo-
morphic line bundle over a compact complex manifold is ample, meaning that some
positive tensor power of it is very ample: its global holomorphic sections separate
points and directions. It then follows from Corollary 3.44 that a compact complex
manifold carrying a positive line bundle is projective.

Let us consider an arbitrary holomorphic line bundle 𝐿 → 𝑀 , and think about
how one might go about proving it is very ample. We need to show that 𝒪(𝑀; 𝐿)
separates points and separates directions.

315
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The first step is to transform the desired conclusions into statements about
sections of sheaves. Thus let 𝑝 and 𝑞 be a pair of distinct points in 𝑀 , and let
(𝐿𝑝)𝑝 ⊕ (𝐿𝑞)𝑞 be the “double skyscraper sheaf” whose stalks at 𝑝 and 𝑞 are the
fibers 𝐿𝑝 and 𝐿𝑞 , respectively, and all other stalks are zero. There is a sheaf mor-
phism 𝑒∶ 𝒪(𝐿) → (𝐿𝑝)𝑝 ⊕(𝐿𝑞)𝑞 called the evaluation map, defined as follows: for
𝜎 ∈ 𝒪(𝑈; 𝐿) over some open set 𝑈 ⊆ 𝑀 , we set 𝑒𝑈 (𝜎) = (𝜎(𝑝), 𝜎(𝑞)) ∈ 𝐿𝑝 ⊕ 𝐿𝑞
if 𝑝 and 𝑞 both lie in 𝑈 ; if only one of them does, then 𝑒𝑈 (𝜎) = 𝜎(𝑝) or 𝜎(𝑞) as
appropriate; and otherwise 𝑒𝑈 (𝜎) = 0. Then the statement that 𝒪(𝑀; 𝐿) separates
points is equivalent to the global section map 𝑒𝑀 ∶ 𝒪(𝑀; 𝐿) → 𝐿𝑝 ⊕ 𝐿𝑞 being
surjective for all 𝑝 and 𝑞.

The evaluation map fits into a short exact sheaf sequence:

(10.1) 0 → ℐ{𝑝,𝑞}(𝐿) ↪ 𝒪(𝐿) 𝑒→ (𝐿𝑝)𝑝 ⊕ (𝐿𝑞)𝑞 → 0,

where ℐ{𝑝,𝑞}(𝐿) is the sheaf of holomorphic sections of 𝐿 that vanish at 𝑝 and 𝑞.
It is easy to check that this sheaf sequence is exact, so the obstruction to the global
section map 𝑒𝑀 being surjective lies in the cohomology group 𝐻1(𝑀; ℐ{𝑝,𝑞}(𝐿)).

Similarly, the question of whether 𝒪(𝑀; 𝐿) separates directions can also be
reframed as a question about sheaves. Let 𝑝 be an arbitrary point in 𝑀 , and choose
a local holomorphic frame 𝑠 for 𝐿 in a neighborhood of 𝑝. Let ℐ{𝑝}(𝐿) be the sheaf
of holomorphic sections of 𝐿 that vanish at 𝑝, and let ℐ 2

{𝑝}(𝐿) be the subsheaf of
ℐ{𝑝}(𝐿) consisting of sections that vanish to second order at 𝑝 (see Example 5.2 for
the definition). Then we have an exact sheaf sequence

(10.2) 0 → ℐ 2
{𝑝}(𝐿) ↪ ℐ{𝑝}(𝐿) 𝛿→ (Λ1,0

𝑝 𝑀)𝑝 → 0,

where the sheaf on the right is the skyscraper sheaf whose stalk at 𝑝 is Λ1,0
𝑝 𝑀 with

all other stalks zero, and 𝛿(𝑓𝑠) = 𝑑𝑓𝑝. Surjectivity at (Λ1,0
𝑝 𝑀)𝑝 can be proved

by choosing holomorphic coordinates (𝑧1, … , 𝑧𝑛) on a neighborhood 𝑈 of 𝑝 and
centered at 𝑝, and noting that for any 𝜂 = ∑𝑗 𝑐𝑗𝑑𝑧𝑗|𝑝 ∈ Λ1,0

𝑝 𝑀 , the section 𝜎(𝑧) =
( ∑𝑗 𝑐𝑗𝑧𝑗)𝑠(𝑧) lies in ℐ{𝑝}(𝑈; 𝐿) and satisfies 𝛿(𝜎) = 𝜂. Exactness at ℐ{𝑝}(𝐿)
follows from the fact that, thanks to Taylor’s theorem, a holomorphic function 𝑓
satisfying 𝑓(𝑝) = 0 and 𝑑𝑓𝑝 = 0 can be written in local holomorphic coordinates
centered at 𝑝 in the form 𝑓(𝑧) = ∑𝑗,𝑘 𝑧𝑗𝑧𝑘𝑔𝑗𝑘(𝑧) for some holomorphic functions
𝑔𝑗𝑘.

The next exercise shows that proving 𝒪(𝑀; 𝐿) separates directions is equiva-
lent to proving that the global section map 𝛿𝑀 ∶ ℐ{𝑝}(𝑀; 𝐿) → Λ1,0

𝑝 𝑀 is surjec-
tive for every 𝑝 ∈ 𝑀 . Once again, the obstruction lies in the cohomology group
𝐻1(𝑀; ℐ 2

{𝑝}(𝐿)).
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► Exercise 10.1. With notation as above, show that 𝛿𝑀 ∶ ℐ{𝑝}(𝑀; 𝐿) → Λ1,0
𝑝 𝑀

is surjective if and only if for every nonzero 𝑣 ∈ 𝑇 ′
𝑝 𝑀 , there exists a global section

𝜎 ∈ ℐ{𝑝}(𝑀; 𝐿) that can be expressed in a neighborhood of 𝑝 as 𝜎 = 𝑓𝑠, where
𝑓(𝑝) = 0 and 𝑣𝑓 ≠ 0.

This setup is promising, but unfortunately we have no tools for evaluating co-
homology of sheaves like ℐ{𝑝,𝑞}(𝐿) or ℐ 2

{𝑝}(𝐿) (except in the case dim𝑀 = 1, as
we will see below). On the other hand, the sheaf of sections of 𝐿 that vanish on
a hypersurface is isomorphic to the sheaf of sections of a holomorphic line bundle
by the result of Proposition 5.16, and we will prove a theorem below (the Kodaira
vanishing theorem) that gives conditions under which the cohomology groups of
such a sheaf are zero. So the plan is to transfer the problem to the blowup of 𝑀 at
the points 𝑝 and 𝑞 (for separating points) or at 𝑝 alone (for separating directions),
where the selected points are replaced by hypersurfaces, and try to find an appro-
priate line bundle to which we can apply the Kodaira vanishing theorem. (When
dim𝑀 = 1, individual points are hypersurfaces, so blowing up is not necessary.
As Problem 10-3 shows, the proof is simpler in that case.)

The Kodaira Vanishing Theorem
Themain tool for proving that the crucial cohomology groups are zero is a vanishing
theorem for certain cohomology groups of sheaves of sections of line bundles. We
begin by extending the Hodge-theoretic results of Chapter 9 to bundle-valued forms
on a Kähler manifold.

Suppose 𝑀 is a complex manifold and 𝐸 → 𝑀 is a Hermitian vector bundle.
Let ∇ be a connection on 𝐸, and let 𝐷 ∶ ℰ𝑘(𝑀; 𝐸) → ℰ𝑘+1(𝑀; 𝐸) be the exterior
covariant derivative determined by ∇ (Prop. 7.11). On (𝑝, 𝑞)-forms, we can decom-
pose this operator as 𝐷 = 𝐷′ + 𝐷″, where 𝐷′ maps ℰ𝑝,𝑞(𝑀; 𝐸) to ℰ𝑝+1,𝑞(𝑀; 𝐸)
and 𝐷″ maps ℰ𝑝,𝑞(𝑀; 𝐸) to ℰ𝑝,𝑞+1(𝑀; 𝐸).

We define two Laplace-type operators Δ′, Δ″ ∶ ℰ𝑝,𝑞(𝑀; 𝐸) → ℰ𝑝,𝑞(𝑀; 𝐸):

(10.3) Δ′𝛼 = 𝐷′𝐷′∗𝛼 + 𝐷′∗𝐷′𝛼, Δ″𝛼 = 𝐷″𝐷″∗𝛼 + 𝐷″∗𝐷″𝛼.

Unlike the case of the Dolbeault Laplacian and its conjugate acting on scalar-valued
forms, these two operators are generally not equal on Kähler manifolds; but in the
case of a holomorphic bundle with its Chern connection, there is an important for-
mula for their difference. The first step in relating these operators is to prove a
bundle-valued analogue of the Kähler identities.

Proposition 10.2 (Kähler Identities for Bundle-Valued Forms). Suppose 𝑀 is
a Kähler manifold with Kähler form 𝜔; 𝐸 → 𝑀 is a smooth Hermitian vector
bundle; ∇ is a metric connection on 𝐸; 𝐷′, 𝐷″ are the exterior covariant derivative
operators definedwith respect to∇;and𝐿𝜔 ∶ ℰ𝑝,𝑞(𝑀; 𝐸) → ℰ𝑝+1,𝑞+1(𝑀; 𝐸) is the



318 10. The Kodaira Embedding Theorem

bundle homomorphism 𝐿𝜔𝜂 = 𝜔 ∧ 𝜂. The following identities hold:

(a) [𝐷″∗, 𝐿𝜔] = 𝑖𝐷′.
(b) [𝐷′∗, 𝐿𝜔] = −𝑖𝐷″.
(c) [𝐿∗

𝜔, 𝐷″] = −𝑖𝐷′∗.
(d) [𝐿∗

𝜔, 𝐷′] = 𝑖𝐷″∗.

Proof. We begin with (a). Suppose (𝑠𝑗) is a local frame for 𝐸 on an open set
𝑈 ⊆ 𝑀 , and 𝛼 = 𝛼𝑗 ⊗ 𝑠𝑗 is an 𝐸-valued (𝑝, 𝑞 − 1)-form. If 𝜃𝑘

𝑗 denotes the matrix
of connection 1-forms with respect to this frame, then (7.11) gives the following
local expression for 𝐷𝛼:

𝐷𝛼 = 𝑑𝛼𝑗 ⊗ 𝑠𝑗 + (−1)𝑝+𝑞−1(𝛼𝑗 ∧ 𝜃𝑘
𝑗 ) ⊗ 𝑠𝑘,

and therefore

𝐷′𝛼 = 𝜕𝛼𝑗 ⊗ 𝑠𝑗 + (−1)𝑝+𝑞−1(𝛼𝑗 ∧ (𝜃′)𝑘
𝑗 ) ⊗ 𝑠𝑘,

𝐷″𝛼 = 𝜕𝛼𝑗 ⊗ 𝑠𝑗 + (−1)𝑝+𝑞−1(𝛼𝑗 ∧ (𝜃″)𝑘
𝑗 ) ⊗ 𝑠𝑘,

where 𝜃′ and 𝜃″ represent the (1, 0)- and (0, 1)-parts of 𝜃, respectively. Let us write
the second terms on the right-hand sides as 𝜃′𝛼 and 𝜃″𝛼, so

𝐷′𝛼 = 𝜕𝛼𝑗 ⊗ 𝑠𝑗 + 𝜃′𝛼,
𝐷″𝛼 = 𝜕𝛼𝑗 ⊗ 𝑠𝑗 + 𝜃″𝛼,

Now suppose 𝛼 is as above and 𝛽 = 𝛽𝑘 ⊗ 𝑠𝑘 is an 𝐸-valued (𝑝, 𝑞)-form, and
both are compactly supported in 𝑈 . Then by the way we have defined the inner
product of 𝐸-valued forms and the fact that the frame (𝑠𝑗) is orthonormal, we have

(𝐷″𝛼, 𝛽) = ∫𝑀
⟨𝜕𝛼𝑗 ⊗ 𝑠𝑗 , 𝛽𝑘 ⊗ 𝑠𝑘⟩𝑑𝑉𝑔 + (𝜃″𝛼, 𝛽)

= ∫𝑀 ∑
𝑗

⟨𝜕𝛼𝑗 , 𝛽𝑗⟩𝑑𝑉𝑔 + (𝜃″𝛼, 𝛽)

= ∫𝑀 ∑
𝑗

⟨𝛼𝑗 , 𝜕∗𝛽𝑗⟩𝑑𝑉𝑔 + (𝛼, 𝜃″∗𝛽),

which shows that
𝐷″∗𝛽 = 𝜕∗𝛽𝑘 ⊗ 𝑠𝑘 + 𝜃″∗𝛽

for such forms. Since every form agrees on a neighborhood of each point with a
form compactly supported in 𝑈 , this expression holds everywhere in 𝑈 .
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Since 𝐿𝜔𝛽 = (𝐿𝜔𝛽𝑘) ⊗ 𝑠𝑘, we have
𝐷″∗𝐿𝜔𝛽 = 𝐷″∗((𝐿𝜔𝛽𝑘) ⊗ 𝑠𝑘)

= (𝜕∗𝐿𝜔𝛽𝑘) ⊗ 𝑠𝑘 + 𝜃″∗𝐿𝜔𝛽,
and

𝐿𝜔𝐷″∗𝛽 = 𝐿𝜔(𝜕∗𝛽𝑘) ⊗ 𝑠𝑘 + 𝐿𝜔𝜃″∗𝛽.
Therefore, using the corresponding Kähler identity for scalar-valued forms (Prop.
9.38(a)), we find

(10.4)
[𝐷″∗, 𝐿𝜔]𝛽 = ([𝜕∗, 𝐿𝜔]𝛽𝑘) ⊗ 𝑠𝑘 + [𝜃″∗, 𝐿𝜔]𝛽

= (𝑖𝜕𝛽𝑘) ⊗ 𝑠𝑘 + [𝜃″∗, 𝐿𝜔]𝛽
= 𝑖𝐷′𝛽 − 𝑖𝜃′𝛽 + [𝜃″∗, 𝐿𝜔]𝛽.

This formula holds with respect to every local orthonormal frame. On the other
hand, since both sides of (a) are defined independently of any choice of frame, for
each 𝑥0 ∈ 𝑀 we can use any convenient frame to verify the identity at 𝑥0. Lemma
7.3 shows that we can choose an orthonormal frame with the property that 𝜃𝑗

𝑘 = 0
at 𝑥0. Because 𝜃′ and 𝜃″ do not involve differentiation, it follows that 𝜃′ and 𝜃″∗

both vanish at 𝑥0, and then (10.4) shows that (a) holds at 𝑥0. This proves (a).
The proof of (b) is exactly the same, with single-primed and double-primed

expressions interchanged; and then (c) and (d) follow by taking adjoints. □

Besides the Kähler identities, the other key ingredient in proving that Δ𝜕 = Δ𝜕
on scalar-valued forms (Lemma 9.42) was the fact that 𝜕𝜕 = −𝜕𝜕, which follows
immediately from 𝑑2 = 0. But in the present context, the role of 𝑑 is played by
the exterior covariant derivative 𝐷, whose square is not zero. Instead, we have the
following lemma.

Lemma 10.3. Suppose 𝐸 → 𝑀 is a Hermitian holomorphic vector bundle and
∇ is its Chern connection. Let 𝐷 = 𝐷′ + 𝐷″ be the exterior covariant derivative
associated with ∇, and let Θ ∈ ℰ1,1(𝑀; 𝐸) be its curvature. Then for every 𝐸-
valued differential form 𝛼,

𝐷′𝐷″𝛼 + 𝐷″𝐷′𝛼 = Θ ∧ 𝛼.

Proof. For 𝛼 ∈ ℰ𝑝,𝑞(𝑀; 𝐸), Proposition 7.11(iii) shows that
Θ ∧ 𝛼 = 𝐷2𝛼 = (𝐷′)2𝛼 + (𝐷′𝐷″𝛼 + 𝐷″𝐷′𝛼) + (𝐷″)2𝛼.

Because Θ is of type (1, 1) (Prop. 7.18), the first and last terms on the right-hand
side are zero, and the result follows. □

Here is the fundamental relation between the two bundle-valued Laplace oper-
ators Δ′ and Δ″, due to Yasuo Akizuki and Shigeo Nakano [AN54].
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Theorem 10.4 (Akizuki–Nakano Identity). Suppose 𝑀 is a Kähler manifold and
𝐸 → 𝑀 is a Hermitian holomorphic vector bundle. Let Δ′ and Δ″ be the Laplace
operators defined by (10.3) with respect to the Chern connection on 𝐸, and let
Ω∶ ℰ𝑝,𝑞(𝑀; 𝐸) → ℰ𝑝+1,𝑞+1(𝑀; 𝐸) be the operator Ω(𝛼) = 𝑖Θ ∧ 𝛼, where Θ is the
curvature of the Chern connection. Then

Δ″ = Δ′ + [Ω, 𝐿∗
𝜔].

Proof. Using Proposition 10.2, we compute
Δ″ = 𝐷″𝐷″∗ + 𝐷″∗𝐷″

= −𝑖𝐷″[𝐿∗
𝜔, 𝐷′] − 𝑖[𝐿∗

𝜔, 𝐷′]𝐷″

= −𝑖(𝐷″𝐿∗
𝜔𝐷′ − 𝐷″𝐷′𝐿∗

𝜔 + 𝐿∗
𝜔𝐷′𝐷″ − 𝐷′𝐿∗

𝜔𝐷″),
and

Δ′ = 𝐷′𝐷′∗ + 𝐷′∗𝐷′

= 𝑖(𝐷′[𝐿∗
𝜔, 𝐷″] + [𝐿∗

𝜔, 𝐷″]𝐷′)
= 𝑖(𝐷′𝐿∗

𝜔𝐷″ − 𝐷′𝐷″𝐿∗
𝜔 + 𝐿∗

𝜔𝐷″𝐷′ − 𝐷″𝐿∗
𝜔𝐷′).

Therefore, Lemma 10.3 gives
Δ″ − Δ′ = 𝑖(𝐷″𝐷′ + 𝐷′𝐷″)𝐿∗

𝜔 − 𝑖𝐿∗
𝜔(𝐷″𝐷′ + 𝐷′𝐷″)

= [Ω, 𝐿∗
𝜔]. □

This does not directly yield results analogous to the Hodge decomposition for
scalar-valued forms; but in special cases when something can be said about the
curvature, it can lead to very powerful results. We will see one such application
below—the Kodaira–Nakano–Akizuki vanishing theorem (Thm. 10.6).

The Kodaira–Nakano–Akizuki Vanishing Theorem

Recall that a holomorphic line bundle 𝐿 is said to be positive if its first real
Chern class is represented by a positive (1, 1)-form, that is, a real (1, 1)-form 𝜔
such that 𝜔(𝑋, 𝐽𝑋) > 0 for all nonzero 𝑋. For example, the hyperplane bundle on
ℂℙ𝑛 is positive because it has a fiber metric whose Chern form is a positive multiple
of the Kähler form of the Fubini–Study metric (see Example 8.14).

Proposition 10.5 (Basic Properties of Positive Line Bundles). Suppose 𝑀 is a
compact complex manifold and 𝐿 → 𝑀 is a positive holomorphic line bundle.

(a) There exist a Kähler metric on 𝑀 and a Hermitian fiber metric on 𝐿 such
that 𝑖

2𝜋 Θ𝐿 is equal to the Kähler form, where Θ𝐿 is the curvature of the
Chern connection on 𝐿.

(b) If 𝑀′ is another complex manifold and 𝑓 ∶ 𝑀′ → 𝑀 is a holomorphic
immersion, then 𝑓 ∗𝐿 → 𝑀′ is also positive.
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Proof. To prove (a), let 𝜔 be a closed, positive (1, 1)-form representing 𝑐ℝ
1 (𝐿).

Then 𝜔 is a Kähler form, so we can endow 𝑀 with the Kähler metric 𝑔 = 𝜔(⋅, 𝐽 ⋅).
By Corollary 9.58, there is a Hermitian fiber metric on 𝐿 whose Chern connection
has a curvature form Θ𝐿 that satisfies 𝑖

2𝜋 Θ𝐿 = 𝜔.
For (b), suppose 𝑓 ∶ 𝑀′ → 𝑀 is a holomorphic immersion. Give 𝐿 the Her-

mitian fiber metric described in part (a), and give 𝑓 ∗𝐿 the pullback metric. Then
Proposition 7.21 shows that the curvature of the Chern connection on 𝑓 ∗𝐿 is given
by Θ𝑓 ∗𝐿 = 𝑓 ∗Θ𝐿. Because 𝐹 is a holomorphic immersion, it follows that for all
𝑥 ∈ 𝑀′ and all nonzero 𝑋 ∈ 𝑇𝑥𝑀′,

𝑖
2𝜋 Θ𝑓 ∗𝐿|𝑥(𝑋, 𝐽𝑋) = 𝑖

2𝜋 𝑓 ∗Θ𝐿|𝑥(𝑋, 𝐽𝑋)

= 𝑖
2𝜋 Θ𝐿|𝑓(𝑥)(𝐷𝑓(𝑥)(𝑋), 𝐽𝐷𝑓(𝑥)(𝑋)) > 0,

which shows that 𝑓 ∗𝐿 is positive. □

The following theorem expresses one of the deepest properties of positive line
bundles. It was proved in 1954 by Yasuo Akizuki and Shigeo Nakano [AN54],
generalizing an earlier result by Kunihiko Kodaira (Cor. 10.7 below).

Theorem 10.6 (Kodaira–Nakano–Akizuki Vanishing Theorem). Suppose 𝑀 is
a compact 𝑛-dimensional complex manifold and 𝐿 → 𝑀 is a positive line bundle.
Then 𝐻𝑝,𝑞(𝑀; 𝐿) = 0 for 𝑝 + 𝑞 > 𝑛.

Proof. Give 𝑀 the Kähler metric and 𝐿 the Hermitian fiber metric described in
Proposition 10.5(a), and endow 𝐿 with the corresponding Chern connection. By the
Hodge–Dolbeault theorem for bundle-valued forms (Thm. 9.35), every cohomol-
ogy class in 𝐻𝑝,𝑞(𝑀; 𝐿) has a 𝜕𝐿-harmonic representative. Let 𝛼 ∈ ℋ 𝑝,𝑞(𝑀; 𝐿)
be such a form. Because we are using the Chern connection on 𝐿, the exterior co-
variant derivative operator is 𝐷 = 𝐷′ + 𝐷″ where 𝐷″ = 𝜕𝐿, and the Dolbeault
Laplacian Δ𝜕𝐿 = 𝜕𝐿𝜕∗

𝐿 + 𝜕∗
𝐿𝜕𝐿 is equal to Δ″.

The Akizuki–Nakano identity (Thm. 10.4) gives

(10.5) 0 = Δ𝜕𝐿𝛼 = Δ″𝛼 = Δ′𝛼 + [Ω, 𝐿∗
𝜔]𝛼.

On the other hand, our choice of Kähler metric gives

Ω𝛼 = 𝑖Θ𝐿 ∧ 𝛼 = 2𝜋𝐿𝜔𝛼.

Therefore, (10.5) combined with Lemma 9.39(a) yields

−Δ′𝛼 = 2𝜋[𝐿𝜔, 𝐿∗
𝜔]𝛼 = 2𝜋(𝑝 + 𝑞 − 𝑛)𝛼.

(Here we are using the fact that 𝐿𝜔 and 𝐿∗
𝜔 act only on the differential form part

of a bundle-valued form, so the commutation relation of Lemma 9.39(a) still holds
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for bundle-valued forms.) Taking the global inner product with 𝛼, we find
2𝜋(𝑝 + 𝑞 − 𝑛)‖𝛼‖2 = −(Δ′𝛼, 𝛼) = −(𝐷′𝐷′∗𝛼, 𝛼) − (𝐷′∗𝐷′𝛼, 𝛼)

= −‖𝐷′∗𝛼‖2 − ‖𝐷′𝛼‖2 ≤ 0.
When 𝑝 + 𝑞 − 𝑛 > 0, this implies 𝛼 = 0. □

The most useful case of the preceding theorem is the one below; it is the orig-
inal vanishing theorem proved by Kunihiko Kodaira in 1953 [Kod53] and later
generalized as above by Akizuki and Nakano.
Corollary 10.7 (Kodaira Vanishing Theorem). If 𝑀 is a compact complex man-
ifold, 𝐿 → 𝑀 is a positive line bundle, and 𝐾 → 𝑀 is the canonical bundle, then
𝐻𝑞(𝑀; 𝒪(𝐾 ⊗ 𝐿)) = 0 for all 𝑞 > 0.

Proof. Note that 𝐾 = Λ𝑛,0𝑀 (where 𝑛 = dim𝑀), so 𝒪(𝐾 ⊗ 𝐿) = Ω𝑛(𝐿). By
the Dolbeault theorem, 𝐻𝑞(𝑀; Ω𝑛(𝐿)) ≅ 𝐻𝑛,𝑞(𝑀; 𝐿), and the result follows from
Theorem 10.6. □

In practical applications of the Kodaira vanishing theorem, it is usually more
useful to express the conclusion in terms of the cohomology of the sheaf of sections
of a specific line bundle 𝐿, instead of 𝐾 ⊗ 𝐿. The next corollary shows how.
Corollary 10.8. Suppose 𝑀 is a compact complex manifold and 𝐿 → 𝑀 is a
complex line bundle such that 𝐾∗ ⊗ 𝐿 is positive. Then 𝐻𝑞(𝑀; 𝒪(𝐿)) = 0 for all
𝑞 > 0.

Proof. This follows from the previous corollary applied to 𝐿′ = 𝐾∗ ⊗ 𝐿, noting
that 𝐾 ⊗ 𝐿′ ≅ 𝐿. □

Line Bundles on Blowups

As mentioned at the beginning of this chapter, the strategy for proving the Ko-
daira embedding theorem is to transfer the problem to a blowup, thus converting
sheaves of sections vanishing at a point to sheaves of sections vanishing on a hy-
persurface. The next preliminary result we need is a general fact about lifting a
positive line bundle to a blowup. This is the most technically complicated part of
the proof of the embedding theorem.
Proposition 10.9. Suppose 𝑀 is a compact complex manifold of dimension 𝑛 ≥ 2
and 𝐿 → 𝑀 is a positive line bundle. For any 𝑝 ∈ 𝑀 , let 𝜋𝑝 ∶ 𝑀𝑝 → 𝑀 denote
the blowup of 𝑀 at 𝑝, let 𝑆𝑝 = 𝜋−1

𝑝 (𝑝) be the exceptional hypersurface, and let
𝐿𝑆𝑝 → 𝑀𝑝 be the line bundle associated with 𝑆𝑝. There exists an integer 𝑘0 > 0
such that for every integer 𝑘 ≥ 𝑘0 and every point 𝑝 ∈ 𝑀 , the following line bundle
on 𝑀𝑝 is positive:

𝜋∗
𝑝 𝐿𝑘 ⊗ 𝐿∗

𝑆𝑝
.
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Proof. Give 𝑀 the Kähler metric and 𝐿 the Hermitian fiber metric described in
Proposition 10.5(a), and endow 𝐿 with the corresponding Chern connection, so the
Chern form 𝑖

2𝜋 Θ𝐿 is equal to the Kähler form 𝜔. Fix 𝑝 ∈ 𝑀 and let 𝜋𝑝 ∶ 𝑀𝑝 → 𝑀
be the blowup. By Proposition 7.21, the Chern form of 𝜋∗

𝑝 𝐿 with respect to the
pullback metric is equal to

𝑖
2𝜋 𝜋∗

𝑝 Θ𝐿 = 𝜋∗
𝑝 𝜔.

Since 𝜋𝑝 restricts to a biholomorphism from 𝑀𝑝 ∖ 𝑆𝑝 to 𝑀 ∖ {𝑝}, and biholomor-
phisms pull positive (1, 1)-forms back to positive (1, 1)-forms, this shows that the
Chern form of 𝜋∗

𝑝 𝐿 is positive on 𝑀𝑝 ∖ 𝑆𝑝, and thus so is the Chern form of 𝜋∗
𝑝 𝐿𝑘

for all 𝑘 > 0. However, at a point 𝑥 ∈ 𝑆𝑝, because 𝐷𝜋𝑝(𝑥)(𝑌 ) = 0 exactly when
𝑌 ∈ 𝑇𝑥𝑆𝑝, this form is positive when applied to vectors in 𝑇𝑥𝑀𝑝 ∖ 𝑇𝑥𝑆𝑝, but zero
when restricted to 𝑇𝑥𝑆𝑝. We will use the bundle 𝐿∗

𝑆𝑝
to correct this, at the cost of

introducing some negativity in 𝑀𝑝 ∖ 𝑆𝑝, which we can eliminate by raising 𝐿 to a
high enough power.

Let (𝑣1, … , 𝑣𝑛) be a holomorphic coordinate chart on an open set 𝑊 ⊆ 𝑀
centered at 𝑝, whose image contains a closed ball 𝐵𝜀(0) ⊆ ℂ𝑛. For each 𝑠 ∈ (0, 𝜀],
let 𝑊𝑠 denote the subset of 𝑊 where |𝑣| < 𝑠. Let 𝑊 = 𝜋−1

𝑝 (𝑊𝜀) ⊆ 𝑀𝑝, identified
with the subset 𝑇 (𝜀) of the tautological bundle 𝑇 as in (3.13), so we can write

𝑊 = {([𝑤], 𝑣) ∶ [𝑤] ∈ ℂℙ𝑛−1, 𝑣 ∈ [𝑤], |𝑣| < 𝜀}.

With this identification, 𝑆𝑝 = {([𝑤], 𝑣) ∶ 𝑣 = 0}, and the restriction of the blow-
down map 𝜋 ∶ 𝑊 → 𝑊 is given by 𝜋([𝑤], 𝑣) = (𝑣1, … , 𝑣𝑛). There is a holomor-
phic retraction 𝑟∶ 𝑊 → 𝑆𝑝 given by 𝑟([𝑤], 𝑣) = ([𝑤], 0).

Cover 𝑊 with open sets 𝑈𝛼 , 𝛼 = 1, … , 𝑛, where 𝑈𝛼 = {([𝑤], 𝑣) ∶ 𝑤𝛼 ≠ 0},
and let 𝑈0 = 𝑀𝑝 ∖ 𝑆𝑝. We construct a system of local defining functions for 𝑆𝑝 as
follows. On each set 𝑈𝛼 with 𝛼 ≠ 0, we take 𝑓𝛼 = 𝑣𝛼 , which vanishes simply on
𝑈𝛼 ∩ 𝑆𝑝; and on 𝑈0, we take 𝑓0 ≡ 1. Theorem 3.39 shows that {𝑈0, 𝑈1, … , 𝑈𝑛}
is a trivializing cover for 𝐿𝑆𝑝 . The transition function on 𝑈𝛼 ∩ 𝑈𝛽 for nonzero 𝛼, 𝛽
is the holomorphic extension of 𝑣𝛼/𝑣𝛽 to 𝑈𝛼 ∩ 𝑈𝛽 , which is equal to 𝑤𝛼/𝑤𝛽 on all
of 𝑈𝛼 ∩ 𝑈𝛽 . On 𝑈𝛼 ∩ 𝑈0, on the other hand, the transition function is 𝑓𝛼/𝑓0 = 𝑣𝛼 .
Thus for this trivializing cover, 𝐿𝑆𝑝 has transition functions

𝜏𝛼0 = 𝑣𝛼 on 𝑈𝛼 ∩ 𝑈0,

𝜏𝛼𝛽 = 𝑤𝛼

𝑤𝛽 on 𝑈𝛼 ∩ 𝑈𝛽 for 𝛼, 𝛽 ∈ {1, … , 𝑛}.

On the other hand, 𝑆𝑝 is biholomorphic to ℂℙ𝑛−1, and Proposition 3.32 shows
that the tautological bundle 𝐻∗ over 𝑆𝑝 is trivial over {𝑈1 ∩ 𝑆𝑝, … , 𝑈𝑛 ∩ 𝑆𝑝} with
the restrictions of the same transition functions. Since the retraction 𝑟∶ 𝑊 →
𝑆𝑝 satisfies 𝑟∗(𝑤𝛼/𝑤𝛽) = 𝑤𝛼/𝑤𝛽 for each 𝛼 and 𝛽, this shows that the transition
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functions for 𝐿𝑆𝑝 over 𝑊 are the pullbacks by 𝑟 of those for 𝐻∗, so 𝐿𝑆𝑝|𝑊 ≅ 𝑟∗𝐻∗.
Taking duals shows that 𝐿∗

𝑆𝑝|𝑊 ≅ 𝑟∗𝐻 .

Because 𝐻 → ℂℙ𝑛−1 is a positive line bundle, it has a Hermitian fiber metric
whose Chern form 𝑖

2𝜋 Θ𝐻 is a positive (1, 1)-form, so on 𝑊 we can give 𝐿∗
𝑆𝑝|𝑊 the

pullback metric ⟨⋅, ⋅⟩𝑟∗𝐻 , which has Chern form

𝑖
2𝜋 Θ𝑟∗𝐻 = 𝑖

2𝜋 𝑟∗Θ𝐻 .

This form is nonnegative everywhere, and it is positive when restricted to vectors
tangent to 𝑆𝑝 because 𝑟 restricts to the identity on 𝑆𝑝.

By Theorem 3.39, there is a global section 𝜎 ∈ 𝒪(𝑀𝑝, 𝐿𝑆𝑝) that vanishes only
on 𝑆𝑝. Thus the restriction of 𝜎 to 𝑀𝑝 ∖ 𝑆𝑝 is a local holomorphic frame for 𝐿𝑆𝑝
there, and we can define a fiber metric ⟨⋅, ⋅⟩1 on 𝐿𝑆𝑝|𝑀𝑝∖𝑆𝑝

by setting ⟨𝜎, 𝜎⟩1 ≡ 1.
Because |𝜎|2

1 is constant, the curvature of the Chern connection for this metric is
identically zero. Give 𝐿∗

𝑆𝑝|𝑀𝑝∖𝑆𝑝
the dual metric, also denoted by ⟨⋅, ⋅⟩1; it too has

zero curvature.
We now create a global fiber metric on 𝐿∗

𝑆𝑝
by blending these two metrics to-

gether. Fix once and for all a smooth cutoff function 𝜑∶ [0, ∞) → [0, 1] sup-
ported in [0, 3𝜀/4) and identically 1 on [0, 𝜀/2], and define a smooth function
𝜌∶ 𝑀𝑝 → [0, 1] by 𝜌([𝑤], 𝑣) = 𝜑(|𝑣|) for ([𝑤], 𝑣) ∈ 𝑊 , extended by zero to
the rest of 𝑀𝑝. Define a Hermitian fiber metric ⟨⋅, ⋅⟩𝑝 on 𝐿∗

𝑆𝑝
by

⟨⋅, ⋅⟩𝑝 = 𝜌⟨⋅, ⋅⟩𝑟∗𝐻 + (1 − 𝜌)⟨⋅, ⋅⟩1.

The Chern form 𝑖
2𝜋 Θ𝑝 associated with ⟨⋅, ⋅⟩𝑝 is nonnegative on 𝜋−1

𝑝 (𝑊𝜀/2) (where
𝜌 ≡ 1), is strictly positive when restricted to 𝑇 𝑆𝑝, and is zero on 𝑀𝑝 ∖ 𝜋−1

𝑝 (𝑊3𝜀/4);
but it may have positive and/or negative values on 𝜋−1

𝑝 (𝑊3𝜀/4 ∖ 𝑊𝜀/2) where 𝜌 is not
constant.

Let 𝜎𝑝 ∶ 𝑀 ∖ {𝑝} → 𝑀𝑝 ∖ 𝑆𝑝 be the inverse of the biholomorphism 𝜋𝑝|𝑀𝑝∖𝑆𝑝 ,
and let Ψ𝑝 = 𝜎∗

𝑝 Θ𝑝, which is a smooth (1, 1)-form on 𝑀 ∖ {𝑝}. It is nonnegative
everywhere on 𝑀 ∖ {𝑝} except perhaps in the compact annulus 𝐾 = 𝑊 3𝜀/4 ∖ 𝑊𝜀/2.
The set 𝑈𝑇 𝐾 of unit tangent vectors to 𝐾 is compact [LeeRM, Prop. 2.9], so the
expression 𝑖

2𝜋 Ψ𝑝(𝑋, 𝐽𝑋) is bounded when applied to unit vectors there. Because
𝑖

2𝜋 Θ𝐿(𝑋, 𝐽𝑋) = 𝜔(𝑋, 𝐽𝑋) = 𝑔(𝑋, 𝑋) = 1 for every unit vector 𝑋, it follows that
the form

(10.6) 𝑖
2𝜋 (𝑘Θ𝐿 + Ψ𝑝)

is positive on 𝑀 ∖ {𝑝} for 𝑘 sufficiently large.
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The tensor product metric on 𝜋∗
𝑝 𝐿𝑘 ⊗ 𝐿∗

𝑆𝑝
has its Chern form equal to

(10.7) 𝑖
2𝜋 (𝑘𝜋∗

𝑝 Θ𝐿 + Θ𝑝).

For 𝑘 sufficiently large, this form is positive on 𝑀𝑝 ∖ 𝑆𝑝 because it is the pullback
of the positive form (10.6); at points of 𝑆𝑝, both terms are nonnegative, while the
second term is positive when applied to vectors tangent to 𝑆𝑝, and the first term is
positive when applied to everything else.

To see that we can choose 𝑘 independently of 𝑝, we start by deriving an explicit
formula for the form Ψ𝑝 defined above. Example 7.26 shows that the tautological
bundle 𝐻∗ over 𝑆𝑝 ≈ ℂℙ𝑛−1 has a trivializing cover {𝑈1 ∩ 𝑆𝑝, … , 𝑈𝑛 ∩ 𝑆𝑝}, and
on 𝑈𝛼 ∩ 𝑆𝑝 we have a local frame 𝑠𝛼 whose norm is

|𝑠𝛼|2
𝐻∗ = |𝑤|2

|𝑤𝛼|2 .

Therefore, the dual frame 𝑠∗
𝛼 for 𝐻 has norm

(10.8) |𝑠∗
𝛼|2

𝐻 = |𝑤𝛼|2

|𝑤|2 .

On each set 𝑈𝛼 , the local frame 𝑠∗
𝛼 for 𝐻 pulls back under 𝑟 to a local frame for

𝐿∗
𝑆𝑝|𝑈𝛼

, which for simplicity we also denote by 𝑠∗
𝛼 . The norm of the pullback

frame with respect to the pullback metric is given by the same formula (10.8)
on 𝑈𝛼 because 𝑟∗(|𝑤𝛼|2/|𝑤|2) = |𝑤𝛼|2/|𝑤|2. However, on 𝑈𝛼 ∖ 𝑆𝑝, note that
|𝑤𝛼|2/|𝑤|2 = |𝑣𝛼|2/|𝑣|2, so we can also express the norm there as

|𝑠∗
𝛼|2

𝑟∗𝐻 = |𝑣𝛼|2

|𝑣|2 .

On 𝑈𝛼 ∩ 𝑈0 = 𝑈𝛼 ∖ 𝑆𝑝, on the other hand, Theorem 3.39 shows that the global
section 𝜎 of 𝐿𝑆𝑝 can be expressed as 𝜎 = 𝑓𝛼𝑠𝛼 = 𝑣𝛼𝑠𝛼 (no implicit summation),
and therefore the dual frame 𝜎∗ for 𝐿∗

𝑆𝑝
over 𝑈𝛼 ∖ 𝑆𝑝 satisfies 𝜎∗ = (1/𝑣𝛼)𝑠∗

𝛼 . Since
|𝜎∗|1 = 1 by design, we have

|𝑠∗
𝛼|2

1 = |𝑣𝛼|2.

Thus our blended metric has the local formula

|𝑠∗
𝛼|2

𝑝 = 𝜌|𝑣𝛼|2

|𝑣|2 + (1 − 𝜌)|𝑣𝛼|2 =
|𝑣𝛼|2(𝜌 + (1 − 𝜌)|𝑣|2)

|𝑣|2
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on 𝑈𝛼 ∖ 𝑆𝑝, and the curvature of its Chern connection is

(10.9)

Θ𝑝|𝑈𝛼∖𝑆𝑝
= 𝜕𝜕 log

|𝑣𝛼|2(𝜌 + (1 − 𝜌)|𝑣|2)
|𝑣|2

= 𝜕𝜕
(
log |𝑣𝛼|2 + log (𝜌 + (1 − 𝜌)|𝑣|2)

|𝑣|2 )

= 𝜕𝜕 log (𝜌 + (1 − 𝜌)|𝑣|2)
|𝑣|2 ,

where we have used the fact that 𝜕𝜕 log |𝑣𝛼|2 = 0, which can be seen by writing
log |𝑣𝛼|2 = log 𝑣𝛼 + log 𝑣𝛼 in a neighborhood of each point where a branch of the
complex logarithm is defined. The notable thing about this formula is that it is
independent of 𝛼, so it actually holds on all of 𝑊 ∖ 𝑆𝑝. Since the restriction of 𝜎𝑝
to 𝑊𝜀 ∖ {𝑝} is given by 𝜎𝑝(𝑣) = ([𝑣], 𝑣), it follows that the pullback Ψ𝑝 = 𝜎∗

𝑝 Θ𝑝 is
given by the same formula (10.9) on 𝑊𝜀 ∖ {𝑝}.

Now let 𝑞 = (𝑞1, … , 𝑞𝑛) be any other point in the open set 𝑊𝜀/4. We can carry
out the same construction of a fiber metric on 𝐿∗

𝑆𝑞
using coordinates ( ̃𝑣1, … , ̃𝑣𝑛),

where ̃𝑣𝑗 = 𝑣𝑗 − 𝑞𝑗 . Defining 𝜎𝑞 ∶ 𝑀 ∖ {𝑞} → 𝑀𝑞 and Ψ𝑞 = 𝜎∗
𝑞 Θ𝑞 as above, we

find that that construction results in

Ψ𝑞 = 𝜕𝜕 log (𝜑(| ̃𝑣|) + (1 − 𝜑(| ̃𝑣|))| ̃𝑣|2)
| ̃𝑣|2

= 𝜕𝜕 log (𝜑(|𝑣 − 𝑞|) + (1 − 𝜑(|𝑣 − 𝑞|))|𝑣 − 𝑞|2)
|𝑣 − 𝑞|2

on 𝑊 𝜀 ∖ {𝑞}. For any such 𝑞, the form Ψ𝑞 is nonnegative except possibly in the
compact annulus 𝐾′ = 𝑊 𝜀 ∖ 𝑊𝜀/4, and the expression 𝑖

2𝜋 Ψ𝑞|𝑥(𝑋, 𝐽𝑋) depends
continuously on 𝑞 ∈ 𝑊𝜀/4 and (𝑥, 𝑋) ∈ 𝑈𝑇 𝐾′. Since 𝑊 𝜀/8 × 𝑈𝑇 𝐾′ is compact,
there exists an integer 𝑘𝑝 such that 𝑖

2𝜋 (𝑘Θ𝐿 + Ψ𝑞) is positive for all 𝑘 ≥ 𝑘𝑝 and
all 𝑞 in the neighborhood 𝑊𝜀/8 of 𝑝, which implies as above that 𝜋∗

𝑞 𝐿𝑘 ⊗ 𝐿∗
𝑆𝑞

is
positive for all such 𝑘 and 𝑞. Since 𝑀 is compact, we can cover it with finitely
many such neighborhoods and let 𝑘0 be the largest such integer, thus completing
the proof. □

For proving that 𝒪(𝑀; 𝐿𝑘) separates points, we will also need an adaptation of
the previous result for blowups at two points.

Proposition 10.10. With𝑀 and𝐿 as in the hypothesis of Proposition 10.9, let 𝑘0 be
the integer guaranteed by that proposition. For a pair of distinct points 𝑝, 𝑞 ∈ 𝑀 ,
let 𝜋𝑝𝑞 ∶ 𝑀𝑝𝑞 → 𝑀 be the blowup of 𝑀 at 𝑝 and 𝑞, and let 𝑆𝑝 = 𝜋−1

𝑝𝑞 ({𝑝}) and
𝑆𝑞 = 𝜋−1

𝑝𝑞 ({𝑞}). For any 𝑘 ≥ 𝑘0 and any distinct 𝑝, 𝑞 ∈ 𝑀 , the following line
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bundle on 𝑀𝑝𝑞 is positive:

𝜋∗
𝑝𝑞𝐿2𝑘 ⊗ 𝐿∗

𝑆𝑝
⊗ 𝐿∗

𝑆𝑞
.

Proof. Let 𝑝, 𝑞 ∈ 𝑀 be an arbitrary pair of distinct points, and 𝑘 ≥ 𝑘0. If we let
𝜋𝑝 ∶ 𝑀̃𝑝 → 𝑀 and 𝜋𝑞 ∶ 𝑀̃𝑞 → 𝑀 be the blowups of 𝑀 at 𝑝 and 𝑞, respectively,
we have a commutative diagram of blowdown maps:

𝑀𝑝𝑞𝜋𝑞

}}{{
{{
{{
{{

𝜋𝑝𝑞

��

𝜋𝑝

!!C
CC

CC
CC

C

𝑀̃𝑝

𝜋𝑝 ""E
EE

EE
EE

E
𝑀̃𝑞

𝜋𝑞||yy
yy
yy
yy

𝑀.

With 𝑆𝑝 = 𝜋−1
𝑝 ({𝑝}) and 𝑆𝑞 = 𝜋−1

𝑞 ({𝑞}), Proposition 10.9 shows that both of
the bundles 𝜋∗

𝑝𝐿𝑘 ⊗ 𝐿∗
𝑆𝑝

→ 𝑀̃𝑝 and 𝜋∗
𝑞𝐿𝑘 ⊗ 𝐿∗

𝑆𝑞
→ 𝑀̃𝑞 are positive. Because

𝜋𝑞 ∶ 𝑀𝑝𝑞 → 𝑀̃𝑝 is a biholomorphism from a neighborhood of 𝑆𝑝 to a neighbor-
hood of 𝑆𝑝, it follows from Problem 3-12 that 𝜋∗

𝑞 𝐿𝑆𝑝 ≅ 𝐿𝑆𝑝 . Thus the bundle
𝜋∗

𝑝𝑞𝐿𝑘 ⊗ 𝐿∗
𝑆𝑝

≅ 𝜋∗
𝑞 (𝜋∗

𝑝𝐿𝑘 ⊗ 𝐿∗
𝑆𝑝) has a Chern form that is positive on 𝑀𝑝𝑞 ∖ 𝑆𝑞 ,

where 𝜋𝑞 is a biholomorphism onto its image; at points of 𝑆𝑞 , it is merely nonneg-
ative. Similarly, 𝜋∗

𝑝𝑞𝐿𝑘 ⊗ 𝐿∗
𝑆𝑞

has a Chern form that is positive on 𝑀𝑝𝑞 ∖ 𝑆𝑝 and
nonnegative at points of 𝑆𝑝. Therefore, the tensor product of these two bundles,
namely

(𝜋∗
𝑝𝑞𝐿𝑘 ⊗ 𝐿∗

𝑆𝑝) ⊗ (𝜋∗
𝑝𝑞𝐿𝑘 ⊗ 𝐿∗

𝑆𝑞 ) ≅ 𝜋∗
𝑝𝑞𝐿2𝑘 ⊗ 𝐿∗

𝑆𝑝
⊗ 𝐿∗

𝑆𝑞
,

has a Chern form that is the sum of the two, which is positive everywhere. □

Because the Kodaira vanishing theorem involves the canonical bundle, it will
also be important to have explicit information about the canonical bundle of a
blowup.

Proposition 10.11. Suppose 𝑀 is a complex 𝑛-manifold and 𝜋 ∶ 𝑀̃ → 𝑀 is the
blowup of 𝑀 at finitely many points 𝑝1, … , 𝑝𝑚 ∈ 𝑀 . Let 𝐾 denote the canonical
bundle of 𝑀 , 𝐾 the canonical bundle of 𝑀̃ , and for each 𝑖, 𝐿𝑆𝑖 the line bundle
associated with the exceptional hypersurface 𝑆𝑖 = 𝜋−1({𝑝𝑖}). Then

(10.10) 𝐾 ≅ 𝜋∗𝐾 ⊗ 𝐿𝑛−1
𝑆1

⊗ ⋯ ⊗ 𝐿𝑛−1
𝑆𝑚

.

Proof. For simplicity, we will prove the proposition for the blowup at one point.
The generalization of the proof to multiple points is more complicated notationally
but not conceptually, so it is left to the reader.
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Thus let 𝑀̃ be the blowup of 𝑀 at 𝑝 ∈ 𝑀 , and let 𝐿𝑆 be the line bundle
associated with the exceptional hypersurface 𝑆 = 𝜋−1({𝑝}). We will prove that

(10.11) 𝐾 ≅ 𝜋∗𝐾 ⊗ 𝐿𝑛−1
𝑆

by showing that the bundles on both sides of the equality have a trivializing cover
with the same transition functions.

We begin by constructing a trivializing cover of 𝑀 for 𝐾 . Choose a holo-
morphic coordinate chart (𝑊0, (𝑣1, … , 𝑣𝑛)) centered at 𝑝, whose image is a ball
𝐵𝜀(0) ⊆ ℂ𝑛; and let {𝑊𝑐}𝑐∈𝐶 be a cover of 𝑀 ∖ {𝑝} by holomorphic coordinate
domains, with coordinates (𝜁1

(𝑐), … , 𝜁𝑛
(𝑐)) on 𝑊𝑐 . In each such open set there is a

nonvanishing holomorphic section of 𝐾 , namely 𝑠𝑐 = 𝑑𝜁1
(𝑐) ∧ ⋯ ∧ 𝑑𝜁𝑛

(𝑐) in 𝑊𝑐 and
𝑠0 = 𝑑𝑣1 ∧ ⋯ ∧ 𝑑𝑣𝑛 in 𝑊0. The transition functions for this cover are given by

𝜏𝐾
𝑐𝑑 = det(

𝜕𝜁 𝑗
(𝑑)

𝜕𝜁𝑘
(𝑐)

) on 𝑊𝑐 ∩ 𝑊𝑑 ,

𝜏𝐾
0𝑑 = det(

𝜕𝜁 𝑗
(𝑑)

𝜕𝑣𝑘 ) on 𝑊0 ∩ 𝑊𝑑 .

Next we construct a trivializing cover of 𝑀̃ for 𝐾 . The map 𝜋 restricts to a
biholomorphism from 𝑀̃ ∖ 𝑆 to 𝑀 ∖ {𝑝}, so we can define 𝑊 𝑐 = 𝜋−1(𝑊𝑐) for
𝑐 ∈ 𝐶 , and on each such set there is a holomorphic local frame ̃𝑠𝑐 = 𝜋∗𝑠𝑐 for 𝐾 .
We let 𝑊 0 = 𝜋−1(𝑊0) ⊆ 𝑀̃ , identified with 𝑇 (𝜀) as in the proof of Proposition
10.9. As before, we cover 𝑊 0 with open sets 𝑈𝛼 = {([𝑤], 𝑣) ∶ 𝑤𝛼 ≠ 0}. On each
such set there are holomorphic coordinates (𝑧1

(𝛼), … , 𝑧𝑛
(𝛼)) defined by

𝑧𝑗
(𝛼) =

⎧⎪
⎨
⎪⎩

𝑤𝑗

𝑤𝛼 , 𝑗 ≠ 𝛼,

𝑣𝛼 , 𝑗 = 𝛼,

and the inverse of the coordinate map is given by

([𝑤], 𝑣) = (([𝑧1
(𝛼), … , 1 … , 𝑧𝑛

(𝛼)]), 𝑧𝛼
(𝛼)(𝑧1

(𝛼), … , 1, … … , 𝑧𝑛
(𝛼))),

with the 1’s in the 𝛼th positions. (The motivation for these coordinates comes from
the description of 𝑇 as the tautological bundle over ℂℙ𝑛−1: the 𝛼th coordinate is
a fiber coordinate for 𝑇 , and the remaining coordinates are affine coordinates for
ℂℙ𝑛−1.)

Over each 𝑈𝛼 , there is a holomorphic local frame for 𝐾 given by

̃𝑠𝛼 = 𝑑𝑧1
(𝛼) ∧ ⋯ ∧ 𝑑𝑧𝑛

(𝛼).
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To compute the transition functions for these frames, it is easiest to express them
in terms of the functions (𝑣1, … , 𝑣𝑛) on 𝑊 0. On the complement of 𝑆 in 𝑈𝛼 , we
have 𝑤𝑗 /𝑤𝛼 = 𝑣𝑗 /𝑣𝛼 , so

̃𝑠𝛼 = 𝑑(
𝑣1

𝑣𝛼 ) ∧ ⋯ ∧ 𝑑𝑣𝛼 ∧ ⋯ ∧ 𝑑(
𝑣𝑛

𝑣𝛼 )

= (
1
𝑣𝛼 )

𝑛−1
𝑑𝑣1 ∧ ⋯ ∧ 𝑑𝑣𝛼 ∧ ⋯ ∧ 𝑑𝑣𝑛

= (
1
𝑣𝛼 )

𝑛−1
𝜋∗𝑠0,

where the second equality follows from the fact that the remaining terms involving
derivatives of 𝑣𝛼 cancel because 𝑑𝑣𝛼 ∧ 𝑑𝑣𝛼 = 0. Therefore ̃𝑠𝛽 = (𝑣𝛼/𝑣𝛽)𝑛−1 ̃𝑠𝛼 =
(𝑤𝛼/𝑤𝛽)𝑛−1 ̃𝑠𝛼 on (𝑈𝛼 ∩ 𝑈𝛽) ∖ 𝑆, and by continuity ̃𝑠𝛽 = (𝑤𝛼/𝑤𝛽)𝑛−1 ̃𝑠𝛼 on all of
𝑈𝛼 ∩ 𝑈𝛽 . It follows that the collection {𝑈1, … , 𝑈𝑛, 𝑊 𝑐 ∶ 𝑐 ∈ 𝐶} is a trivializing
cover of 𝑀̃ for 𝐾 , with transition functions

𝜏𝐾
𝑐𝑑 = 𝜋∗𝜏𝐾

𝑐𝑑 on 𝑊 𝑐 ∩ 𝑊 𝑑 ,
𝜏𝐾

𝛼𝑑 = (𝑣𝛼)𝑛−1𝜋∗𝜏𝐾
0𝑑 on 𝑈𝛼 ∩ 𝑊 𝑑 ,

𝜏𝐾
𝛼𝛽 = (

𝑤𝛼

𝑤𝛽 )
𝑛−1

on 𝑈𝛼 ∩ 𝑈𝛽 .

This same cover is a trivalizing cover for 𝜋∗𝐾 . Since 𝐾 is trivial over 𝑊0, it
follows that 𝜋∗𝐾 is trivial over each 𝑈𝛼 , and it has transition functions

𝜏𝜋∗𝐾
𝑐𝑑 = 𝜋∗𝜏𝐾

𝑐𝑑 on 𝑊 𝑐 ∩ 𝑊 𝑑 ,
𝜏𝜋∗𝐾

0𝑑 = 𝜋∗𝜏𝐾
0𝑑 on 𝑈𝛼 ∩ 𝑊 𝑑 ,

𝜏𝜋∗𝐾
𝛼𝛽 = 1 on 𝑈𝛼 ∩ 𝑈𝛽 .

Finally, the proof of Proposition 10.9 shows that there are trivializations for 𝐿𝑆
over the same open cover, with transition functions

𝜏𝐿𝑆
𝑐𝑑 = 1 on 𝑊 𝑐 ∩ 𝑊 𝑑 ,

𝜏𝐿𝑆
𝛼𝑑 = 𝑣𝛼 on 𝑈𝛼 ∩ 𝑊 𝑑 ,

𝜏𝐿𝑆
𝛼𝛽 = 𝑤𝛼

𝑤𝛽 on 𝑈𝛼 ∩ 𝑈𝛽 .

Putting these results together, we see that the transition functions for 𝐾 satisfy

𝜏𝐾⋅⋅ = (𝜏𝐿𝑆⋅⋅ )
𝑛−1𝜏𝜋∗𝐾⋅⋅

for each pair of indices, which proves the result. □



330 10. The Kodaira Embedding Theorem

Proof of the Embedding Theorem
Here is the first version of the embedding theorem.
Theorem10.12 (KodairaEmbeddingTheorem, LineBundleVersion). Suppose
𝑀 is a compact complex manifold. A holomorphic line bundle 𝐿 → 𝑀 is ample
if and only if it is positive. Thus 𝑀 is projective if and only if it admits a positive
holomorphic line bundle.

Proof. For the 1-dimensional case, see Problem 10-3. We assume from now on
that 𝑀 has dimension 𝑛 ≥ 2.

Let 𝐿 → 𝑀 be a holomorphic line bundle. Suppose first that 𝐿 is ample,
meaning that some positive tensor power 𝐿𝑘 is very ample. Thus by Theorem 3.43,
its associated map 𝐹 ∶ 𝑀 → ℂℙ𝑁 is an embedding for some 𝑁 . Proposition 3.45
shows that 𝐿𝑘 ≅ 𝐹 ∗𝐻 , so 𝐿𝑘 is positive by Proposition 10.5.

Given a Hermitian fiber metric ⟨⋅, ⋅⟩𝐿𝑘 on 𝐿𝑘 whose Chern form is positive,
there is a unique Hermitian fiber metric ⟨⋅, ⋅⟩𝐿 on 𝐿 such that ⟨⋅, ⋅⟩𝐿𝑘 is the tensor
product metric of that on 𝐿, namely

|𝑣|𝐿 = (|𝑣 ⊗ ⋯ ⊗ 𝑣|𝐿𝑘)
1/𝑘.

The Chern form of 𝐿 with respect to this metric is
𝑖

2𝜋 Θ𝐿 = 𝑖
2𝜋

1
𝑘Θ𝐿𝑘 ,

which is also positive. This proves that 𝐿 is a positive line bundle.
Conversely, suppose 𝐿 is positive. Using Proposition 10.5(a), give 𝑀 a Kähler

metric and 𝐿 a Hermitian fiber metric whose Chern form 𝑖
2𝜋 Θ𝐿 is equal to the

Kähler form 𝜔. Choose a fiber metric on the anticanonical bundle 𝐾∗ and let Θ𝐾∗

be the curvature of its associated Chern connection. Because 𝑖
2𝜋 Θ𝐿 is positive,

there is some 𝑘1 > 0 such that for every 𝑘′ ≥ 𝑘1, the (1, 1)-form
𝑖

2𝜋 (Θ𝐾∗ + 𝑘′Θ𝐿)

is positive on 𝑀 , and thus 𝐾∗ ⊗ 𝐿𝑘′ is a positive line bundle.
Suppose 𝑘 is any positive integer such that 𝑘 ≥ 2𝑛𝑘0+𝑘1, where 𝑘0 is the integer

guaranteed by Proposition 10.9 and 𝑘1 is defined in the preceding paragraph.
We will show first that 𝒪(𝑀; 𝐿𝑘) separates points. As explained at the begin-

ning of this chapter, this is equivalent to showing that the evaluation map
𝑒𝑀 ∶ 𝒪(𝑀; 𝐿𝑘) → 𝐿𝑘

𝑝 ⊕ 𝐿𝑘
𝑞

is surjective for each pair of distinct points 𝑝, 𝑞 ∈ 𝑀 . Let 𝑝, 𝑞 ∈ 𝑀 be arbitrary
distinct points and consider the following short exact sheaf sequence on 𝑀 :

(10.12) 0 → ℐ{𝑝,𝑞}(𝐿𝑘) ↪ 𝒪(𝐿𝑘) 𝑒→ (𝐿𝑘
𝑝)𝑝 ⊕ (𝐿𝑘

𝑞 )𝑞 → 0.
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By Proposition 5.22, the sheaf on the right is isomorphic to the quotient sheaf
𝒪(𝐿𝑘)/ℐ{𝑝,𝑞}(𝐿𝑘), so our problem is equivalent to showing the surjectivity of the
global section map Π𝑀 in the following sequence:

(10.13) 0 → ℐ{𝑝,𝑞}(𝑀; 𝐿𝑘) ↪ 𝒪(𝑀; 𝐿𝑘)
Π𝑀⟶ Γ(𝒪(𝐿𝑘)/ℐ{𝑝,𝑞}(𝐿𝑘)),

where the right-hand group is the group of global sections of the quotient sheaf and
Π𝑀 is the global section map associated with the canonical sheaf homomorphism
Π given by Proposition 5.22. (Bear in mind that this group of global sections is ob-
tained from the sheafification functor, and is generally not the same as the quotient
group 𝒪(𝑀; 𝐿𝑘)/ℐ{𝑝,𝑞}(𝑀; 𝐿𝑘).)

Let 𝜋 ∶ 𝑀𝑝𝑞 → 𝑀 be the blowup of 𝑀 at 𝑝 and 𝑞. Let 𝑆𝑝 = 𝜋−1(𝑝), 𝑆𝑞 =
𝜋−1(𝑞), 𝑆 = 𝑆𝑝 ∪ 𝑆𝑞 , and 𝐿̃ = 𝜋∗𝐿. There is an analogous short exact sheaf
sequence on 𝑀𝑝𝑞:

(10.14) 0 → ℐ𝑆(𝐿̃𝑘) ↪ 𝒪(𝐿̃𝑘) Π̃→ 𝒪(𝐿̃𝑘)/ℐ𝑆(𝐿̃𝑘)) → 0.

We can combine the global section sequence of this sheaf sequence with (10.13) to
obtain the following commutative diagram:

(10.15)
0 // ℐ𝑆(𝑀𝑝𝑞; 𝐿̃𝑘) � � // 𝒪(𝑀𝑝𝑞; 𝐿̃𝑘)

Π̃𝑀𝑝𝑞
// Γ(𝒪(𝐿̃𝑘)/ℐ𝑆(𝐿̃𝑘))

0 // ℐ{𝑝,𝑞}(𝑀; 𝐿𝑘) � � //

𝜋∗
0

OO

𝒪(𝑀; 𝐿𝑘)
Π𝑀 //

𝜋∗
OO

Γ(𝒪(𝐿𝑘)/ℐ{𝑝,𝑞}(𝐿𝑘)),

𝜋∗
1

OO

where 𝜋∗ is the pullback operator on sections (see Prop. 3.10), 𝜋∗
0 is the restriction

of 𝜋∗, and 𝜋∗
1 is obtained from 𝜋∗ by passing to the quotient: specifically, given

a global section 𝜎 of the quotient sheaf 𝒪(𝐿𝑘)/ℐ{𝑝,𝑞}(𝐿𝑘), for each 𝑥̃ ∈ 𝑀𝑝𝑞 , we
choose a representative 𝑠 ∈ 𝒪(𝑈; 𝐿𝑘)/ℐ{𝑝,𝑞}(𝑈; 𝐿𝑘) for the germ 𝜎(𝜋(𝑥)), and
define (𝜋∗

1 𝜎)(𝑥̃) to be the germ of 𝜋∗𝑠 in 𝒪(𝜋−1(𝑈); 𝐿̃𝑘)/ℐ𝑆(𝜋−1(𝑈); 𝐿̃𝑘). Because
𝜋∗𝑠 vanishes on 𝑆 whenever 𝑠 vanishes at 𝑝 and 𝑞, this is well defined.

We will show that 𝜋∗ is surjective and 𝜋∗
1 is injective. For 𝜋∗, suppose 𝜎 ∈

𝒪(𝑀𝑝𝑞; 𝐿̃𝑘) is arbitrary. Because 𝜋 restricts to a biholomorphism from 𝑀𝑝𝑞 ∖ 𝑆
to 𝑀 ∖ {𝑝, 𝑞}, we can define a holomorphic section 𝜎 ∈ 𝒪(𝑀 ∖ {𝑝, 𝑞}; 𝐿𝑘) by
pulling back 𝜎 by the inverse of 𝜋|𝑀𝑝𝑞∖𝑆 . Choosing holomorphic coordinates for
𝑀 and a holomorphic local frame 𝑠 for 𝐿 in a neighborhood 𝑈 of 𝑝, we canwrite the
restriction of 𝜎 to 𝑈 ∖{𝑝} as 𝜎 = 𝑓𝑠𝑘 for some holomorphic function 𝑓 ∶ 𝑈 ∖{𝑝} →
ℂ. Hartogs’s extension theorem shows that this function extends holomorphically
to all of 𝑈 . A similar argument works in a neighborhood of 𝑞, so we obtain a
globally defined section 𝜎 ∈ 𝒪(𝑀; 𝐿𝑘) satisfying 𝜋∗𝜎 = 𝜎 on 𝑀𝑝𝑞 ∖ 𝑆, and by
continuity on all of 𝑀𝑝𝑞 . Thus 𝜋∗ is surjective.
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To see that 𝜋∗
1 is injective, suppose 𝜎 is a global section of the quotient sheaf

𝒪(𝐿𝑘)/ℐ{𝑝,𝑞}(𝐿𝑘) satisfying 𝜋∗
1 𝜎 = 0. Given 𝑥 ∈ 𝑀 and a representative sec-

tion 𝑠 ∈ 𝒪(𝑈; 𝐿𝑘) for the germ 𝜎(𝑥), let 𝑥̃ be any point in 𝜋−1(𝑥). The fact that
(𝜋∗

1 𝜎)(𝑥̃) = 0 means that the pullback 𝜋∗𝑠 lies in ℐ𝑆(𝑈; 𝐿̃𝑘) on some neighborhood
𝑈 of 𝑥̃. Since 𝜋∗𝑠(𝑥̃) = (𝑥̃, 𝑠(𝑥)), this implies that 𝑠(𝑥) = 0 when 𝑥 is equal to 𝑝
or 𝑞, so 𝑠 represents zero in the quotient space 𝒪(𝑈; 𝐿𝑘)/ℐ{𝑝,𝑞}(𝑈; 𝐿𝑘) and thus
𝜎(𝑥) = 0.

Now comes the heart of the proof. We will use the Kodaira vanishing theorem
to show that the map Π̃𝑀𝑝𝑞 in (10.15) is surjective. From the long exact cohomol-
ogy sequence associated with the sheaf sequence (10.14), we see that this will be
the case provided 𝐻1(𝑀𝑝𝑞; ℐ𝑆(𝐿̃𝑘)) = 0. By Proposition 5.16, the sheaf ℐ𝑆(𝐿̃𝑘)
is isomorphic to 𝒪(𝐿̃𝑘 ⊗ 𝐿∗

𝑆), which in turn is isomorphic to 𝒪(𝐿̃𝑘 ⊗ 𝐿∗
𝑆𝑝

⊗ 𝐿∗
𝑆𝑞

)
by Problem 3-11. Corollary 10.8 to the Kodaira vanishing theorem shows that
𝐻1(𝑀𝑝𝑞; 𝒪(𝐿̃𝑘 ⊗ 𝐿∗

𝑆𝑝
⊗ 𝐿∗

𝑆𝑞
)) = 0 provided that 𝐾∗ ⊗ 𝐿̃𝑘 ⊗ 𝐿∗

𝑆𝑝
⊗ 𝐿∗

𝑆𝑞
is a

positive line bundle, where 𝐾 is the canonical bundle of 𝑀𝑝𝑞 . But Proposition
10.11 shows that

𝐾 ≅ 𝜋∗𝐾 ⊗ 𝐿𝑛−1
𝑆𝑝

⊗ 𝐿𝑛−1
𝑆𝑞

,

from which it follows that

(10.16) 𝐾∗ ⊗ 𝐿̃𝑘 ⊗ 𝐿∗
𝑆𝑝

⊗ 𝐿∗
𝑆𝑞

≅ 𝜋∗(𝐾∗ ⊗ 𝐿𝑘) ⊗ (𝐿∗
𝑆𝑝

)𝑛 ⊗ (𝐿∗
𝑆𝑞

)𝑛.

Because 𝑘 ≥ 2𝑛𝑘0 + 𝑘1, we can write 𝑘 = 2𝑛𝑘0 + 𝑘′ with 𝑘′ ≥ 𝑘1, and rewrite the
tensor product on the right-hand side of (10.16) as

𝜋∗(𝐾∗ ⊗ 𝐿𝑘′
) ⊗ (𝜋∗𝐿2𝑘0 ⊗ 𝐿∗

𝑆𝑝
⊗ 𝐿∗

𝑆𝑞 )
𝑛.

The first bundle in this tensor product is the pullback of a positive bundle, which is
therefore nonnegative; the second is positive by Proposition 10.10. Thus the tensor
product bundle is positive, which completes the proof that Π̃𝑀𝑝𝑞 is surjective.

Using this result, we can show that the map Π𝑀 in (10.14) is also surjective.
Let 𝜎 ∈ Γ(𝒪(𝐿𝑘)/ℐ{𝑝,𝑞}(𝐿𝑘)) be arbitrary. The surjectivity of Π̃𝑀𝑝𝑞 shows that
there exists ̃𝜏 ∈ 𝒪(𝑀𝑝𝑞; 𝐿̃𝑘) such that Π̃𝑀𝑝𝑞 ( ̃𝜏) = 𝜋∗

1 (𝜎). Since 𝜋∗ is surjective,
there exists 𝜏 ∈ 𝒪(𝑀; 𝐿𝑘) such that 𝜋∗(𝜏) = ̃𝜏, and then commutativity of (10.15)
implies

𝜋∗
1 Π𝑀 (𝜏) = Π̃𝑀𝑝𝑞 𝜋∗(𝜏) = Π̃𝑀𝑝𝑞 ( ̃𝜏) = 𝜋∗

1 𝜎,
and the fact that 𝜋∗

1 is injective means that Π𝑀 (𝜏) = 𝜎. This completes the proof
that 𝒪(𝑀; 𝐿𝑘) separates points.

Next we address the question of separating directions. Let 𝑝 ∈ 𝑀 be arbitrary
and let 𝑠 be a holomorphic local frame for 𝐿 on a neighborhood of 𝑝. Using the
result of Exercise 10.1, we need to show that the map 𝛿𝑀 ∶ ℐ{𝑝}(𝑀; 𝐿𝑘) → Λ1,0

𝑝 𝑀
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given by 𝛿𝑀 (𝑓𝑠𝑘) = 𝑑𝑓𝑝 is surjective. There is a short exact sheaf sequence

(10.17) 0 → ℐ 2
{𝑝}(𝐿𝑘) ↪ ℐ{𝑝}(𝐿𝑘) 𝛿→ (Λ1,0

𝑝 𝑀)𝑝 → 0,

and the sheaf on the right is isomorphic to the quotient sheaf ℐ{𝑝}(𝐿𝑘)/ℐ 2
{𝑝}(𝐿𝑘),

so we need to show the surjectivity of Π𝑀 in the following sequence:

(10.18) 0 → ℐ 2
{𝑝}(𝑀; 𝐿𝑘) ↪ ℐ{𝑝}(𝑀; 𝐿𝑘)

Π𝑀⟶ Γ(ℐ{𝑝}(𝐿𝑘)/ℐ 2
{𝑝}(𝐿𝑘)).

Let 𝜋 ∶ 𝑀𝑝 → 𝑀 be the blowup of 𝑀 at 𝑝, 𝑆 = 𝜋−1(𝑝), and 𝐿̃ = 𝜋∗𝐿. We
have a short exact sheaf sequence on 𝑀𝑝:

0 → ℐ 2
𝑆 (𝐿̃𝑘) ↪ ℐ𝑆(𝐿̃𝑘) Π̃→ ℐ𝑆(𝐿̃𝑘)/ℐ 2

𝑆 (𝐿̃𝑘)) → 0,

and a commutative diagram of global section maps:

(10.19)
0 / / ℐ 2

𝑆 (𝑀𝑝; 𝐿̃𝑘) � � // ℐ𝑆(𝑀𝑝; 𝐿̃𝑘)
Π̃𝑀𝑝

// Γ(ℐ𝑆(𝐿̃𝑘)/ℐ 2
𝑆 (𝐿̃𝑘))

0 // ℐ 2
{𝑝}(𝑀; 𝐿𝑘) � � //

𝜋∗
0

OO

ℐ{𝑝}(𝑀; 𝐿𝑘)
Π𝑀//

𝜋∗
OO

Γ(ℐ{𝑝}(𝐿𝑘)/ℐ 2
{𝑝}(𝐿𝑘)).

𝜋∗
1

OO

As before, 𝜋∗ is surjective. We can also show that 𝜋∗
1 is injective, but it takes a little

more work this time. Suppose 𝜎 ∈ Γ(ℐ{𝑝}(𝐿𝑘)/ℐ 2
{𝑝}(𝐿𝑘)) with 𝜋∗

1 𝜎 = 0. Since
the stalks of ℐ{𝑝}(𝐿𝑘)/ℐ 2

{𝑝}(𝐿𝑘) are zero at all points of 𝑀 other than 𝑝, we need
only show 𝜎(𝑝) = 0. Choose holomorphic coordinates (𝑣1, … , 𝑣𝑛) on a domain
𝑊0 centered at 𝑝 with image 𝐵𝜀(0) ⊆ ℂ𝑛, and identify 𝑊 = 𝜋−1(𝑊0) ⊆ 𝑀𝑝
with {([𝑤], 𝑣) ∈ ℂℙ𝑛−1 × 𝐵𝜀(0) ∶ 𝑣 ∈ [𝑤]} as in the proof of Proposition 10.9.
After shrinking 𝑊0 if necessary, we can choose a section 𝑠0 ∈ ℐ{𝑝}(𝑊0; 𝐿𝑘) whose
image in the quotient space ℐ{𝑝}(𝑊0; 𝐿𝑘)/ℐ 2

{𝑝}(𝑊0; 𝐿𝑘) is a representative of the
germ 𝜎(𝑝). Because 𝑠0 vanishes at 𝑝, we can write its coordinate representation in
𝑊0 as

𝑠0(𝑣) = ∑
𝑗

𝑣𝑗𝑓𝑗(𝑣)𝑠(𝑣) ⊗ ⋯ ⊗ 𝑠(𝑣),

for some holomorphic functions 𝑓1, … , 𝑓𝑛, where 𝑠 is our chosen local frame for
𝐿. The hypothesis implies (after shrinking 𝑊0 further if necessary) that 𝜋∗𝑠0 ∈
ℐ 2

𝑆 (𝑊 ; 𝐿̃𝑘). To show that 𝑠0 ∈ ℐ 2
{𝑝}(𝑊0; 𝐿𝑘) and therefore 𝜎(𝑝) = 0, we need

to show that 𝑓𝑗(𝑝) = 0 for each 𝑗. Let 𝑗 ∈ {1, … , 𝑛} be arbitrary, and define a
function 𝜆𝑗 ∶ 𝐷𝜀(0) → 𝑊 by

𝜆𝑗(𝑧) = ([0, … , 1, … , 0], (0, … , 𝑧, … , 0)),
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with the nonzero entries in the 𝑗th positions. Then 𝜆𝑗(𝑧) ∈ 𝑆 if and only if 𝑧 = 0,
and

(𝜋∗
1 𝑠0)(𝜆𝑗(𝑧)) = ([0, … , 1, … , 0], 𝑧𝑓𝑗(0, … , 𝑧, … , 0)𝑠(0, … , 𝑧, … , 0)𝑘).

The assumption that 𝜋∗
1 𝑠0 ∈ ℐ 2

𝑆 (𝑊 ; 𝐿̃𝑘) implies that 𝑓𝑗(0) = 0. Since this is true
for each 𝑗, it follows that 𝑠0 ∈ ℐ 2

{𝑝}(𝑊0; 𝐿𝑘), and thus 𝜎(𝑝) = 0.
The map Π̃𝑀𝑝 in (10.19) is surjective provided 𝐻1(𝑀𝑝; ℐ 2

𝑆 (𝐿̃𝑘)) = 0. Propo-
sition 5.16 shows that ℐ 2

𝑆 (𝐿̃𝑘) ≅ 𝒪(𝐿̃𝑘 ⊗𝐿∗
𝑆 ⊗𝐿∗

𝑆), and Corollary 10.8 shows that
𝐻1(𝑀𝑝; 𝒪(𝐿̃𝑘 ⊗ 𝐿∗

𝑆 ⊗ 𝐿∗
𝑆)) = 0 provided 𝐾∗ ⊗ 𝐿̃𝑘 ⊗ 𝐿∗

𝑆 ⊗ 𝐿∗
𝑆 is positive. By

Proposition 10.11, this bundle is isomorphic to

𝜋∗(𝐾∗ ⊗ 𝐿𝑘) ⊗ (𝐿∗
𝑆)𝑛+1.

Because 𝑘 ≥ 2𝑛𝑘0 + 𝑘1 ≥ (𝑛 + 1)𝑘0 + 𝑘1, we can write 𝑘 = (𝑛 + 1)𝑘0 + 𝑘″ with
𝑘″ ≥ 𝑘1, and rewrite the tensor product above as

𝜋∗(𝐾∗ ⊗ 𝐿𝑘″) ⊗ (𝜋∗𝐿𝑘0 × 𝐿∗
𝑆)𝑛+1.

As above, this is a positive line bundle. Thus Π̃𝑀𝑝 is surjective, and it follows as
before that Π𝑀 is also surjective. This completes the proof that 𝒪(𝑀; 𝐿𝑘) separates
directions, and therefore 𝐿 is ample. □

There is another way to express the Kodaira embedding theorem that puts the
emphasis on the Kähler geometry of 𝑀 . We say that a Kähler metric on 𝑀 is a
Hodge metric if its Kähler class is integral; that is, its image in 𝐻2(𝑀; ℝ) lies in
the image of the coefficient homomorphism 𝐻2(𝑀; ℤ) → 𝐻2(𝑀; ℝ).

Theorem 10.13 (Kodaira Embedding Theorem, Geometric Version). A com-
pact complex manifold is projective if and only if it admits a Hodge metric.

Proof. Suppose first that 𝑀 is projective, so there is a holomorphic embedding
𝑀 ↪ ℂℙ𝑁 for some 𝑁 . Let 𝑔FS be the Fubini-Study metric on ℂℙ𝑁 . Recall
from Example 8.14 that the Kähler form of 𝑔FS is equal to 𝑖

2 Θ𝐻 , where Θ𝐻 is the
curvature of the Chern connection on the hyperplane bundle 𝐻 . Thus the metric

̃𝑔 = 1
𝜋 𝑔FS has Kähler form 𝑖

2𝜋 Θ𝐻 , which is the Chern form of the hyperplane bundle
and therefore is integral by Theorem 7.14. The pullback of this metric to 𝑀 is a
Hodge metric on 𝑀 . (This is the reason some authors define the Fubini–Study
metric with the additional factor of 1/𝜋.)

Conversely, suppose 𝑀 admits a Hodge metric 𝑔, and let 𝜔 be its Kähler form.
By the Lefschetz theorem on (1, 1)-classes, there is a line bundle 𝐿 → 𝑀 whose
first real Chern class is represented by 𝜔. Since 𝜔 is a positive (1, 1)-form, this
implies 𝐿 is a positive line bundle, so it follows from Theorem 10.12 that 𝑀 is
projective. □
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Applications of the Embedding Theorem
The Kodaira embedding theorem has numerous applications in complex differential
geometry and algebraic geometry. Here we consider a few of the most important
ones; some others are described in the problems at the end of the chapter.
Theorem 10.14 (Blowups of Projective Manifolds Are Projective). Suppose 𝑀
is a projective complex manifold and 𝑀̃ is the blowup of 𝑀 at finitely many points.
Then 𝑀̃ is also projective.

Proof. Since a blowup at multiple points can be viewed as the result of a sequence
of blowups one point at a time, it suffices to prove this when 𝜋𝑝 ∶ 𝑀𝑝 → 𝑀 is a
blowup at one point. Since 𝑀 is projective, it has a positive complex line bundle
𝐿 → 𝑀 . Proposition 10.9 shows that for some 𝑘 > 0, the bundle 𝜋∗

𝑝 𝐿𝑘 ⊗ 𝐿∗
𝑆𝑝

→
𝑀𝑝 is positive (where 𝑆𝑝 ⊆ 𝑀𝑝 is the exceptional hypersurface), so 𝑀𝑝 is also
projective. □
Theorem 10.15 (Covering Manifolds Are Projective). Suppose 𝑀̃ and 𝑀 are
compact complex manifolds and 𝜋 ∶ 𝑀̃ → 𝑀 is a holomorphic covering map.
Then 𝑀̃ is projective if and only if 𝑀 is projective.

Proof. First suppose 𝑀 is projective. Then it admits a positive line bundle 𝐿, and
𝜋∗𝐿 is positive line bundle on 𝑀̃ by Proposition 10.5.

Conversely, suppose 𝑀̃ is projective, and let ̃𝑔 be a Hodge metric on 𝑀̃ with
Kähler form 𝜔̃. Because 𝑀̃ and 𝑀 are compact, the covering 𝜋 has only finitely
many sheets. Define a positive (1, 1)-form on 𝑀 as follows. Given 𝑝 ∈ 𝑀 , let 𝑈 be
a connected evenly covered neighborhood of 𝑝, and let 𝑠1, … 𝑠𝑚 ∶ 𝑈 → 𝜋−1(𝑈) be
the distinct local sections of 𝜋, where 𝑚 is the number of sheets of 𝜋. Define 𝜔|𝑈 =
∑𝑚

𝑖=1 𝑠∗
𝑖 𝜔̃. Given any other such neighborhood 𝑈 ′ with sections 𝑠′

1, … , 𝑠′
𝑚, let 𝑈0

be the connected component of 𝑈 ∩𝑈 ′ containing 𝑝. Because two local sections on
a connected open set that agree at a point must agree everywhere [LeeTM, Thm.
11.12], the restrictions of the first set of sections must agree with those of the second
set after reordering, so 𝜔 is well defined. It satisfies 𝜋∗𝜔 = 𝑚𝜔̃.

To see that 𝜔 is integral, by Lemma 6.27 we just need to show that its integral
over every smooth 2-cycle is an integer. Let 𝑐 ∈ Sing∞

2 (𝑀) be such a cycle. By
[LeeTM, Prop. 13.19], we can replace 𝑐 by a homologous smooth singular cycle
(still denoted by 𝑐) with the property that the image of every singular simplex in 𝑐 is
contained in an evenly covered open set. Writing 𝑐 = ∑𝑗 𝑛𝑗𝜎𝑗 , we define a smooth
singular chain 𝜋#𝑐 ∈ Sing2

∞ (𝑀̃) by

𝜋#𝑐 = ∑
𝑗

𝑛𝑗(𝑠1 ∘ 𝜎𝑗 + ⋯ + 𝑠𝑚 ∘ 𝜎𝑗),

where for each 𝜎𝑗 , we let 𝑠1, … , 𝑠𝑚 denote the local sections on a neighborhood of
the image of 𝜎𝑗 in some order. Because 𝜋#(𝜕𝑐) = 𝜕(𝜋#𝑐), it follows that 𝜋#𝑐 is a
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cycle in 𝑀̃ . We compute

∫𝑐
𝜔 = ∑

𝑗
𝑛𝑗 ∫𝜎𝑗

𝜔 = ∑
𝑗

𝑛𝑗 ∫𝜎𝑗
(𝑠∗

1𝜔̃ + ⋯ + 𝑠∗
𝑚𝜔̃)

= ∑
𝑗

𝑛𝑗(∫𝑠1∘𝜎𝑗
𝜔̃ + ⋯ + ∫𝑠𝑚∘𝜎𝑗

𝜔̃)

= ∫𝜋#𝑐
𝜔̃.

This is an integer by our assumption on 𝜔̃. □

Theorem 10.16. If 𝑀 is a compact Kähler manifold with ℎ2,0(𝑀) = 0, then 𝑀 is
projective.

Proof. Suppose 𝑀 satisfies the hypothesis. By Hodge symmetry, ℎ0,2(𝑀) is also
zero, and thus 𝐻2

dR(𝑀; ℂ) ≅ 𝐻1,1(𝑀) by the Hodge decomposition theorem.
Let 𝜔 be a Kähler form on 𝑀 . Lemma 6.27 shows that the integral classes span
𝐻2

dR(𝑀; ℝ) over ℝ, so rational linear combinations of integral classes are dense in
𝐻2

dR(𝑀; ℝ). Therefore by perturbing 𝜔 slightly, we can find a closed real (1, 1)-
form 𝜔̃ that is a rational linear combination of integral forms and is still positive.
Then multiplying 𝜔̃ by a suitable positive integer, we obtain a positive integral
(1, 1)-form, which thus determines a Hodge metric on 𝑀 . □

For our final application, we address the question of which complex tori are pro-
jective. Problem 10-3 shows that every 1-dimensional complex torus is projective,
but in higher dimensions that is no longer the case.

Suppose 𝑉 is an 𝑛-dimensional complex vector space and Λ ⊆ 𝑉 is a lattice.
Let 𝐽 ∶ 𝑉 → 𝑉 be the associated complex structure map. A Riemann form for 𝚲
is an antisymmetric real bilinear form Ω on 𝑉 that satisfies

(i) Ω(𝐽𝑣, 𝐽𝑤) = Ω(𝑣, 𝑤) for all 𝑣, 𝑤 ∈ 𝑉 ;
(ii) Ω(𝑣, 𝐽𝑣) > 0 for all nonzero 𝑣 ∈ 𝑉 ;
(iii) Ω(𝑣, 𝑤) ∈ ℤ for all 𝑣, 𝑤 ∈ Λ.

Theorem 10.17 (Characterization of Projective Tori). Suppose 𝑉 is an 𝑛-dimen-
sional complex vector space and Λ ⊆ 𝑉 is a lattice. The torus 𝑀 = 𝑉 /Λ is
projective if and only if there is a Riemann form for Λ.

Proof. Suppose first that Ω is a Riemann form for Λ. Under the canonical identi-
fication of each tangent space of 𝑉 with the underlying real vector space of 𝑉 , we
may consider Ω to be a constant-coefficient 2-form on 𝑉 . Property (i) implies it is
of type (1, 1) by the result of Problem 4-1, and (ii) shows it is positive. Because it
has constant coefficients, it is closed; and it is also invariant under translations by
Λ, so it descends to a Kähler form on 𝑀 , which we denote by 𝜔.
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We need to show that 𝜔 defines an integral cohomology class; by Lemma 6.27,
it suffices to show that ∫𝑐 𝜔 ∈ ℤ for every smooth 2-cycle 𝑐 in 𝑀 . Let (𝑣1, … , 𝑣2𝑛)
be a basis for the free abelian group Λ, which is also a basis for 𝑉 over ℝ. Let
(𝑥1, … , 𝑥2𝑛) denote the corresponding real coordinates on 𝑉 , so 𝑣𝑖 has coordinates
(0, … , 0, 1, 0, … , 0) with 1 in the 𝑖th place. For each pair of indices 𝑖 < 𝑗, the
real subspace of 𝑉 spanned by (𝑣𝑖, 𝑣𝑗) projects to an embedded 2-torus 𝑇𝑖𝑗 ⊆ 𝑀 . It
follows from the Künneth theorem for homology [Hat02, Thm. 3B.6] and induction
that 𝐻2(𝑀) is a free abelian group of rank (2𝑛

2 ) generated by the images of 𝐻2(𝑇𝑖𝑗)
under inclusion, whichwe can represent as smooth cycles by triangulating each such
torus. Thus we need to show that ∫𝑇𝑖𝑗

𝜔 ∈ ℤ for each 𝑖 < 𝑗. We can parametrize 𝑇𝑖𝑗

by the map 𝜑𝑖𝑗 ∶ [0, 1]2 → 𝑀 defined by 𝜑𝑖𝑗 = 𝜋 ∘ Φ𝑖𝑗 , where 𝜋 ∶ 𝑉 → 𝑀 is the
quotient map and Φ𝑖𝑗 ∶ [0, 1]2 → 𝑉 is given by Φ𝑖𝑗(𝑠, 𝑡) = (0, … , 𝑠, … , 𝑡, … , 0),
with 𝑠 and 𝑡 in positions 𝑖 and 𝑗. WritingΩ = ∑𝑘𝑙 Ω𝑘𝑙𝑑𝑥𝑘∧𝑑𝑥𝑙 in these coordinates,
we see that 𝜑∗

𝑖𝑗𝜔 = Φ∗
𝑖𝑗Ω = Ω𝑖𝑗𝑑𝑠 ∧ 𝑑𝑡, and therefore

∫𝑇𝑖𝑗
𝜔 = ∫[0,1]2

𝜑∗
𝑖𝑗𝜔 = ∫[0,1]2

Ω𝑖𝑗𝑑𝑠 ∧ 𝑑𝑡 = Ω𝑖𝑗 = Ω(𝑣𝑖, 𝑣𝑗),

which is an integer. Thus 𝜔 defines an integral cohomology class, showing that 𝑀
is projective by the Kodaira embedding theorem.

Conversely, suppose 𝑀 is projective. Let 𝑔 be a Hodge metric on 𝑀 , and let 𝜔
be its Kähler form. Since Λ is a discrete subgroup of the Lie group 𝑉 , the quotient
space 𝑀 = 𝑉 /Λ is a complex Lie group, which acts transitively on itself by left
multiplication. Define a new 2-form Ω on 𝑀 by

Ω𝑝(𝑋, 𝑌 ) = ∫𝑀
(𝛾∗𝜔)𝑝(𝑋, 𝑌 )𝑑𝑉 (𝛾),

where 𝑑𝑉 is a left-invariant volume form on 𝑀 . Then it is straightforward to
show that Ω is invariant under left multiplication on 𝑀 and thus lifts to a constant-
coefficient 2-form on 𝑉 , which is a Riemann form for Λ. □

Problem 10-5 gives an example of how to apply this theorem to distinguish pro-
jective and nonprojective tori, and Problem 10-12 applies it to prove that Jacobian
varieties of compact Riemann surfaces are always projective. A projective complex
torus is called an abelian variety. These projective varieties are among the most
intensely studied objects in algebraic geometry.

Problems
10-1. Suppose 𝑀 is a compact complex 𝑛-manifold and 𝐿 → 𝑀 is a negative

line bundle. Prove that 𝐻𝑞(𝑀; Ω𝑝(𝐿)) = 0 for 𝑝 + 𝑞 < 𝑛.
10-2. Prove that a negative line bundle on a compact complex manifold has no

nontrivial holomorphic sections.
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10-3. Show that if 𝑀 is a connected compact Riemann surface of genus 𝑔 and
𝐿 → 𝑀 is a holomorphic line bundle whose degree is greater than 2𝑔,
then 𝐿 is very ample. Use this to prove that every connected compact
Riemann surface is projective. [Hint: Assuming 𝑝, 𝑞 ∈ 𝑀 are distinct
points such that every holomorphic section of 𝐿 vanishing at 𝑝 also van-
ishes at 𝑞, show that 𝒪(𝑀; 𝐿 ⊗ 𝐿∗

{𝑝}) ≅ 𝒪(𝑀; 𝐿 ⊗ 𝐿∗
{𝑝} ⊗ 𝐿∗

{𝑞}), and use
Riemann–Roch to derive a contradiction.]

10-4. Use the Riemann–Roch theorem to prove that every connected compact
Riemann surface of genus 1 is biholomorphic to a nonsingular cubic curve
in ℂℙ2.

10-5. Let 𝑎 ∈ ℝ and let Λ ⊆ ℂ2 be the lattice spanned by the following four
vectors:

𝑣1 = (1, 0), 𝑣2 = (𝑖, 0), 𝑣3 = (0, 1), 𝑣4 = (𝑎, 𝑖).

Show that that the torus ℂ2/Λ is projective if and only if 𝑎 is rational.

10-6. If 𝐹 ∶ 𝑀 → 𝑁 is a smooth map between compact, connected, oriented,
smooth 𝑛-manifolds, the degree of 𝑭 is the unique integer 𝑘 such that
∫𝑀 𝐹 ∗𝜔 = 𝑘 ∫𝑁 𝜔 for every 𝜔 ∈ ℰ𝑛(𝑁), and the preimage of every
regular value of 𝐹 contains exactly 𝑘 points counted with signs (+ if 𝐹
is locally orientation-preserving near the point, − if not) [LeeSM, Thm.
17.35]. Suppose 𝑀 is a connected compact Riemann surface of positive
genus.
(a) Show that the degree of a holomorphic map 𝐹 ∶ 𝑀 → ℂℙ1 is equal

to the degree of the line bundle 𝐹 ∗𝐻 → 𝑀 , where 𝐻 → ℂℙ1 is the
hyperplane bundle.

(b) Show that there is a holomorphic map 𝐹 ∶ 𝑀 → ℂℙ1 of degree 2 if
and only if there exists a holomorphic line bundle 𝐿 → 𝑀 of degree
2 with dim𝒪(𝑀; 𝐿) = 2. [Hint: Given such a bundle, you will have
to show that it has no base points. Assuming 𝑝 is a base point of 𝐿,
show that 𝒪(𝑀; 𝐿) ≅ 𝒪(𝑀; 𝐿 ⊗ 𝐿∗

{𝑝}) and use Proposition 7.25.]
(c) Show that when𝑀 has genus 1, it always admits such amap of degree

2.

10-7. A connected compact Riemann surface 𝑀 of genus 𝑔 > 1 is called a
hyperelliptic curve if there is a holomorphic map 𝑀 → ℂℙ1 of degree 2,
or equivalently by the result of Problem 10-6, if there is a holomorphic line
bundle 𝐿 → 𝑀 of degree 2 with dim𝒪(𝑀; 𝐿) = 2. (The name reflects
the fact that this generalizes a property shared by all elliptic curves, i.e.,
Riemann surfaces of genus 1, as shown in Problem 10-6.)
(a) Show that if 𝑀 has genus 2, then it is hyperelliptic.
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(b) Because the canonical bundle 𝐾 → 𝑀 has no base points (Problem
9-15) and dim𝒪(𝑀; 𝐾) = 𝑔, there is a holomorphic map 𝑀 →
ℂℙ𝑔−1 associated with 𝐾 , called the canonical map. Any variety
in ℂℙ𝑔−1 that is the image of a canonical map is called a canonical
curve. Show that the canonical map is a holomorphic embedding if
and only if 𝑀 is not hyperelliptic.

(c) Show that every nonsingular quartic curve in ℂℙ2 is a canonical
curve, and thus not hyperelliptic.

10-8. Suppose (𝑀, 𝑔) is a compact Kähler manifold whose Ricci curvature is
either positive-definite or negative-definite. Prove that 𝑀 is projective.

10-9. Let 𝐻 → ℂℙ𝑛 be the hyperplane bundle. Prove the following:

dim𝐻𝑞(ℂℙ𝑛; 𝒪(𝐻𝑑)) =

⎧⎪
⎪
⎨
⎪
⎪⎩

(
𝑛 + 𝑑

𝑛 ), 𝑞 = 0 and 𝑑 ≥ 0,

(
−𝑑 − 1

𝑛 ), 𝑞 = 𝑛 and 𝑑 ≤ −𝑛 − 1,

0 otherwise.
10-10. Suppose (𝑀, 𝑔) is a connected compact 𝑛-dimensional Kähler manifold.

For any 𝑝 ∈ 𝑀 , let Hol(𝑝) denote the holonomy group at 𝑝 (see Problem
8-19). Show that 𝑀 is a Calabi–Yau manifold and 𝑔 is Ricci-flat if and
only if Hol(𝑝) ⊆ SU(𝑛) for some 𝑝 ∈ 𝑀 and an appropriate choice of
basis for 𝑇𝑝𝑀 .

10-11. Show that if (𝑀, 𝑔) is a connected Ricci-flat Calabi–Yau manifold of di-
mension 𝑛 ≥ 3 whose holonomy group is equal to all of SU(𝑛) for some
𝑝 ∈ 𝑀 , then ℎ2,0(𝑀) = 0 and therefore 𝑀 is projective. [Hint: First use
Problem 9-8 to show that if 𝜂 is a harmonic (2, 0)-form, then 𝜂𝑝 is invari-
ant under the holonomy group Hol(𝑝). Then show that Hol(𝑝) ≅ SU(𝑛)
acts transitively on the set of 2-dimensional complex-linear subspaces of
𝑇 ′

𝑝 𝑀 , but there is a 2-dimensional subspace 𝑉 such that 𝜂𝑝|𝑉 ×𝑉 ≡ 0.]
[Remark: Because of this result, some authors define Calabi–Yau mani-
folds as Kähler manifolds with holonomy equal to SU(𝑛).]

10-12. This problem outlines a proof that Jacobian varieties are projective. Sup-
pose 𝑀 is a connected compact Riemann surface of genus 𝑔 ≥ 1, and
Jac(𝑀) = Ω1(𝑀)∗/Λ is its Jacobian, where Λ is the lattice 𝜑(𝐻1(𝑀))
defined by (9.50). Let (𝑎1, … , 𝑎𝑔 , 𝑏1, … , 𝑏𝑔) be the cycles represent-
ing a basis for 𝐻1(𝑀) defined in the proof of Theorem 9.68, and let
(𝛼1, … , 𝛼𝑔 , 𝛽1, … , 𝛽𝑔) be closed 1-forms satisfying (9.51)–(9.54).
(a) For any closed 1-forms 𝜃 and ̃𝜃 on 𝑀 , show that

∫𝑀
𝜃 ∧ ̃𝜃 =

𝑔

∑
𝑗=1

(∫𝑎𝑗
𝜃)(∫𝑏𝑗

̃𝜃) − (∫𝑏𝑗
𝜃)(∫𝑎𝑗

̃𝜃).
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[Hint: First show both sides of the equation are unchanged if 𝜃 is
replaced by a cohomologous form. Then write 𝜃 (mod exact forms)
as a linear combination of the 𝛼𝑗’s and 𝛽𝑗’s and use (9.51)–(9.54).]

(b) Choose a basis (𝜂1, … , 𝜂𝑔) for Ω1(𝑀) over ℂ, and let (𝜀1, … , 𝜀𝑔) be
the dual basis. Write the period matrix of 𝑀 as Π = (𝐴 𝐵), where

𝐴𝑘
𝑗 = ∫𝑎𝑗

𝜂𝑘, 𝐵𝑘
𝑗 = ∫𝑏𝑗

𝜂𝑘.

By applying part (a) to 𝜂𝑘 ∧ 𝜂𝑙 and 𝜂𝑘 ∧ ∗𝜂𝑙, prove that the periods
satisfy the following Riemann bilinear relations:

(i) For all 𝑘, 𝑙 = 1, … , 𝑔,
𝑔

∑
𝑗=1

(𝐴𝑘
𝑗 𝐵𝑙

𝑗 − 𝐵𝑘
𝑗 𝐴𝑙

𝑗) = 0.

(ii) The following Hermitian matrix is positive definite:

𝑄𝑘𝑙 = 𝑖
𝑔

∑
𝑗=1

(𝐴𝑘
𝑗 𝐵𝑙

𝑗 − 𝐵𝑘
𝑗 𝐴𝑙

𝑗).

(In matrix notation, these can be written succinctly as 𝐴𝐵𝑇 −𝐵𝐴𝑇 =
0 and 𝑄 = 𝑖(𝐴𝐵𝑇 − 𝐵𝐴𝑇 ) >> 0.)

(c) Show that the matrix 𝐴 is nonsingular, and conclude that by choos-
ing a new basis ̃𝜂𝑚 = ∑𝑘(𝐴−1)𝑚

𝑘 𝜂𝑘 for Ω1(𝑀), we can put the period
matrix into the form (𝐼 𝑍) for some 𝑔 × 𝑔 matrix 𝑍 that is sym-
metric and has positive definite imaginary part. [Hint: Assuming 𝐴
is singular, show that there is a nonzero column matrix 𝑤 such that
𝑤𝑇 𝑄𝑤 = 0.]

(d) Define a real-linear isomorphism Φ∶ ℝ2𝑔 → ℂ𝑔 by

Φ(𝑥1, … , 𝑥𝑔 , 𝑦1, … , 𝑦𝑔) = (𝑧1, … , 𝑧𝑔), where

𝑧𝛼 =
𝑔

∑
𝑗=1

𝑥𝑗𝐴𝛼
𝑗 +

𝑔

∑
𝑗=1

𝑦𝑗𝐵𝛼
𝑗 ,

and let Ψ = Φ−1 ∶ ℂ𝑔 → ℝ2𝑔 . With (𝐴 𝐵) = (𝐼 𝑍) as above, show
that the differential of Ψ satisfies

𝐷Ψ (
𝜕

𝜕𝑧𝛼 ) =
𝑔

∑
𝛼=1

𝐶𝑗
𝛼

𝜕
𝜕𝑥𝑗 + 𝐷𝑗

𝛼
𝜕

𝜕𝑦𝑗 ,

𝐷Ψ (
𝜕

𝜕𝑧𝛼 ) =
𝑔

∑
𝛼=1

𝐶𝑗
𝛼

𝜕
𝜕𝑥𝑗 + 𝐷𝑗

𝛼
𝜕

𝜕𝑦𝑗 ,
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where the 𝑔 × 𝑔 matrices 𝐶 and 𝐷 are given by 𝐶 = −𝑍(𝑍 − 𝑍)−1,
𝐷 = (𝑍 − 𝑍)−1. Use these formulas to show that 𝐶𝑇 𝐷 − 𝐷𝑇 𝐶 = 0
and −𝑖(𝐶𝑇 𝐷 − 𝐷𝑇 𝐶) is positive definite.

(e) Let Ω0 be the 2-form ∑𝑔
𝑗=1 𝑑𝑥𝑗 ∧ 𝑑𝑦𝑗 on ℝ2𝑔 , and let Ω = Ψ∗Ω0.

Show that Ω is a Riemann form for Λ, and therefore Jac(𝑀) is pro-
jective.
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Notation Index

∗ (Hodge star operator), 263
∞ (point at infinity), 56
♯ (sharp operator), 229
⟨⋅, ⋅⟩ (Hermitian inner product), 76
⟨⋅, ⋅⟩ (Kronecker pairing), 166
(⋅, ⋅) (global Hodge inner product), 257, 258
‖⋅‖ (global Hodge norm), 258
[⋅, ⋅] (commutator bracket), 281
[⋅] (singular homology class), 165
[⋅] (cohomology class of a Čech cocycle),

149
[[⋅]] (equivalence class in direct limit), 153
⅃ (interior multiplication), 43
≅ (isomorphic bundles), 25
≅ (isomorphic sheaves), 126

𝐴∗ (Hermitian adjoint of a matrix), 68
𝐴∗ (adjoint of a linear map), 258
𝐴∗ (cochain complex), 107
Alb(𝑀) (Albanese variety), 300

♭ (flat operator), 229
𝔹2𝑛 (unit ball), 4
𝑏𝑘(𝑀) (Betti number), 108
𝐵(𝐿) (base locus), 95
𝐵𝑝(𝒰; 𝒮 ) (group of Čech coboundaries), 149
𝐵𝑟(𝑝) (open ball of radius 𝑟), 4
𝐵(𝑍, 𝑊 ) (holomorphic bisectional

curvature, 253

𝒞 (sheaf of continuous functions), 123
𝒞 ∗ (sheaf of nonvanishing continuous

functions), 123
𝑐1(∇) (Chern form of a connection), 202

𝑐ℝ
1 (𝐸) (first real Chern class), 203

𝐶𝑔 (conjugation by 𝑔), 100
𝑐(𝐿) (sheaf-theoretic Chern class), 181
𝐶𝑝(𝒰; 𝒮 ) (group of Čech cochains), 147
ch(𝐾) (convex hull), 67
Cl(𝑀) (divisor class group), 94
Cl0(𝑀) (divisor classes of degree 0), 296
ℂℙ0 (0-dimensional projective space), 5
ℂℙ𝑛 (complex projective space), 5
(ℂℙ𝑛)∗ (dual projective space), 54
ℂℙ𝑛 (ℂℙ𝑛 with opposite orientation), 101

𝜕 (conjugate Dolbeault operator), 105
𝜕 (singular boundary operator), 165
𝜕 (Dolbeault operator), 105
𝜕𝑓 /𝜕𝑧𝑗 (complex partial derivative), 13
𝜕𝑓 /𝜕𝑧𝑗 (complex vector field), 27
𝜕𝑓 /𝜕𝑧𝑗 (complex vector field), 27
𝜕𝑓 /𝜕𝑥𝑗 (derivative of complex-valued

function), 17
𝜕𝐸 (Cauchy–Riemann operator on

bundle-valued forms), 116
∇ (connection), 193
∇𝜎 (total covariant derivative of a section),

194
𝛿 (Čech coboundary operator), 148
𝛿 (singular coboundary operator), 166
Δ (Laplace–Beltrami operator), 265
Δ𝑑 (Hodge Laplacian), 269
Δ𝜕 (Dolbeault Laplacian), 274
Δ𝜕 (conjugate Dolbeault Laplacian), 274
Δ𝑘 (standard simplex), 164
𝐷 (exterior covariant derivative), 200
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𝔻 (unit disk), 4
𝐷𝐹 (differential of a smooth map), 30
𝐷′𝐹 (holomorphic Jacobian), 31, 37
𝐷𝐹 (𝑝) (differential of a smooth map), 30
𝐷𝑛

𝑟 (𝑝) (polydisk of radius 𝑟), 4
𝐷𝑟(𝑝) (disk of radius 𝑟), 4
𝑑∗ (formal adjoint of 𝑑), 262
𝐷𝑡 (covariant derivative along a curve), 197
dimℂ (complex dimension), 3
dimℝ (real dimension), 3
div (divergence), 265
Div(𝑀) (group of divisors), 93
Div0(𝑀) (divisors of degree 0), 296, 311
𝑑𝑉𝑔 (Riemannian volume form), 237

𝜀 (exponential sheaf morphism), 127
𝜀𝐽 (wedge of basis 1-forms), 262
ℰ (sheaf of smooth complex-valued

functions), 123
ℰ ∗ (sheaf of nonvanishing smooth

functions), 123
ℰ(𝐸) (sheaf of smooth sections of 𝐸), 123
𝑒𝑗 (standard basis for ℂ𝑛), 74
ℰ 𝑘 (sheaf of smooth complex-valued

𝑘-forms), 123
ℰ 𝑘(𝐸) (sheaf of bundle-valued 𝑘-forms), 123
ℰ 𝑘(𝑀) (sections of Λ𝑘

ℂ𝑀), 104
ℰ 𝑝,𝑞 (sheaf of smooth (𝑝, 𝑞)-forms), 124
ℰ 𝑝,𝑞(𝐸) (sheaf of smooth 𝐸-valued

(𝑝, 𝑞)-forms), 124
ℰ 𝑝,𝑞(𝑀) (sections of Λ𝑝,𝑞𝑀), 104
ℰ 𝑝,𝑞(𝑀; 𝐸) (bundle-valued (𝑝, 𝑞)-forms),

116
ℰ 𝑞(𝑀; 𝐸) (bundle-valued 𝑞-forms), 114
ℰℝ (sheaf of smooth real-valued functions),

124
𝐸 ×𝑀 𝐸 (fiber product), 129
End(𝐸) (endomorphism bundle), 81

𝜑𝑓 (section of 𝐻𝑑), 88
(𝑓 ) (divisor of a meromorphic function), 93
𝐹 (morphism of constant sheaves), 127
𝐹𝑖,𝑘 (face map), 165
𝐹𝑝 (stalk homomorphism), 128
[𝑓 ]𝑝 (germ of a function), 127
𝐹# (coefficient homomorphism on singular

cochains), 166
𝐹∗ (coefficient homomorphism in singular

cohomology), 166
𝐹∗ (induced sheaf cohomology

homomorphism), 153

𝐹 ∗ (induced homomorphism on Dolbeault
cohomology), 108

Γ(𝐸) (space of smooth sections of 𝐸), 25
Γ𝑐(𝐸) (space of compactly supported

sections), 259
𝐺 (constant sheaf with coefficients in 𝐺), 123
𝐺/Γ (coset space), 10
G𝑘(𝑉 ) (Grassmannian), 6
𝐺𝑝 (skyscraper sheaf), 123
𝑔CH (complex hyperbolic metric), 243
𝑔E (standard metric on ℂ𝑛), 225
𝑔FS (Fubini–Study metric), 235
GL(𝑛, ℂ) (group of invertible complex

matrices), 10
GL(𝑉 ) (group of linear automorphisms of

𝑉 ), 10
grad (gradient), 265

𝐻 (hyperplane bundle), 88, 90
𝐻𝑑 (power of the hyperplane bundle), 88
𝐻𝑘

dR(𝑀) (de Rham cohomology), 108
𝐻𝑘

dR(𝑀; ℂ) (complex de Rham
cohomology), 143

𝐻𝑘
dR(𝑀; ℝ) (real de Rham cohomology), 143

𝐻∞
𝑘 (𝑀) (homology of smooth chains), 175

𝐻𝑘(𝑀) (singular homology), 165
𝐻𝑘

Sing,∞(𝑀; 𝐺) (cohomology of smooth
cochains), 175

𝐻𝑘
Sing(𝑀; 𝐺) (singular cohomology), 166

𝐻𝑝,𝑞(𝑀) (Dolbeault cohomology), 108
ℋ 𝑝,𝑞(𝑀) (harmonic (𝑝, 𝑞)-forms), 275
ℎ𝑝,𝑞(𝑀) (Hodge number), 108
𝐻𝑝,𝑞(𝑀; 𝐸) (Dolbeault cohomology with

coefficients in 𝐸), 117
ℋ 𝑝,𝑞(𝑀; 𝐸) (𝜕𝐸-harmonic bundle-valued

forms), 277
𝐻𝑞(𝐴∗) (cohomology of a cochain complex),

107
ℋ 𝑞(𝑀) (harmonic 𝑞-forms), 270
𝐻(𝑍) (holomorphic sectional curvature),

241
Hol(𝑝) (holonomy group), 254
Hom(𝐸, 𝐸′) (homomorphism bundle), 81

ℐ𝑆 (ideal sheaf of 𝑆), 124
ℐ 2

𝑆 (sheaf of holomorphic functions
vanishing to second order on 𝑆), 124

ℐ𝑆 (𝐸) (sheaf of holomorphic sections
vanishing on 𝑆), 124

ℐ 2
𝑆 (𝐸) (sheaf of holomorphic sections

vanishing to second order on 𝑆), 124
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𝐽 (almost complex structure), 39
𝐽 (complex structure on a vector space), 34
𝑗 (barred index), 227
𝐽𝑀 (almost complex structure), 36
Jac(𝑀) (Jacobian variety), 305

𝜅 (Kronecker homomorphism), 167
𝐾 (canonical bundle), 118
𝐾∗ (anticanonical bundle), 118
𝐾 (holomorphic hull), 65
𝐾𝑀 (canonical bundle), 118
𝐾∗

𝑀 (anticanonical bundle), 118
Ker𝐹 (kernel of a sheaf morphism), 138

Λ𝑘
ℂ𝑀 (bundle of complex 𝑘-forms), 103

Λ𝑝,𝑞𝑀 (bundle of (𝑝, 𝑞)-forms), 104
𝐿ℂ (complexification of a linear map), 23
𝐿𝜔 (Lefschetz operator), 281
𝐿{𝑝} (point bundle), 93
lim
⟶

𝐺𝛼 (direct limit), 128

[𝑀] (fundamental homology class), 165
𝑀/Γ (quotient space by group action), 10

𝜔CH (complex hyperbolic Kähler form), 243
𝜔E (standard Kähler form on ℂ𝑛), 225
𝜔FS (Fubini–Study Kähler form), 235
Ω𝑝 (sheaf of holomorphic 𝑝-forms), 124
Ω𝑝(𝐸) (sheaf of holomorphic 𝐸-valued

𝑝-forms), 124
Ω𝑝(𝑀) (space of holomorphic 𝑝-forms), 118
Ω𝑝(𝑀; 𝐸) (space of holomorphic 𝐸-valued

𝑝-forms, 118
𝒪 (sheaf of holomorphic functions), 124
𝒪∗ (sheaf of nonvanishing holomorphic

functions), 124
𝒪(𝑑) (algebraic geometry notation for 𝐻𝑑),

88, 137
𝒪(𝐸) (sheaf of nonvanishing sections of 𝐸),

124
𝒪(𝑀) (holomorphic functions on 𝑀), 7
𝒪(𝑀; 𝐸) (space of global holomorphic

sections), 72
O(𝑛, ℂ) (complex orthogonal matrices), 51
𝒪(𝑈; 𝐸) (space of local holomorphic

sections), 72

𝒫 (sheaf of pluriharmonic functions), 189
𝑃 𝛾 (parallel transport operator), 254
𝑃 ∗ (formal adjoint of 𝑃 ), 259
ℙ(𝑉 ) (projectivization of 𝑉 ), 6
Pic(𝑀) (Picard group), 83
Pic0(𝑀) (Picard variety), 182

𝜌 (Ricci form), 247
𝑟𝑈

𝑉 (restriction map in a presheaf), 121
𝑅𝑐 (Ricci curvature), 245
𝑅𝑚 (Riemann curvature tensor), 239

(𝜎) (divisor of a section of a line bundle), 94,
211

∑′
𝐼 (sum over increasing multi-indices), 105

𝑆 (scalar curvature), 245
𝒮 (sheaf of rough sections), 186
[𝑠0(𝑝), … , 𝑠𝑚(𝑝)] (associated map), 95
𝒮 (𝐾) (sections of 𝒮 over a closed subset,

190
𝒮 ⊗ℛ 𝒯 (tensor product sheaf), 134
𝒮𝑝 (stalk of a sheaf), 128
[𝑠]𝑝 (germ of a section), 128
𝒮 (𝑈) (sections of 𝒮 over an open subset),

121
𝒮 |𝑉 (restriction of a sheaf to an open

subset), 123
𝑠|𝑉 (restriction of a section), 122
sec(𝑣, 𝑤) (sectional curvature), 252
sgn (sign of a permutation), 257
Sing∞

𝑘 (𝑀) (smooth singular chain group),
175

Sing𝑘(𝑀) (singular chain group), 165
Sing𝑘(𝑀; 𝐺) (singular cochain group), 165
SL(2, ℤ) (integer matrices with determinant

1), 42
SL(𝑛, ℂ) (complex matrices with

determinant 1), 51
SO(𝑛, ℂ) (subgroup of O(𝑛, ℂ) with

determinant 1), 51
St 𝑣 (star of a vertex), 191

Θ (curvature of a connection), 198
Θ𝑘

𝑗 (curvature 2-forms), 199
𝜃𝑘

𝑗 (connection 1-forms), 194
𝑇ℂ𝑀 (complexified tangent bundle), 26
𝑇 ∗

ℂ𝑀 (complexified cotangent bundle), 26
𝑇𝐽 𝑀 (𝑇 𝑀 with complex structure), 38
𝑇 ′𝑀 (holomorphic tangent bundle), 37
𝑇 ″𝑀 (antiholomorphic tangent bundle), 37
𝑇 ′

𝑝 𝑀 (holomorphic tangent space), 37
𝑇 ″

𝑝 𝑀 (antiholomorphic tangent space), 37

U(𝑛) (unitary group), 68

𝑉 ′ (𝑖-eigenspace of complex structure), 34
𝑉 ″ ((−𝑖)-eigenspace of complex structure),

34
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𝑉 ∗ (space of conjugate-linear functionals),
311

𝑉ℂ (complexification of a vector space), 23
𝑉ℝ (underlying real vector space), 34

[𝑤] (point in projective space), 5

𝑧𝑗 (holomorphic coordinates), 3
𝑧𝑗 (conjugate of 𝑧𝑗), 3
𝑧𝑗 (conjugate of 𝑧𝑗), 227
𝒵 𝑘 (sheaf of closed complex-valued

𝑘-forms), 123
𝒵 𝑝,𝑞 (sheaf of 𝜕-closed (𝑝, 𝑞)-forms), 124
𝒵 𝑝,𝑞(𝐸) (sheaf of 𝜕-closed 𝐸-valued

(𝑝, 𝑞)-forms), 124
𝑍𝑝(𝒰; 𝒮 ) (group of Čech cocycles), 149
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Abel, Niels Henrik, 301
Abel–Jacobi theorem, 301
Abel’s theorem, 311
abelian variety, 337
acyclic resolution, 159
acyclic sheaf, 159
adjoint

formal, 260
of a differential operator, 260
of a finite-dimensional linear map, 258
of a matrix, 68, 259

adjoint representation
of a Lie algebra, 100
of a Lie group, 100

adjunction formula, 120
affine algebraic variety, 51

nonsingular, 51
smooth, 51

affine coordinates, 6
affine embedding, 55

standard, 55
Akizuki, Yasuo, 319, 321, 322
Akizuki–Nakano identity, 319
Albanese map, 311
Albanese variety, 298, 300, 301

universal property, 312
algebraic variety

affine, 51
nonsingular, 51, 52
projective, 52
smooth, 51, 52

almost complex manifold, 39
almost complex structure, 39

compatible with a symplectic form, 287
Alt convention for wedge products, 229
ample line bundle, 98, 315
analytic continuation of a local isometry, 244
analytic function, 12
analytic sheaf, 144

coherent, 144
analytic variety, 53
anticanonical bundle, 118
antiderivation, 103, 113, 264
antiholomorphic tangent bundle, 37
antiholomorphic tangent space, 37
associated line bundle, 91, 94
associated map, 96
atlas, 2

holomorphic, 2
smooth, 2

Aubin, Thierry, 249
automorphism, 7

of ℂℙ1, 69
of ℂℙ𝑛, 310

Bézout’s theorem, 61
ball, 4

unit, 4
base locus, 95
base point, 95
Betti number, 108, 143
Bianchi identity

algebraic, 239
differential, 219
for a connection, 219

bidegree, 104

351
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biholomorphic, 8
biholomorphism, 7

local, 7
bilinear relations, 340
bisectional curvature, holomorphic, 253
Bishop, Errett, 66
blowdown map, 85

model, 85
blowup, 85

at finitely many points, 87
is projective, 335

Bochner, Salomon, 309, 310
Bochner vanishing theorem, 309
Borel, Armand, 41
boundary, singular, 165
bundle construction theorem, 73
bundle homomorphism, 25

over 𝑀 , 25
bundle isomorphism, 25

holomorphic, 25
smooth, 25

bundle-valued form, 114, 116

𝐶𝑘 manifold, 1
Calabi, Eugenio, 247
Calabi–Yau manifold, 249, 339
Calabi–Yau theorem, 247
canonical bundle, 118

degree of, 253
of projective space, 118

canonical curve, 339
canonical holomorphic structure

on ℂ𝑛, 4
on an open subset of ℂ𝑛, 4

canonical map, 339
Cartan, Henri, 278
Cartan’s theorems A & B, 278
category, equivalence of, 133
Cauchy–Riemann equations, 12, 14

inhomogeneous, 109
Cauchy–Riemann operator, 106
Čech, Eduard, 147
Čech coboundary, 149
Čech cochain, 147
Čech cocycle, 149
Čech cohomology, 147, 152

on an open cover, 148
chain

singular, 165
smooth, 175

chain complex, 107
chain group, singular, 165

chain map, 107
chain rule

for holomorphic functions, 31
for smooth functions, 31

chart, 2
chart lemma, 3
Chern, Shiing-Shen, 202
Chern class

of a line bundle, 181
real, 203
sheaf-theoretic, 181
sheaf-theoretic and first real, 204

Chern connection, 208
Chern form, 202
Chow, Wei-Liang, 53
Chow’s theorem, 53, 291

for hypersurfaces, 291
classification of smooth line bundles, 181
coboundary

Čech, 149
singular, 166

coboundary operator
Čech, 148
singular, 166

cochain
Čech, 147
singular, 165

cochain complex, 107
cochain group, 147
cochain homotopy formula, 151
cochain map, 107
cocompact subgroup, 12
cocycle

Čech, 149
singular, 166

cocycle condition, 73
codimension, 48
coefficient homomorphism, 166
coherent analytic sheaf, 144
cohomologous, 149
cohomology

Čech, 147, 148
of a cochain complex, 107
of constant sheaves, 168
sheaf, 147, 152
singular, 166, 168
smooth singular, 175

cohomology class, 149
integral, 178, 334
of type (𝑝, 𝑞), 294

compatible almost complex structure, 287
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compatible charts
holomorphically, 2
smoothly, 2

compatible with a metric, 195
compatible with the holomorphic structure,

207
complex-analytic function, 12
complex coordinate frame, 29
complex coordinate vector field, 29
complex covector field, 26
complex curve, 3, 41
complex differential form, 26, 103
complex dimension, 3
complex Grassmannian, 6
complex hyperbolic metric, 243, 252
complex Lie group, 10, 51
complex Lie subgroup, 51
complex manifold, 1, 2
complex Monge–Ampère equation, 248
complex partial derivative, 13
complex projective space, 5
complex structure

on a vector bundle, 35
on a vector space, 34
traditional name for holomorphic

structure, 3
complex submanifold, 48

embedded, 48
immersed, 48

complex surface, 3, 41
complex torus, 11, 235
complex vector bundle, 24

holomorphic, 71
smooth, 24

complex vector field, 26
complexification

of a linear map, 23
of a vector bundle, 25
of a vector space, 23
of the cotangent bundle, 26
of the tangent bundle, 26

complexified cotangent bundle, 26
complexified tangent bundle, 26
component functions of a section, 72
composition

of holomorphic functions, 16
of holomorphic maps, 8
of sheaf morphisms, 126

conformal map, 44
conformal metric, 251
conjugate-linear, 24

conjugate symmetry, 76
conjugation

in a complexified vector bundle, 26, 42
in a complexified vector space, 24
in a Lie group, 100
of a quaternion, 43
of an octonion, 43

connected sum, 100
connecting homomorphism, 154

in sheaf cohomology, 155
connection, 193

Chern, 208
compatible with a metric, 195
compatible with the holomorphic

structure, 207
dual, 218
metric, 195
tensor product, 219

connection forms, 194
conormal bundle, 119
constant holomorphic sectional curvature,

242, 243, 252
constant presheaf, 145
constant sheaf, 124
contractible, 166

locally, 168
semilocally, 172

contragredient, 80
convex, holomorphically, 65
convex hull, 65, 69
coordinate chart, 2

holomorphic, 3
coordinate frame, complex, 29
coordinate representation, 7
coordinate vector field, complex, 29
coordinates

holomorphic, 3
homogeneous, 5

covariant derivative, 193
along a curve, 197
exterior, 200
total, 194

covering map, 8
holomorphic, 9
smooth, 9

cubic, projective, 57
curvature

holomorphic bisectional, 253
holomorphic sectional, 241
of a connection, 198
of a Kähler metric, 240
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curvature endomorphism field, 239
curvature forms, 199
curvature tensor, 239
curve, complex, 3, 41
cycle, singular, 165

𝜕𝐸-harmonic, 277
𝜕-Poincaré lemma, 109
𝜕-harmonic form, 276
𝜕-harmonic form, 275
𝜕𝜕-lemma

global, 248, 292
local, 113

𝑑-harmonic form, 276
de Rham cohomology, 108, 143

with complex coefficients, 143
de Rham theorem, 176

sheaf-theoretic version, 173
de Rham–Weil theorem, 159
decomposable form, 43
defining function, local, 49
degree

of a codimension-1 variety, 57
of a divisor, 211
of a line bundle, 182
of a smooth map, 338

density, Riemannian, 257
determinant bundle, 80
determinant convention for wedge products,

229
difference tensor, 202
differential Bianchi identity, 219
differential form

bundle-valued, 114, 116
complex, 103
endomorphism-valued, 114
of type (𝑝, 𝑞), 104
real, 103

differential of a smooth map, 29
differential operator, 259

elliptic, 268
order zero, 268

dimension, 2
complex, 3
real, 3

direct image sheaf, 146
direct limit, 128
direct sum of sheaves, 123
direct system, 128
directed set, 128
discrete Lie group, 9
disk, 4

distribution, 40
divergence, 265
divisor, 93

effective, 93
linearly equivalent, 94
of a meromorphic function, 93
of a meromorphic section, 94
principal, 94

divisor class group, 94
Dolbeault, Pierre, 105, 173
Dolbeault cohomology, 108

functoriality, 108
with bundle coefficients, 117, 276

Dolbeault complex, 108
Dolbeault Laplacian, 274

bundle-valued, 277
Dolbeault operator, 105
Dolbeault theorem, 173
double skyscraper sheaf, 143, 316
dual bundle, 79
dual connection, 218
dual metric, 210, 218, 219
dual projective space, 54
dual torus, 311

𝐸-valued form, 114, 116
effective divisor, 93, 297
Einstein summation convention, 2, 5, 27, 227
elementary symmetric polynomial, 60
elliptic complex, 312
elliptic curve, 308
elliptic differential operator, 268
elliptic integral, 308
embedded complex submanifold, 48
embedding, 46

holomorphic, 46
embedding theorem

Kodaira, 330, 334
Stein, 66

empty set, sections in a presheaf, 122
End(𝐸)-valued form, 114
endomorphism bundle, 81
endomorphism-valued form, 114
equivalence of categories, 133
étalé space, 129

of a presheaf, 129
of abelian groups, 129
of rings, 129
of vector spaces, 129

étalé space morphism, 133
Euclidean inner product, 4
Euler characteristic of a sheaf, 158, 295
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Euler’s identity, 63
evaluation map, 316
evenly covered, 8
exact sequence

of abelian groups, 137
of cochain complexes, 154
of rings, 137
of sheaves, 138
of vector spaces, 137
short, 139

exceptional hypersurface, 85
exponential sheaf sequence, 142

smooth, 142
extendible section, 197
exterior covariant differentiation, 200

face map, 165
Fano manifold, 254
Fermat curve, 59
Fermat hypersurface, 59, 250
Fermat’s last theorem, 59
fiber metric, Hermitian, 76
fiber product, 75, 129, 146
fine sheaf, 163

is acyclic, 163
finiteness theorem, 278
first real Chern class, 203

and sheaf-theoretic Chern class, 204
flabby sheaf, 184
flasque resolution, 184, 190
flasque sheaf, 184

is acyclic, 188
flat connection, 199
flat operator (♭), 229
form

bundle-valued, 114, 116
complex, 103
endomorphism-valued, 114
of bidegree (𝑝, 𝑞), 104
of type (𝑝, 𝑞), 104

formal adjoint, 260
formally self-adjoint, 270
fourfold, 3
frame, local, 25
Fredholm theorem, 269

for elliptic operators, 269
for operators with injective symbol, 312

free action, 9
free sheaf, 135

locally, 135
Fubini, Guido, 235
Fubini–Study metric, 235, 334

is homogeneous, 236
fundamental 2-form, 224
fundamental class of a manifold, 165

GAGA principle, 53
Gaussian curvature, 251
Gaussian integer, 12
Gaussian integers, 41
genus-degree formula, 254
genus of a compact Riemann surface, 183
geometric normal bundle, 81
germ

of a holomorphic function, 127
of a section, 128

global 𝜕𝜕-lemma, 248, 292
global differential, 30
global Hodge inner product, 257
global section, 25
gluing property of a sheaf, 122
Godement, Roger, 184
Godement resolution, 184, 190
gradient, 265
graph of a function, 46, 50
Grassmannian, 6, 68
Grothendieck, Alexander, 184
group action, 9

free, 9
holomorphic, 9
proper, 9

hard Lefschetz theorem, 288
harmonic form, 255, 270, 275
Hartogs, Friedrich, 13, 21
Hartogs’s extension theorem, 22
Hermitian adjoint of a matrix, 68, 259
Hermitian fiber metric, 76
Hermitian inner product, 76
Hermitian manifold, 224
Hermitian metric, 224
Hermitian vector bundle, 76
Hilbert space, 258
Hilbert space adjoint, 260
Hodge, William V. D., 105, 256, 276, 281
Hodge decomposition theorem, 286
Hodge diamond, 287
Hodge–Dolbeault theorem, 276

for bundle-valued forms, 277
Hodge duality, 286
Hodge inner product

global, 257
pointwise, 256

Hodge Laplacian, 269
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Hodge metric, 334
Hodge numbers, 108, 276

of ℂℙ𝑛, 289
of a Riemann surface, 289

Hodge star operator, 262, 263
on a Hermitian manifold, 274
on a Riemann surface, 274
on a Riemannian manifold, 262

Hodge theorem, 255
for elliptic complexes, 313
for Kähler manifolds, 286
for Riemannian manifolds, 272

Hodge theory, 256
holomorphic action, 9
holomorphic atlas, 2
holomorphic bisectional curvature, 253
holomorphic bundle isomorphism, 25
holomorphic coordinate chart, 3
holomorphic coordinates, 3
holomorphic covering map, 9
holomorphic embedding, 46
holomorphic form, 118

is closed and harmonic, 292
is parallel, 310

holomorphic function, 7
of one variable, 12
of several variables, 13
vector-valued, 13

holomorphic hull, 65
holomorphic immersion, 46
holomorphic implicit function theorem, 46
holomorphic inverse function theorem, 45
holomorphic Jacobian, 31, 37
holomorphic manifold, 2
holomorphic map

between manifolds, 7
between open subsets of ℂ𝑛, 2

holomorphic normal bundle, 81
holomorphic quotient manifold theorem, 10
holomorphic rank theorem, 46
holomorphic section, 9, 72
holomorphic sectional curvature, 241

constant, 242, 243, 252
holomorphic slice, 48
holomorphic structure, 2

determined by an atlas, 3
on ℂ𝑛, 4
on a manifold, 2
on an open subset of ℂ𝑛, 4

holomorphic subbundle, 76
holomorphic submersion, 46

holomorphic tangent bundle, 37
holomorphic tangent space, 37
holomorphic vector bundle, 25, 71
holomorphic vector field, 99
holomorphically compatible charts, 2
holomorphically convex, 65
holonomy group, 254, 339
homogeneous coordinates, 5
homogeneous function, 83
homogeneous polynomial, 52
homogenization of a polynomial, 59
homologous, 165
homology

of a chain complex, 107
singular, 165
smooth singular, 175

homology class, 165
homomorphism bundle, 81
homomorphism of vector bundles, 25
Hopf manifold, 11, 238
horizontal tangent space, 251
hull

convex, 65, 69
holomorphic, 65

hyperbolic metric, complex, 243, 252
hyperelliptic curve, 338
hyperplane, projective, 54
hyperplane at infinity, 55
hyperplane bundle, 90

is positive, 320
hypersurface, 48

in projective space, 291

ideal sheaf, 125, 133, 137
identity theorem, 18

for manifolds, 19
image of a sheaf morphism, 138
immersed complex submanifold, 48
immersion, 46

holomorphic, 46
implicit function theorem, 46
inclusion morphism, 127
induced cohomology homomorphism, 107
injective resolution, 184
injective sheaf, 184

is acyclic, 188
is flasque, 185

injective sheaf morphism, 139
injective symbol, 312
inner product, Hermitian, 76
integrable almost complex structure, 40
integral cohomology class, 178, 294, 334
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integration over a smooth chain, 176
interior multiplication, 43, 113, 264
interior product, see interior multiplication
inverse function theorem, 45
inverse image sheaf, 146
invertible sheaf, 137
involutivity, 40
irreducible, 51
isolated singularities, 22
isomorphic bundles, 25
isomorphic presheaves, 126
isomorphic sheaves, 126
isomorphism

of presheaves, 126
of sheaves, 126
of vector bundles, 25

Iwasawa manifold, 12, 41, 292
standard, 12

Jacobi, Carl Gustav Jacob, 301
Jacobi inversion theorem, 311
Jacobian, holomorphic, 31, 37
Jacobian variety, 305, 339

K3 surface, 250
𝑘-form, complex, 103
Kähler, Erich, 250
Kähler class, 227
Kähler–Einstein metric, 249
Kähler form, 226

is harmonic, 309
Kähler identities, 281

for bundle-valued forms, 317
Kähler manifold, 226
Kähler metric, 226

on ℂℙ𝑛, 235
on ℂ𝑛, 234
on a Riemann surface, 235
on complex hyperbolic space, 243, 252
on complex tori, 235

Kähler potential, 234
Kähler symmetries of the curvature, 240
kernel of a sheaf morphism, 138
Kodaira, Kunihiko, 250, 315, 322
Kodaira embedding theorem, 330, 334

geometric version, 334
line bundle version, 330

Kodaira–Nakano–Akizuki vanishing
theorem, 321

Kodaira–Thurston manifold, 288
Kodaira vanishing theorem, 317, 322
Kronecker homomorphism, 167

Kronecker pairing, 166
and de Rham cohomology, 178

Kummer, Ernst, 250

𝐿2 inner product, 258
Laplace–Beltrami operator, 265, 308
Laplacian

Dolbeault, 274
Hodge, 269

lattice, 11
Lefschetz, Solomon, 281, 288
Lefschetz decomposition theorem, 309
Lefschetz operator, 281
Lefschetz theorem on (1, 1)-classes, 294
Lefschetz theorem, hard, 288
Leray, Jean, 121
Levi-Civita connection, 198, 207
Lie group

complex, 10, 51
discrete, 9

Lie subgroup, complex, 51
lift of a vector field, 61
line, projective, 54
line bundle, 25

associated with a divisor, 94
associated with a hypersurface, 91
classification, 181, 290
degree, 182
negative, 216, 337
on projective space, 290
positive, 216, 320

linear subspace, projective, 54
linearly equivalent divisors, 94
Liouville’s theorem, 19
local biholomorphism, 7
local 𝜕𝜕-lemma, 113
local defining function, 49

system of, 91
local frame, 25
local isometry, 243
local operator, 259
local section

of a bundle, 25
of a continuous map, 123
of a covering map, 9
of a map, 47

local trivialization, 24
locality property of a sheaf, 122
locally contractible, 168
locally decomposable, 43
locally finitely generated sheaf, 144
locally free sheaf, 135



358 Subject Index

locally zero, 170
long exact sequence, 154

in sheaf cohomology, 154
loop, 254

manifold
𝐶𝑘, 1
complex, 1, 2
smooth, 1, 2
topological, 1

maximal atlas
holomorphic, 2
smooth, 2

maximum principle, 19
meromorphic function, 93
meromorphic section, 93
metric connection, 195
Möbius transformation, 56
model blowdown map, 85
Monge–Ampère equation, complex, 248
Montel’s theorem, 20
morphism

of presheaves, 126
of sheaves, 126
ℛ-module, 126

multiplicity of a zero, 13
musical isomorphism, 229

Nakano, Shigeo, 319, 321, 322
Narasimhan, Raghavan, 66
natural coordinates for 𝑇 ∗𝑀 , 267
negative (1, 1)-form, 215
negative line bundle, 216, 337
Newlander, August, 40
Newlander–Nirenberg theorem, 40
Nijenhuis tensor, 42
Nirenberg, Louis, 40
nondegenerate 2-form, 227
nondegenerate bilinear form, 273
nonsingular variety

affine, 51
projective, 52

nontrivial section of a vector bundle, 25
norm with respect to a fiber metric, 76
normal bundle

geometric, 81
holomorphic, 81

normal covering map, 8
normal subgroup, 8, 10

octonions, 43
open submanifold, 5, 50

order
of a pole, 93
of a zero, 13

orientation of a complex manifold, 32
oriented connected sum, 100

(𝑝, 𝑞)-form, 104
parallel local frame, 199
parallel section, 198

along a curve, 197
parallel transport, 197, 254
partition of unity

sheaf, 163
smooth, 162, 163
topological, 163

period lattice, 300
period matrix, 300
periods of a Riemann surface, 300
Picard, Charles Émile, 83
Picard group, 83, 181

and sheaf cohomology, 179
Picard variety, 182, 298, 301
plane, projective, 54
Plücker embedding, 69
pluriharmonic function, 119, 189
Poincaré lemma, 109

for the Dolbeault operator, 109
point bundle, 93
pointwise Hodge inner product, 256
pole of a meromorphic function, 93
polydisk, 4
polynomial, 17

homogeneous, 52
positive (1, 1)-form, 215, 216, 320
positive definite, 76
positive line bundle, 216, 320
positive (𝑝, 𝑝)-form, 220
presheaf, 121

constant, 145
of abelian groups, 122
of rings, 122
of vector spaces, 122
that is not a sheaf, 125
with values in a category, 122

presheaf isomorphism, 126
presheaf morphism, 126
primed summation sign, 105
primitive cohomology class, 309
principal divisor, 94, 311
principal symbol of a differential operator,

267
projective algebraic variety, 52
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nonsingular, 52
smooth, 52

projective completion, 59
projective cubic, 57
projective hyperplane, 54
projective hypersurface, 291

diffeomorphic, 62
is connected, 291

projective line, 54
projective linear subspace, 54
projective manifold, 52
projective plane, 54
projective quadric, 57
projective quartic, 57
projective quintic, 57
projective space, complex, 5
projective tangent space, 55
projective transformation, 47
projectively equivalent, 54
projectivization of a vector space, 6
proper action, 9
pseudoconvex, 67
pullback bundle, 75, 210
pullback metric, 210
pullback of sections, 75, 76

quadric, projective, 57
quartic, projective, 57
quaternions, 43
quintic, projective, 57
quotient bundle, 80
quotient manifold theorem, 10
quotient sheaf, 133

ℛ-module morphism, 126
rank of a quadratic polynomial, 57
rank theorem, 46
rank-nullity law, 158
rational function is holomorphic, 17
real-analytic manifold, 1
real Chern class, 203
real differential form, 103
real dimension, 3
real vector, 24
refinement of an open cover, 150
refining map, 150
regular level set, 50
regular point, 51
regular value, 50
resolution of a sheaf, 159

acyclic, 159
flasque, 184, 190

Godement, 184, 190
injective, 184

restricting domains or codomains, 50
restriction map in a presheaf, 121
restriction of a bundle, 80
restriction of a sheaf to an open subset, 123
resultant, 60

of several homogeneous polynomials, 62
Ricci curvature, 245
Ricci flat, 250
Ricci form, 247

and first Chern class, 247
Riemann, Bernhard, 297
Riemann bilinear relations, 340
Riemann curvature tensor, 239
Riemann form, 336
Riemann–Roch theorem, 295, 297
Riemann sphere, 56
Riemann surface, 41
Riemannian covering, 244
Riemannian density, 257
Riemannian submersion, 251
ring

has multiplicative identity, 125
presheaf of, 122
sheaf of, 125

Roch, Gustav, 297
rough section, 25, 129

of a continuous map, 123

saturated subset, 63
scalar curvature, 245
section

holomorphic, 72
local, 25
of a bundle, 25
of a continuous map, 123
of a presheaf, 121
of a vector bundle along a curve, 197
over the empty set, 122
rough, 25, 129

sectional curvature, holomorphic, 241, 242
Segre embedding, 68
self-adjoint, formally, 270
semilocally contractible, 172
separates directions, 64, 97
separates points, 64, 97
Serre, Jean-Pierre, 41, 53, 278
Serre duality, 278
sesquilinearity, 76
sharp operator (♯), 229
sheaf, 122
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flabby, 184
flasque, 184
free, 135
injective, 184
invertible, 137
locally free, 135
of discontinuous sections, 187
of ℰ -modules, 125
of modules over a sheaf of rings, 125
of 𝒪-modules, 125
of ℛ-modules, 125
of rings, 125
of rough sections, 186
of ℤ-modules, 126

sheaf cohomology, 152
Čech, 147
functoriality, 153
long exact sequence, 154

sheaf isomorphism, 126
sheaf morphism, 126

composition, 126
injective, 139
surjective, 139

sheaf partition of unity, 163
sheaf-theoretic Chern class, 181

and first real Chern class, 204
sheafification, 131

universal property, 131
short exact sheaf sequence, 139
sign of a permutation, 257
simple zero, 13
simplex

singular, 164
smooth singular, 175
standard, 164

simplicial cohomology, 191
simplicial complex, 191
singular boundary operator, 165
singular chain, 165

smooth, 175
singular chain group, 165
singular coboundary, 166
singular coboundary operator, 166
singular cochain, 165
singular cochain group, 165
singular cocycle, 166
singular cohomology, 166
singular cycle, 165
singular homology, 165

smooth, 175
singular point of a variety, 51

singular simplex, 164
smooth, 175

singularity, isolated, 22
skyscraper sheaf, 124

double, 143, 316
slice, 48
slice chart, 48
smooth atlas, 2
smooth bundle isomorphism, 25
smooth chain, 175
smooth complex vector bundle, 24
smooth covering map, 9
smooth exponential sheaf sequence, 142
smooth manifold, 1, 2
smooth map, 2
smooth partition of unity, 162, 163
smooth singular chain, 175
smooth singular cohomology, 175
smooth singular homology group, 175
smooth singular simplex, 175
smooth structure, 2
smooth variety

affine, 51
projective, 52

smoothly compatible charts, 2
soft sheaf, 190
stalk

of a presheaf, 128
of an étalé space, 129
of the sheaf of holomorphic functions, 127

stalk homomorphism, 128
standard affine embedding, 55
standard basis of ℂ𝑛, 35
standard holomorphic structure on a vector

space, 5
standard Iwasawa manifold, 12
standard metric on ℂ𝑛, 225, 234
standard simplex, 164
standard symplectic form, 225
star of a simplex, 191
star operator, see Hodge star operator
Stein embedding theorem, 66
Stein manifold, 65
Study, Eduard, 235
subbundle, 76
submanifold, 48

complex, 48
embedded, 48
immersed, 48
open, 5

submersion, 46
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holomorphic, 46
subpresheaf, 123
subsheaf, 123
summation convention, 2, 5, 27, 227
superstring theory, 250
support of a sheaf morphism, 163
surface

complex, 3, 41
Riemann, 41

surjective sheaf morphism, 139
symbol of a differential operator

principal, 267
total, 266

symmetric polynomial, 60
fundamental theorem on, 60

symplectic form, 227, 287
standard, 225

symplectic manifold, 287
system of local defining functions, 91

tangent bundle
antiholomorphic, 37
holomorphic, 37

tautological bundle, 84, 100
Taylor series, 18
tensor product bundle, 80
tensor product connection, 219
tensor product metric, 210
tensor product sheaf, 134
threefold, 3
Thurston, William, 287, 288
topological manifold, 1
topological partition of unity, 163
torsion-free connection, 207
torsion subgroup, 179
torus, complex, 11, 235
total covariant derivative, 194
total derivative, 29
total symbol of a differential operator, 266
transition function, 2, 71
transverse to a submanifold, 50
triangulation, 165

smooth, 165
trivial sheaf, 139
trivial vector bundle, 25
trivializing cover, 25
type of a differential form, 104

𝒰-small chain, 171
𝒰-small simplex, 171
uniformization theorem, 249
unit ball, 4

unit disk, 4
unitary group, 68
universal coefficient theorem, 167
universal property

of sheafification, 131
of the Albanese variety, 312

vanishing
simply, 90
to second order, 124, 137, 316

variety
affine, 51
algebraic, 51, 52
analytic, 53
determined by a section, 90
nonsingular, 51, 52
projective, 52
smooth, 51, 52

vector bundle
complex, 24
Hermitian, 76
holomorphic, 25, 71
smooth, 24

vector field, holomorphic, 99
vector space, holomorphic structure on, 5
very ample line bundle, 97, 315

wedge product
Alt convention, 229
determinant convention, 229
with a bundle-valued form, 114, 115
with an endomorphism-valued form, 115

Weil, André, 250
Whitney embedding theorem, 64
Whitney sum, 80

Yau, Shing-Tung, 247, 249

Zariski topology, 53, 183
zero section, 25
zigzag lemma, 154
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Complex manifolds are smooth manifolds endowed with coordinate charts that 

overlap holomorphically. They have deep and beautiful applications in many 

areas of mathematics. This book is an introduction to the concepts, techniques, 

and main results about complex manifolds (mainly compact ones), and it tells a 

story. Starting from familiarity with smooth manifolds and Riemannian geometry, 

it gradually explains what is different about complex manifolds and develops 

most of the main tools for working with them, using the Kodaira embedding 

theorem as a motivating project throughout.

The approach and style will be familiar to readers of the author’s previous graduate 

texts: new concepts are introduced gently, with as much intuition and motiva-

tion as possible, always relating new concepts to familiar old ones, with plenty 

of examples. The main prerequisite is familiarity with the basic results on topo-

logical, smooth, and Riemannian manifolds. The book is intended for graduate 

students and researchers in differential geometry, but it will also be appreciated 

by students of algebraic geometry who wish to understand the motivations, anal-

ogies, and analytic results that come from the world of differential geometry.
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