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PREFACE

he preface to the first edition, reprinted on the succeeding pages, excused
this book’s deficiencies on grounds that can hardly be justified now that
these “notes” truly have become a book.

At one time I had optimistically planned to completely revise all this material
for the momentous occasion, but I soon realized the futility of such an under-
taking. As I examined these five volumes, written so many years ago, I could
scarcely believe that I had once had the energy to learn so much material, or
even recall how I had unearthed some of it.

So I have contented myself with the correction of errors brought to my atten-
tion by diligent readers, together with a few expository ameliorations; among
these is the inclusion of a translation of Gauss’ paper in Volume 2.

Aside from that, this third and final edition differs from the previous ones only
in being typeset, and with figures redrawn . I have merely endeavored to typeset
these books in a manner befitting a subject of such importance and beauty.

As a final note, it should be pointed out that since the first volumes of this
series made their appearance in 1970, references in the text to “recent” results
should be placed in context.






Preface lo the Farst Edition

HOW THESE NOTES CAME TO BE

and how they did not come to be a book

For many years I have wanted to write the Great American Differential
Geometry book. Today a dilemma confronts any one intent on penetrat-—
ing the mysteries of differential geometry. On the one hand, one can
consult numerous classical treatments of the subject in an attempt to
form some idea how the concepts within it developed. Unfortunately,
a modern mathematical education tends to make classical mathematical
works inaccessible, particularly those indifferential geometry. On the
other hand, one can now find texts as modern in spirit, and as clean in
exposition, as Bourbaki's Algebra. But a thorough study of these books
usually leaves one unprepared to consult classical works, and entirely
ignorant of the relationship between elegant modern constructions and
their classical counterparts. Most students eventually find that this
ignorance of the roots of the subject has its price -- no one denies that
modern definitions are clear, elegant, and precise; it's just that it's
impossible to comprehend how any one ever thought of them. And even after
one does master a modern treatment of differential geometry, other modern
treatments often appear simply to be about totally different subjects.

0f course, these remarks merely mean that no matter how well some of the
present day texts achieve their objective, Inevertheless feel that an
introduction to differential geometry ought to have quite different aims.
There are two main premises on which these notes are based. The first
premise is that it is absurdly inefficient to eschew the modern language
of manifolds, bundles, forms, etc., which was developed precisely in
order to rigorize the concepts of classical differential geometry.

Rephrasing everything in more elementary terms involves incredible
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contortions which are not only unnecessary, but misleading. The work
of Gauss, for example, which uses infinitesimals throughout, is most
naturally rephrased in terms of differentials, even if it is possible
to rewrite it in terms of derivatives. For this reason, the entire
first volume of these notes is devoted to the theory of differentiable
manifolds, the basic language of modern differential geometry. This
language is compared whenever possible with the classical language, so
that classical works can then be read.

The second premise for these notes is that in order for an introduction
to differential geometry to expose the geometric aspect of the subject,
an historical approach is necessary; there is no point in introducing
the curvature tensor without explaining how it was invented and what it
has to do with curvature. I personally felt that I could never acquire
a satisfactoryunderstanding of differentiable geometry until I read
the original works. The second volume of these notes gives a detailed
exposition of the fundamental papers of Gauss and Riemann. Gauss' work
is now available in English (General Investigations of Curved Surfaces;
Raven Press). There are also two English translations of Riemann's work,
but I have provided a (very free) translation in the second volume.

Of course, I do not think that one should follow all the intricacies of
the historical process, with its inevitable duplications and false leads
What is intended, rather, is a presentation of the subject along the
lines which its development might have followed; as Bernard Morin said
to me, there is no reason, inmathematics any more than in biology, why
ontogeny must recapitulate phylogeny. When modern terminology finally
is introduced, it should be as an outgrowth of this (mythical) historical
development. And all the major approaches have to be presented, for they

were all related to each other, and all still play an important role.
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At this point I am reminded of a paper described in Littlewood's

Mathematician's Miscellany. The paper began "The aim of this paper is

to prove ..." and it transpired only much later that this aim was not
achieved (the author hadn't claimed that it was). What I have outlined
above is the content of a book the realization of whose basic plan and the
incorporation of whose details would perhaps be impossible; what I have
written is a second or third draft of a preliminary version of this book.
I have had to restrict myself to what I could write and learn about within
the present academic year, and all revisions and corrections have had to
be made within this same period of time. Although I may some day be able
to devote to its completion the time which such an undertaking deserves,
at present I have no plans for this. Consequently, I would like to make
these notes available now, despite their deficiencies, and with all the
compromises I learned to make in the early hours of the morning.

These notes were written while I was teaching a year course in dif-
ferential geometry at Brandeis University, during the academic year
1969-70. The course was taken by six juniors and seniors, and audited by
a few graduate students. Most of them were familiar with the material in
Calculus on Manifolds, which is essentially regarded as a prerequisite.
More precisely, the complete prerequisites are advanced calculus using
linear algebra and a basic knowledge of metric spaces. An acquaintance
with topological spaces is even better, since it allows one to avoid the
technical troubles which are sometimes relegated to the Problems, but I
tried hard to make everything work without it.

The material in the present volume was covered in the first term, except
for Chapter 10, which occupied the first couple of weeks of the second
term, and Chapter 11, which was not covered in class at all. We found it
necessary to take rest cures of nearly a week after completing Chapters 2,

3, and 7. The same material could easily be expanded to a full year course
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in manifold theory with a pace that few would describe as excessively
leisurely. I am grateful to the class for keeping up with my accelerated
pace, for otherwise the second half of these notes would not have been

written. I am also extremely grateful to Richard Palais, whose expert

ik o
Bronsts Univons
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knowledge saved me innumerable hours of labor.
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CHAPTER 1
MANIFOLDS

he nicest example of a metric space is Euclidean n-space R”", consisting of

all n-tuples x = (x,...,x") with each x’ € R, where R is the set of real
numbers. Whenever we speak of R” as a metric space, we shall assume that it
has the “usual metric”

d(x,y) = J DUi—x2,
i=1

unless another metric is explicitly suggested. For n = 0 we will interpret R? as
the single point 0 € R.

A manifold is supposed to be “locally” like one of these exemplary metric
spaces R”. To be precise, a manifold is a metric space M with the following

property:

If x € M, then there is some neighborhood U of x and some integer
n > 0 such that U is homeomorphic to R”".

The simplest example of a manifold is, of course, just R” itself; for each
x € R" we can take U to be all of R”. Clearly, R* supplied with an equiva-
lent metric (one which makes it homeomorphic to R” with the usual metric),
is also a manifold. Indeed, a hasty recollection of the definition shows that
anything homeomorphic to a manifold is also a manifold—the specific
ric with which M is endowed plays almost no role, and we shall almost never
mention it.

[If you know anything about topological spaces, you can replace “metric
space” by “topological space” in our definition; this new definition allows some
pathological creatures which are not metrizable and which fail to have other
properties one might carelessly assume must be possessed by spaces which are
locally so nice. Appendix A contains remarks, supplementing various chapters,
which should be consulted if one allows a manifold to be non-metrizable.]

The second simplest example of a manifold is an open ball in R”*; in this
case we can take U to be the entire open ball since an open ball in R" is
homeomorphic to R”. This example immediately suggests the next: any open

1
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subset V of R” is a manifold—for each x € V we can choose U to be some open
ball with x € U C V. Exercising a mathematician’s penchant for generalization,

I

u V/ \U

we immediately announce a proposition whose proof is left to the reader: An
open subset of a manifold is also a manifold (called, quite naturally, an open
submanifold of the original manifold).

The open subsets of R” already provide many different examples of manifolds
(just how many is the subject of Problem 24), though by no means all. Before
proceeding to examine other examples, which constitute most of this chapter,
some preliminary remarks need to be made.

If x is a point of a manifold M, and U is a neighborhood of x (U contains
some open set ¥V with x € V) which is homeomorphic to R” by a homeomor-
phism ¢: U — R”, then ¢(V) C R" is an open set containing ¢(x). Conse-

4
T

(5

quently, there is an open ball W with ¢(x) € W C ¢(V). Thus x € ¢~ (W) C
V C U. Since ¢: V — R” is continuous, the set ¢~ (W) is open in V, and thus
open in M; it is, of course, homeomorphic to W, and thus to R”. This compli-
cated little argument just shows that we can always choose the neighborhood U
in our definition to be an open neighborhood.



Manifolds 3

With a little thought, it begins to appear that, in fact, U must be open. But
to prove this, we need the following theorem, stated here without proof.*

1. THEOREM. If U C R" isopen and f: U — R" is one-one and continu-
ous, then f(U) C R" is open. (It follows that f(V) is open for any open V C U,
50 /! s continuous, and f is 2 homeomorphism.)

Theorem 1 is called “Invariance of Domain”, for it implies that the property of
being a “domain” (a connected open set) is invariant under one-one continuous
maps into R”. The proof that the neighborhood U in our definition must be
open is a simple deduction from Invariance of Domain, left to the reader as an
easy exercise (it is also easy to see that if Theorem 1 were false, then there would
be an example where the U in our definition was not open).

We next turn our attention to the integer 7 appearing in our definition. Notice
that n may depend on the point x. For example, if M C R® is

M ={(x,y,2):z=0}U{(x,y,2) i x=0and z = 1}
=M UM,,

then we can choose n = 2 for points in M; and n = 1 for points in M. This

example, by the way, is an unnecessarily complicated device for producing one
manifold from two. In general, given M; and M, with metrics d; and d,, we
can first replace each d; with an equivalent metric d-,- such that d-,-(x, y) < 1for
all x, y € M;; for example, we can define

B, di

di = m or di= min(d;, 1).

* All proofs require some amount of machinery. The quickest routes arc probably pro-
vided by Vick, Homology Theory and Massey, Singular Homology Theory. An old-fashioned,
but pleasantly geometric, treatment may be found in Newman, Topology of Plane Sets.
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Then we can define a metric d on M = M, U M, by

) = {a,.(x, y) if therc is some i such that x, y € M;

otherwise

(we assume that M and M are disjoint; if not, they can be replaced by new sets
which are). In the new space M, both M, and M ; are open sets. If M; and M,
are manifolds, M is clearly a manifold also. This construction can be applied
to any number of spaces—even uncountably many; the resulting metric space is
called the disjoint union of the metric spaces Mi. A disjoint union of manifolds
is a manifold. In particular, since a space with one point is a manifold, so is any
discrete space M, defined by the metric

0 ifx=y

d(x'y)z{l ifx # .

Although different »’s may be required at different points of a manifold M,
it would seem that only one n can work at a given point x € M. For the proof
of this intuitively obvious assertion we have recourse once again to Invariance
of Domain. As a first step, we note that R” is not homeomorphic to R™ when
n # m, for if n > m, then there is a one-one continuous map from R™ into
a non-open subset of R”. The further deduction, that the n of our definition
is unique at each x € M, is lefi to the reader. This unique » is called the
dimension of M at x. A manifold has dimension 7 or is n-dimensional or is an
n-manifold if it has dimension » at each point. It is convenient to refer to the
manifold M as M" when we want to indicate that M has dimension n.

Consider once more a discrete space, which is a 0-dimensional manifold.
The only compact subsets of such a space are finite subsets. Consequently, an
uncountable discrete space is not ¢ -compact (it cannot be written as a countable
union of compact subsets). The same phenomenon occurs with higher-dimen-
sional manifolds, as we see by taking a disjoint union of uncountably many
manifolds homeomorphic to R”. In these examples, however, the manifold is
not connected. We will ofien need to know that this is the only way in which
o-compactness can fail to hold.

2. THEOREM. If X is a connected, locally compact metric space, then X is
o-compact.

PROOF. For each x € X consider those numbers r > 0 such that the closed
ball
{yeX:dx,y)<r}
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is a compact set (there is at least one such » > 0, since X is locally compact).
The set of all such » > 0 is an interval. If] for some x, this set includes all r > 0,
then X is o-compact, since

¥={Jtrex dxy) <nh

n=1

If not, then for each x € X define r(x) to be one-half the least upper bound of
all such r.
The triangle inequality implies that

{yeX  dx,y)<r} C{ye X :dxa,y) <r+dQCa,x2)},
so that
peX dx,y)<r—dx,x)} C{yeX dxy,y) <r}

which implies that

() r) 2 rx2) = 2dG, %),
Interchanging x; and x; gives

@ ) = rGen)l < 5d G, ),

so the function r: X — R is continuous. This has the following important
consequence. Suppose 4 C X is compact. Let A’ be the union of all closed
balls of radius »(y) and center y, for all y € 4. Then A’ is also compact. The
proofis as follows.

Let zy,23,23,... be a sequence in 4’. For each i there is a y; € A such
that z; is in the ball of radius r(y;) with center y;. Since 4 is compact, some
subsequence of the y;, which we might as well assume is the sequence itself,
converges to some point y € A. Now the closed ball B of radius %r( y) and
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center y is compact. Since y; — y and since the function r is continuous,
eventually the closed balls

{ye X dy,y) <r()}

are contained in B. So the sequence z; is eventually in the compact set B, and

consequently some subsequence converges. Moreover, the limit point is actually

in the closed ball of radius r(y) and center y (Problem 10). Thus 4’ is compact.
Now let xo € X and consider the compact sets

A1 = {xo}

Apt1 = An’-

Their union 4 is clearly open. It is also closed. To see this, suppose that x is
a point in the closure of A. Thcn there is some y € 4 with d(x, y) < %r(x).

By (1),
") 2 1) = 3d(x,)

> r(x) — % . %r(x) = %r(x)

> d(x, ).

This shows thatif y € A, thenx € A,/,s0x € A.
Since X is connected, and A # @ is open and closed, it must be that X' = A4,
which is g-compact.

After this hassle with point-set topology, we present the long-promised exam-
ples of manifolds. The only connected 1-manifolds are the line R and the circle,
or I-dimensional sphere, S', defined by

S'={xeR?:d(x,0) = 1}.
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The function f: (0,21) — S’ defined by f(6) = (cosf,sinf) is a home-
omorphism; it is even continuous, though not one-one, on [0,27]. We will
often denote the point (cosf,sinf) € S' simply by 8 € [0,2x]. (Of course, it
is always necessary to check that use of this notation is valid) The function
g: (—m,m) — S', defined by the same formula, is also a homeomorphism;
together with f it shows that S! is indeed a manifold.

There is another way to prove this, better suited to generalization. The pro-
Jjection P from the point (0,1) onto the line R x {—1} C R x R, illustrated in

o1

the above diagram, is 2 homeomorphism of S' —{(0,1)} onto R x {—1}: this is
proved most simply by calculating P: S' — {(0, 1)} — R x {—1} explicitly. The
point (0, 1) may be taken care of similarly, by projecting onto R x {1}, or it suf-
fices to note that S' is “homogeneous”—there is a homeomorphism taking
point into any other (namely, an appropriate rotation of R?). Considerations
similar to these now show that the n-sphere

S"={x e R"™ :d(x,0)=1}

is an n-manifold. The 2-sphere S?, commonly known as “the sphere”, is our
first example of a compact 2-manifold or surface.

From these few manifolds we can already construct many others by noting
that if M; are manifolds of dimension »; (f = 1,2), then M) x M, is an (1 4 n3)-
manifold. In particular

S'x...x 8!
[ Xo

n times

is called the n-torus, while S! x S! is commonly called “the torus”. It is ob-
viously homeomorphic to a subset of R?, and it is also homeomorphic to a
certain subset of R® which is what most people have in mind when they speak of
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“the torus™: This subset may be obtained by revolving the circle
{0, y,2) e R*: (y —1)? + 22 = 1/4}

around

‘—”
contained in {(0, y,z) € R3 : y > 0}. The resulting surface, called a surface of
revolution, has components homeomorphic either to the torus or to the cylinder

S! x R, the latter of which is also homeomorphic to the annulus, the region of
the plane contained between two concentric circles.

The next simplest compact 2-manifold is the 2-holed torus. To provide a more

explicit description of the 2-holed torus, it is easiest to begin with a “handle”, a
space homeomorphic to a torus with a hole cut out; more precisely, we throw
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away all the points on one side of a certain circle, which remains in our handle,
and which will be referred to as the boundary of the handle. The 2-holed

torus may be obtained by piecing two of these together; it is also described as

the disjoint union of two handles with corresponding points on the boundaries
“identified”.

The n-holed torus may be obtained by repeated applications of this proce-
dure. It is homeomorphic to the space obtained by starting with the disjoint

union of » handlcs and a sphere with # holes, and then identifying points on
the boundary of the i*" handle with corresponding points on the i" boundary

piece of the sphere.

There is one 2-manifold of which most budding mathematicians make the
acquaintance when they still know more about paper and paste than about
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metric spaces—the famous Mdbius strip, which you “make” by giving a strip
of paper a half twist before pasting its ends together. This can be described

analytically as the image in R® of the function 1 : [0,27] x(—1,1) — R3 defined

f6,0)= (2(:050 +1 cosgcosa, 2sin@ +tcosg sinf, lsing).

circle of
radius 2

2cosf

If we define f on [0,27] x [—1,1] instead, we obtain the Mébius strip with
a boundary; as investigation of the paper model will show, this boundary is
homeomorphic to a circle, not to two disjoint circles. With our recently intro-
duced terminology, the Mébius strip can also be described as [0,1] x (—1,1)
with (0,) and (1, —t) “identified”.

<
PR 2P SaPPw)

We have not yet had to make precise this notion of “identification”, but our
next example will force the issue. We wish to identify each point x € S with
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its antipodal point —x € S2. The space whicl results, the projective plane, P2,
is a lot harder to visualize than previous examples; indeed, there is no subset
of R? which represents it adequately.

The precise definition of P2 uses the same trick that mathematicians always
use when they want two things which are not equal to be equal. The points
of P? are defined to be the sets {p, —p} for p € S2. We will denote this set
by [p] € P, so that [—p] = [p]. We thus have a map f: S — P2 given
by f(p) = [p], for which f(p) = f(s) implies p = +4. We will postpone
for a while the problem of defining the metric giving the distance between two
points [ p] and [4], but we can easily say what the open sets will turn out to be
(and this is all you need to know in order to check that P2 is a surface). A subset
U C P2 will be open if and onlyif f~'(U) C S?is open. This just means that
the open sets of P2 are of the form (V) where ¥V C S? is an open set with
the additional important property that if it contains p it also contains — p.
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In exactly the same way, we could have defined the points of the Mébius
strip M 1o be

all points (s,7) € (0,1) x (=1,1)
together with
all sets {(0,1), (1, —1)}, denoted by [(0, 1] or [(1, —1)].

Thereis amap f: [0,1] x (=1,1) = M given by

(s,0) ifs#0,1

S0 = {[(s,z)] ifs=0orl,

and U C M is open if and only if f~'(U) C [0,1] x (=1,1) is open, so that
the open sets of M are of the form f(V) where V is open and contains (s, —1)
whenevcr it contains (s, 7) fors =0 or 1.

To get an idea of what P2 looks like, we can make things easier for ourselves
by first throwing away all points of S? below the (x, y)-plane, since they are
identified with points above the (x, y)-plane anyway. This leaves the upper
hemisphere (including the bounding circlc), which is homeomorphic to the disc

D?={x e R?:d(x,0) < 1},

and wc must identify eachh p € S' with —p € S'. Squaring things off a
bit, this is the same as identifying points on the sides of a square according
to the scheme shown below (points on sides with the same label are identified
in such a way that the heads of the arrows are identified with each other). The
dotted lines in this picture are the key to understanding P2. If we distort the
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region between them a bit we see that the front part of B followed by the
back part of A, at the upperleft, is to be identified with the same thing at the
lower right, in reverse direction; in other words, we obtain a Mébius strip with

A
A
N N
B R B/‘/ AN
\\ N \\
N
\\\ \\ \\\ \\
N B AN /A’?
N <A

a boundary (namely, the dotted line, which is a single circle). If this Mébius
strip is removed, we are lefi with two pieces which can be rearranged to form
something homeomorphic to a disc. The projective plane is thus obtained from

the disjoint union of a disc and a Mébius strip with a boundary, by identifying
points on the boundary and points on the boundary of the disc, both of which
are circles. Thus to make a model of P? we just have to sew a circular piece of
cloth and a cloth Mébius strip together along their edges. Unfortunately, a litle
experimentation will convince you that this cannot be done (without having the
two pieces of cloth pass through each other).

The subset of R? obtained as the union of the Mébius strip and a disc, al-
though not homeomorphic to P2, can still be described mathematically in terms

O
%
N

I

of P2. There is clearly a continuous function f: P2 — R3 whose image is this
subset; moreover, although j is not one-one, it islocally one-one, that is, every
point p € P? has a neighborhood U on which f is one-one. Such a function f
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is called a topological immersion (the single word “immersion” has a more spe-
cialized meaning, explained in Chapter 2). We can thus say that P2 can be
topologically immersed in R3, although not topologically imbedded (there is no
homeomorphism f from P2 (0 a subset of R3). In R*, however, with an extra
dimension to play around with, the disc can be added so as not to intersect the
Mobius strip.

Another topological immersion of P2 in R? can be obtained by first immers-
ing the Mébius strip so that its boundary circle lies in a plane; this can be done
in the following way. The figures below show that the Mébius strip may be ob-
tained from an annulus by identifying opposite points of the inner circle. (This
is also obvious from the fact that the Mébius strip is the projective plane with a
disc removed.) This inner circle can be replaced by a quadrilateral. When the

resulting figure is drawn up into 3-space and the appropriate identifications are
made we obtain the “cross-cap”. The cross-cap together with the disc at the
bottom is a topologically immersed P2.
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‘The one gap in the preceding discussion is the definition of a metric for P2,
‘The missing metric can be supplied by an appeal to Problem 3-1, which will
later be used quite often, and which the reader should peruse sometime before
reading Chapter 3. Roughly speaking, it shows that things like P2, whicli ouglit
to be manifolds, are. (Those who know about topological spaces will recognize
it as a disguised case of the Urysohn Metrization Theorem.) For the present,
liowever, we will obtain our metric by a trick that simultaneously provides an
imbedding of P2 in R*. Consider the function f: S2 — R* defined by

S, p,2) = (2, x2,xy, x4 2y% 4 322).

Clearly f(p) = f(—p). We maintain that f(p) = f(4) implies that p = +4.
'Jo prove this, suppose that f(x, y,z) = f(a,b,c). We have, first of all

yz= be
(0] Xz =ac
xy =ab.
1" a,b,c #0, this leads to
bx
y=—
. a
@ __ex
=

Now
(O +y+2? =52+ Y+ 28+ 2Axy +x2 + y2)

=1+4+2(xy +xz + yz),

so we also have
x+y+2)P=(a+b+c)

hence
3) a+b+c=H(x+y+2).
Using (2), this gives

a+b+c)

b ¢
a+b+(‘=:l:x(1+-—+-—)::tx(
a a a
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so x = *q. Similarly, we obtain y = £b, z = £b, with the same sign (which
comes from (3)} holding for all three equations. In this case we have proved our
contention without even using the fourth coordinate of f. Now suppose a = 0.
If x #0, then (1) would immediately give y = z = 0, so that

(x,y,2) = (£1,0,0).
But y = z = 0 implies (by (I) again) that bc = 0,50 b = 0 or ¢ = 0 and
(a,b,¢) = (0,+£1,0) or (0,0,+1).
These equations clearly contradict
x2 42y +32% = a + 2% + 302
Thus x = 0 also, and we have
4) yz = be Pr4zi=1
6} 2?3272 =207 43¢ b24ct=1.
But (6) implies that
232 4322 =2y? 301 — y?)
=3-)%

and similarly for 6 and c, so (5) gives

3—3y2=3-p2
(7) y==b.
Now (4} gives
(8) z ==c¢

(this holds even if y = b =0, since then z, ¢ = £1). Clearly, (4) also shows thai
the same sign holds in (7) and (8). which completes the proof.

Since f(p) = f(g) preciselv when p = +¢, we can define f:P? > R by
£ = 1(p).

This map is onc-one and we can usc it to define the metric in P2

d([pL19)) = d(F AP, F(9D) = d(f(p), [(g))-
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Then one can check that the open sets are indeed the ones described above.
By the way, the map g: P? — R3 defined by the first 3 components of f,
g(lx, y,2]) = (yz,xz,xy)

is a topological immersion of P? in R3. The image in R? is Steiner’s “Roman
surface”.

With the new surface P2 at our disposal, we can create other surfaces in
the same way as the n-holed torus. For example, to a handle we can attach
a projective space with a hole cut out, or, what amounts to the same thing, a
Mébius strip. The closest we can come (o picturing this is by drawing a cross-
cap sticking on a torus. We can also join together a pair of projective planes
with holes cut out, which amounts to sewing two Mabius strips together along
their boundary. Although this can be pictured as two cross-caps joined together,
it has a nicer, and famous, representation. Consider the surface obtained from
the square with identifications indicated below; it may also be obtained from
the cylinder [0,1] x S* by identifying (0,x) € [0,1] x S with (I, x), where x’
is the reflection of x through a fixed diameter of the circle. Notice that the
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identifications on the square force Py, P2, P3, and P4 to be identified, so that
the set { Py, P, P3, P4} is a single point of our new space. The dotted lines

P Py
—
B B
(1,x7)
A :
P2 Pa (P, P2} (Ps, Ps}

below, dividing the sides into thirds, form a single circle, which scparates the
surface into two parts, one of which is shaded.

A2 Az
As. Ar A B’
. ——»—»— ~n, U,

By| ™ B, B

Rearrangement of the two parts shows that this surface is precisely two
Mébius strips with corresponding points on their boundary identified. The
description in terms of [0,1] x S' immediately suggests an immersion of the
surface. Turning one end of the cvlinder around and pushing it through itself
orients the lefi-hand boundary so that (0, x) is directly opposite (1, x’), to which
it can then be joined, forming the “Klein bottle”.
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Examples of higher-dimensional manifolds will not be treated in nearly such
detail, but, in addition to the family of n-manifolds S”, we will mention the
related family of “projective spaces”. Projective n-space P” is defined as the
collection of all sets {p, —p} for p € S”. The description of the open sets in P”
is precisely analogous to the description for P2, Although these spaces seem to
lorm a family as regular as the family S$", we will see later that the spaces P"
lor cven n differ in a very important way from the same spaces for odd 7.

One further definition is needed to complete this introduction to manifolds.
We have already discussed some spaces which are not manifolds only because
they have a “boundary”, for example, the Mobius strip and the disc. Points
ot1 these “boundaries” do not have neighborhoods homeomorphic to R”, but
they do have neighborhoods homeomorphic to an important subset of R”. The
(closed) half-space H" is defined by

H" ={(x',...,x") e R" : x" > 0}.
A manifold-with-boundary is a metric space M with the following property:

If x € M, then there is some neighborhood U of x and some integer
n > 0 such that U is homeomorphic to either R* or H”,

A point in a manifold-with-boundary cannot have a neighborhood homeo-
morphic to both R* and H" (Invariance of Domain again); we can therefore
distinguish those points x € M having a neighborhood homeomorphic to H”.
‘T'he set of all such x is called the boundary of M and is denoted by dM. If M is
actually a manifold, then M = 0. Notice that if M is a subset of R”, then 0M
is not necessarily the same as the boundary of M in the old sense (defined for
any subset of R"); indeed, if M is a manifold-with-boundary of dimension < n,
then all points of M will be boundary points of M.

If manifolds-with-boundary are studied as frequently as manifolds, it becomes
bothersome to use this long designation. Ofien, the word “manifold” is used
for “manifold-with-boundary”. A manifold in our sense is then called “non-
hounded”; a non-hounded compact manifold is called a “closed manifold”. We
will stick to the other terminology, but will sometimes use “bounded manifold”
instead of “manifold-with-boundary”.
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PROBLEMS

1. Show that if d is a metric on X, then both d = d/(1 +d) and d =
min(1,d) are also met_rics and that they are equivalent to d (i.e., the identity
map 1: (X,d) — (X,d) is a homeomorphism).

2. If (X;,d;) are metric spaces, for i € I, with metricsd; < 1, and X;NX; =0
for i # j, then (X,d) is a metric space, where X = {J; X;, and d(x,y) =
di(x, y) if x,3 € X; for some i, while d(x, y) = 1 otherwise. Each X; is an
open subset of X, and Y is homeomorphic to X if and only if ¥ = U;Y;
where the Y; are disjoint open sets and Y; is homeomorphic to X; for each i.
The space (X,d) (or any space homeomorphic to it} is called the disjoint union
of the spaces Xj.

3. (a) Every manifold is locally compact.

(b} Every manifold is locally pathwise connected, and a connected manifold is
pathwise connected.

(c} A connected manifold is arcwise connected. (A path is a continuous image
of [0,1], but an arc is a one-one continuous image. A difficult theorem states
that every path contains an arc between its end points, but a direct proof of
arcwise-connectedness can be given for manifolds.)

4. A space X is called locally connected if for each x € X it is the case that
every neighborhood of x contains a connected neighborhood.

(a) Connectedness does not imply local connectedness.

(b} An open subset of a locally connected space is locally connected.

(¢} X is locally connected if and only if components of open sets are open, so
every neighborhood of a point in a locally connected space contains an open
connected neighborhood.

(d) A locally connected space is homcomorphic to the disjoint union of its com-
ponents.

(e} Every manifold is locally connected, and consequently homeomorphic to
the disjoint union of its components, which are open submanifolds.

5. (a}) The neighborhood U in our definition of a manifold is always open.
(b} The integer n in our definition is unique for each x.

6. (a) A subset of an n-manifold is an n-manifold if and only if it is open.
(b} If M is connected, then the dimension of M at x is the same for all x € M.

7. (a) If U C R is an interval and f: U — R is continuous and one-one,
then f is either increasing or decreasing.
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(b) 'The image f(U) is open.
(¢) 'The map f is a homeomorphism.

8. Tor this problem, assume

(1) (The Generalized Jordan Curve Theorem) If 4 C R" is homeomorphic
10 S"', then R" — 4 has 2 components, and 4 is the boundary of each.

(2) If B c R" is homeomorphic to D" = {x € R" : d(x,0) < 1}, then
R” — B is connected.

(a) One component of R"— A (the “outside of 4”)is unbounded, and the other
(1he “inside of A} is bounded.

(b) If U c R" is open, A C U is homeomorphic to S™Vand f: U —
R” is one-one and continuous (so that f is a homeomorphism on A4}, then
[tinside of A) = inside of f(4). (First prove C.)

(¢) Prove Invariance of Domain.

9. (a) Give an elementary proof that R! is not homeomorphic to R" for n > 1.
(b) Prove directly from the Generalized Jordan Curve Theorem that R™ is not
homeomorphic to R” for m # n.

10. In the proof of Theorem 2, show that the limit of a convergent subsequence
ol the z; is actually in the closed ball of radius »(y) and center y.

11. Every connected manifold (which is a metric space) has a countable basc
for its topology, and a countable dense subset.

P
12. (a) Compute the composition f = S' — {(0,1)} — R! x {~1} - R!
explicitly for the map P on page 7, and show that it is a homeomorphism.
(b} Do the same for f: S"~! —{(0,...,0,1)} — R~

13. (a) The text describes the open subsets of P? as sets of the form f (V).
where ¥ c S? is open and contains ~ p whenever it contains p. Show that this
last condition is actually unnecessary.

(b} The analogous condition is necessary for the Mébius strip, which is discussed
immediately afterwards. Explain how the two cases differ.

14. () Check that the metric defined for P? gives the open sets described in
the text.
(b) Check that P? is a surface.
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15. (a) Show that P! is homeomorphic to S*.

(b) Since we can consider $”~' C S”, and since antipodal points in $"~! are
still antipodal when considered as points in $”, we can consider P"~! C P” in
an obvious way. Show that P" — Pr-1is homeomorphic to interior D" = {x €
R":d(x,0) < 1}.

16. A classical theorem of topology states that every compact surface other
than S is obtained by gluing together a certain number of tori and projective
spaces, and that all compact surfaces-with-boundary are obtained from these
by cutting out a finite number of discs. To which of these “standard” surfaces
are the following homeomorphic?

g &
a hole in ‘
A

a hole

a hole in
a hole in
a hole

17. Let C C R C R? be the Cantor set. Show that R? — C is homeomorphic
1o the surface shown at the top of the next page.
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T e this circle is 2ot in the surface

these circles are

" [|in the surface

18. A locally compact (but non-compact) space X “has one end” if for every
compact C C X there is a compact K such that C ¢ K C X and X ~ K is
connected.

{a) R” hasone end if n > 1, but notif n = 1.
) R" - {0} does not “have one end” so R” — {0} is not homeomorphic to R™.

19. This problem is a sequel to the previous one; it will be used in Problem 24.
An end of X is a function & which assigns o each compact subset C C X a
non-empty component £(C) of X — C, in such a way that C) C C; implies
£(Cy) C e(Gy).

(a) If C C Ris compact, then R~ C has exactly 2 unbounded components, the
“lefi” component containing all numbers < some N, the “right” one containing
all numbers > some N. If ¢ is an end of R, show that &(C) is either always the
“lefi” component of R — C, or always the “right” one. Thus R has 2 ends.

{b) Show that R” has only one end ¢ for n > 1. More generally, X has exactly
one end ¢ if and only if X “has one end” in the sense of Problem 18.

() This part requires some knowledge of topological spaces. Let £(X) be the
set of all ends of a conmected, locally connected, locally compact Hausdorfl
space X. Define a topology on X U&(X) by choosing as neighborhoods Nc (g0)
of an end ¢y the sets

Nc(g0) = €0(C) U{ends ¢ : (C) = £0(C)},

for all compact C. Show that X U €(X) is a compact HausdorfT space. What
is RUE(R), and R” UE(R") for n > I?

20. Consider the following three surfaces.

— T T~ ~———
(A) The infinite-holed torus: @A = <= =, s
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(B) The doubly infinite-holed torus: ¢  «
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(a) Surfaces (A) and (C) have one end, while surface (B) does not.

(b) Surfaces (A) and (C) are homeomorphic! Hiunt: The region cut out by the
lines in the picture below is a cylinder, which occurs at the left of (A). Now draw
in two more lines enclosing more holes, and consider the region between the
two pairs.
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21. (a) The three open subsets of R? shown below are homeomorphic.

(b} The points inside the three surfaces of Problem 20 are homeomorphic.

22. (a) Every open subset of R is homeomorphic to the disjoint union of inter-
vals.
(b} There are only countably many non-homeomorphic open subsets of R.

23. For the purposes of this problem we will use a consequence of the Urysohn
Metrization Theorem, that for any connected manifold M, there is a homeo-
morphism f from M to a subset of the countable product R xR x - -- .

(a) If M is a connected non-compact manifold, then there is a continuous
function f: M — R such that f “goes to co at c0”, Le., if {x,} is a sequence
which is eventually in the complement of every compact set, then f(xp) — co.
(Compare with Problem 2-30.)

(b} Given a homeomorphism f: M - R xR x--- anda g: M — R which
goes to 0o at oo, define f: M — R x (R xR x ---) by f(x) = (g(x), f(x))-
Show that f (M) is closed.

(c) There are at most ¢ non-homeomor phic connected manifolds (where ¢ = 2%
is the cardinality of R).

24. (a) Itis possible for R? — 4 and R? — B to be homeomorphic even though A4
and B are non-homeomorphic closed subsets.

(b} If A C R? is closed and totally disconnected (the only components of 4 are
points), then €(R? — A4) is homeomorphic to 4. Hence R? — 4 and R? — B are
non-homeomorphic if 4 and B are non-homeomorphic closed totally discon-
nected sets.

(c) The derivedset 4’ of 4 is the set of all non-isolated points. We define 4
inductively by 4" = 4’ and 4+ = (4®Y . For each n there is a subset 4,
of R such that 4, consists of one point.



26 Chapter 1

*(d) There are ¢ non-homeomorphic closed totally disconnected subsets of RZ.
Hint: Let C be the Cantor set, and ¢; < ¢; < ¢3 < --- a sequence of points
in C. For each sequence n; < nz < ---, one can add a set 4,, such that its
nith derived set is {¢;}.

(¢) There are ¢ non-homeomorphic connected open subsets of R2.

25. (a) A manifold-with-boundary could be defined as a metric space M with
the property that for each x € M there is a neighborhood U of x and an
integer n > 0 such that U is homeomorphic to an open subset of H”.

(b} If M is a manifold-with-boundary, then M is a closed subset of M and
OM and M — 9M are manifolds.

(c} If Ci, i € I are the components of M, and I’ C I, then M — ;. Ci is
a manifold-with-boundary.

26. If M C R" is a closed set and an n-dimensional manifold-with-boundary,
then the topological boundary of M, as a subset of R", is dM. This is not
necessarily true if M is not a closed subset.

27. (a) Every point (, b,c) on Steiner’s surface satisfies bc? + a®c? + a?b? =
abe.

(b} If (a,b,c) satisfies this equation and 0 2 D = v'b%c? + a%c? + «?b?, then
(a,b,¢) is on Steiner’s surface. Hint: Let x = bc/D, etc.

(c) The set {(a,b,c) € R : b%c? + a®c? + a*b® = abc} is the union of the
Steiner surface and of the portions (—o0, —1/2) and (1/2, co) of each axis.



CHAPTER 2
DIFFERENTIABLE STRUCTURES

We are now ready to apply analysis to the study of manifolds. The neces-
sary tools of “advanced calcutus”, which the reader should bring along
freshly sharpened, are contained in Chapters 2 and 3 of Caleulus on Manifolds.
We will use freely the notation and results of these chapters, including some
problems, notably 2-9, 2-15, 2-25, 2-26, 2-29, 3-32, and 3-35; however, we will
denote the identity map from R” to R” by I, rather than by 7 (which will be
used often enough in other contexts), so that I'(x) = x'.

On a general manifold M the notion of a continuous function f: M — R
makes sense, but the notion of a differentiable function f: M — R does not.
This is the case despite the fact that M is locally like R", where differentia-
bility of functions can be defined. If U C M is an open set and we choose
a homeomorphism ¢: U — R”, it would seem reasonable to define f to be
differentiable on U if f o ¢~': R" — R is differentiable. Unfortunately, if
¥:V — R"is another homeomorphism, and U NV # 0@, then it is not
necessarily true that f o y~': R" — R is also differentiable. Indeed, since

foy™ = fop T o(poyT),

we can expect f oy~ to be differentiable for all / which make f o ¢~ differ-
entiable only if ¢poy~': R" — R” is differentiable. This is certainly not always

e

goy!

27
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the case; for example, one need merely choose ¢ to be oy, where hi: R" — R”
is 2 homeomorphism that is not differentiable.

If we insist on defining differentiable functions on any manifold, there is no
way out of this impasse. It is necessary to adorn our manifolds with a little
additional structure, the precise nature of which is suggested by the previous
discussion.

Among all possible homeomorphisms from U C M onto R”", we wish to select
a certain collection with the property that ¢oy~! is differentiable whenever ¢, ¥
are in the collection. This is precisely what we shall do, but a few refinements
will be introduced along the way.

First of all, we will be interested almost exclusively in functions f : R* — R”
which are C* (that is, each component function f* possesses continuous partial
derivatives of all orders), sometimes we will use the words “differentiable” or
“smooth” to mean C®.

Moreover, instead of considering homeomorphisms from open subsets U
of M onto R”, it will suffice to consider homeomorphisms x: U — x(U) C R"
onto open subsets of R”.

The use of the letters x, y, etc., for these homeomorphisms, henceforth ad-
lered to almost religiously; is meant to encourage the casual confusion of a point
p € M with x(p) € R”, which has “coordinates” x'(p),...,x"(p). The only
time this notation will be confusing (and it will be} is when we are referring to
the manifold R”, where it is hard not to lapse back into the practice of denoting
points by x and y. We will often mention the pair (x,U), instead of x alone,
just to provide a convenient name for the domain of x.

If U and V are open subsets of M, two homeomorphisms x: U — x(U) C
R" and y: V — (V) C R” are called C™®-related if the maps

yoxTlix(UNV) = yUNV)
xoyliyUNV)= x(UNV)

are C™. This make sense, since x(UNV) and y(U NV) are open subsets of R”.
Also, it makes sense, and is automatically true, if U NV = 0.

A family of mutually C*-related homeomorphisms whose domains cover M
is called an atlas for M. A particular member (x, U) of an atlas # is called
a chart (for the atlas 4), or a coordinate system on U, for the obvious reason
that it provides a way of assigning “coordinates” to points on U, namely, the
coordinates x'(p), ..., x"(p) to the point p € U.

We can even imagine a mesh of coordinate lines on U, by considering the
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inverse images under x of lines in R” parallel to one of the axes.

The simplest example of a manifold together with an atlas consists of R" with
an atlas o4 of only one map, the identity 7: R” — R”. We can easily make the
atlas bigger; if U and V are homeomorphic open subsets of R”, we can adjoin
any homeomorphism x: U — V with the property that x and x~! are C*.
Indeed, we can adjoin as many such x’s as we like—it is easy to check that
they are all C*®-related to each other. The advantage of this bigger atlas U
is that the single word “chart”, when applied to this atlas, denotes something
which must be described in cumbersome language if one can refer only to A.
Aside from this, U differs only superficially from .4; one can easily construct U
from o4 (and one would be foolish not to do so once and for all). What has just
been said for the atlas {7} applies to any atlas:

1. LEMMA. If A is an atlas of C®-related charts on M, then o4 is contained
in a unique maximal atlas A’ for M.

PROOF. Let »4’ be the set of all charts y which are C™-related to all charts
X € . Itis easy to check that all charts in o4’ are C®-related, so o4’ is an atlas,
and it is clearly the unique maximal atlas containing . <

We now dcfine a C* manifold (or differentiable manifold, or smooth manifold)
to be apair (M, A), where s is a maximal atlas for M. Thus, about the simplest
example of a C*™ manifold is (R”, U), where U (the “usual C™-structure for
R"™) 5 the maximal atlas containing {/}. Another example & (R, V) where V
contains the homeomorphism x + x3, whosc inverse is not C®, together with
all charts C®-related to it. Although (R, U) and (R, V) are not the same, there
1s a one-one onto function f: R — R such that

x€eU fandonlyif xof eV,

namely, the obvious map f(x) = x3. Thus (R,U) and (R, V) are the sort
of structures one would want to call “isomorphic”. The term actually used is
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“diffeomorphic”: two C® manifolds (M,4) and (N, B) are diffeomorphic if
there is a one-one onto function f: M — N such that

AN
xedB ifand only if xo f € . .

The map f is called a diffeomorphism, and /" isclearly a diffeomorphism
also. If we had not required our atlases to be maximal, the definition of diffeo-
morphism would have had to be more complicated.

Normally, of course, we will suppress mention of the atlas for a differentiable
manifold, and speak elliptically of “the differentiable manifold M”; the atlas
for M is sometimes referred to as the differentiable structure for M. It will always
be understood that R” refers to the pair (R”, U).

It is easy to see that a diffeomorphism must be continuous. Consequently,
its inverse must also be continuous, so that a diffeomorphism is automatically
a homeomorphism. This raises the natural question whether, conversely, two
homeomorphic manifolds are necessarily diffeomorphic. Later (Problem 9-24)
we will be able to prove casily that R with any atlas is diffeomorphic to (R, U).
A proof of the corresponding assertion for R? is much harder, the proof for R
would ccrtainly be toodifficult for inclusion here, and the proof of the essential
uniqueness of C® structures on R” for n > 5 requires very difficult techniques
from topology:

In the case of spheres, the projections Py and P, from the points (0, ...,0,1)
and (0,...,0,=1) of S"~! are easily seen to be C™-related. They therefore
determine an atlas—the “usual C™ structure for $"~!”. This atlas may also be
described in terms of the 2@ homeomorphisms

fi.’S""'!’]{,\'e]R":,\"’>0}—>]R"“l
giis"_lﬂ{xeR":xi<0}—>R”“'

defined by fi(x) = gi(x) = (x1,...,x"=", x, . x"), which are C®-related
to Py and P;. There are, up to diffeomorphism, unique differentiable structures
on 8" for n < 6. But there are 28 diffeomorphism classes of differentiable
structures on S7, and over 16 million on S3'. However, we shall not come
close to proving these assertions, which are part of the field called “differential
topology”, rather then differential geometry. (Perhaps most astonishing of all
is the quite recent discovery that R* has a differentiable structure that is not
ciffeomorphic o the usual differentiable structure!)

Other examples of differentiable manifolds will be given soon, but we can
already describe a diffcrentiable structure A’ on any open submanifold N of
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a differentiable manifold (M, A); the atlas 4' consists of all (x, U) in #4 with
UCN.

Just as diffeomorphisms are analogues for C* manifolds of homeomor-
phisms, there are analogues of continuous maps. A function f: M — N is
called differentiable if for every coordinate system (x,U) for M and (y,V)
for N, the map yo fox7!: R" — R™ is differentiable. More particularly,

R™
R

is called differentiable at p € M if y o f o x! is differentiable at x(p) for
coordinate systems (x,U) and (y,V) with p € U and f(p) € V. K this &
true for one pair of coordinate systems, t is easily seen to be true for any other
pair. We can thus define differentiability of f on any open subset M’ C M;
as one would suspect, this coincides with differentiability of the restricted map
fIM’': M' — N. Clearly, a differentiable map is continuous.

A differentiable function f': M — R refers, of course, to the usual differen-
tiable structure on R, and hence f is differentiable if and only if f o x™! is
differentiable for cach chart x. It is casy to see that

(I) afunction f: R" — R™ is differentiable as a map between C® manifolds
if and only if it is differentiable in the usual sense;

(2) afunction f: M — R™ is differentiable ifand only ifeach f7: M — R™
1s differentiable;

(3) a coordinate system (x, U) is a diffeomorphism from U to x(U);

(4) a function f: M — N is differentiable if and only if each yf o f is
differentiable for cach coordinate system y of N;

(5} a differentiable function f: M — N is a diffeomorphism if and only if
f is one-one onto and f~!': N — M is differentiable.

The differentiable structures on many manifolds are designed to make certain
functions differentiable. Consider first the product My x M, of two differen-
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tiable manifolds M, and the two “projections” m;: My x M, — M; defined
by 7i(p1, p2) = pi. It is easy to define a differentiable structure on M; x M,
which makes each r; differentiable. For each pair (x;, U;) of coordinate systems
on M;, we construct the homeomorphism

X1 X X3: Up x Uy — R™M1H72
defined by
x1 %X X2(p15 p2) = (51(p1), X2(pz)), e, X1 X X3 = (X071, X3 0 7z).

Then we cxtend this atlas to a maximal one.

Similarly, there is a differentiable structure on P" which makes the map
f: 8" — P" (defined by f(p) = [p] = {p,~ p}) differentiable. Consider
any coordinate system (x,U) for S”, where U does 7ot contain — p if it con-
tains p, so that f|U is one-one. The map x o (f|U)~! is 2 homeomorphism
on f(U) C P", and any two such are C®-related. The collection of these
homeomorphisms can then be extended to a maximal atlas.

To obtain differentiable structures on other surfaces, we first note that a C™
manifold-with-boundary can be defined in an obvious way. It is only necessary
to know when amap f: H" — R” is to be considered differentiable; we call f
differenmiable when it can be extended to a differentiable function on an open
neighborhood of H”. A “handle” is then a C*° manifold-with-boundary.

A differenuable structure on the 2-holed torus can be obtained by “matching”
the differentiable structure on two handles. The details involved in this process
are reserved for Problem 14.

To deal with C* functions effectively, one needs to know that there are lots of
them. The existence of C* functions on a manifold depends on the existence of
C functions on R” which are 0 owside of a compact set. We briefly recall here
the necessary facts about such C* functions (c.f. Caleufus on Manifolds, pg. 29).
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(1) The function #: R — R defined by

~1/x?
h(x) = e x#£0
0 x=0

h

is C®, and A"(0) = 0 for all n.

(2) The function j: R — R defined by

—(x=1)"2  ~(x+1)~2 - .
j(x)={e ¢ xeGLh o fd
0 x ¢ (=11 e ' i

isC™.

Similarly, there is a C* function k : R — R which is positive on (0,8) and 0
elsewhere.

(3) The function /: R — R defined by

=[5/ (1)

is C; 11 is 0 for x < 0, increasing on (0,8), and 1 for x > 8.

(4) The function g: R” — R defined by
gtx) = jix'fe)--- j(x"/e) e

is C; it is positive on (—¢,€) X - -- X (—¢,¢€) and 0 elsewhere.
On a C* manifold M we can now produce many non-constant C* func-

tions. The closure {x : f(x) 5 0} is called the support of f,and denoted simply
by support f (or sometimes supp f).

2. LEMMA. Let C C U C M with C compact and U open. Then there
is a C* function f: M — [0, 1] such that f =1 on C and support ' C U.
(Compare Case 2 of the proof of Theorem 15.)
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PROOF. For each p € C, choose a coordinate system (x, V) with V C U and
x(p) =0. Then x(V) D (—¢,€) x +-+ x (—¢,¢) for some € > 0. The function
g ox (where g is defined in (4))is C* on V. Clearly it remains C™ if we extend

% X x(V)

it to be 0 outside of V. Let fp be the extended function. The function f, can be
constructed for each p, and is positive on & neighborhood of p whose closure is
contained in U. Since C is compact, finitely many such neighborhoods cover C,
and the sum, fp, + --- +-fp,, of the corresponding functions has support C U.
On C it is positive, so on C itis > & for some § > 0. Let f =lo(fp; +- -+ fp,)»
where { is defined in (3). o

By the way, we could have defined C” manifolds for each » > 1, not just for
“r = c0”. (A function f: R” — R is C” ifit has continuous partial derivatives
upto order 7). A “C? function” is just a continuous function, so a C® manifold is
just a manifold in the sense of Chapter 1. We can also define analytic manifolds
(a function f: R" — R is analytic at a € R" if f can be expressed as a
power series in the (x' —a') which converges in some neighborhood of a). The
symbol C* stands for analytic, and it is convenient to agree that r < 00 <
for each integer > 0. If @ < B, then the charts of a maximal C# atlas are all
C%-related, but this atlas can always be extended to a bigger atlas of C*-related
charts, as in Lemma 1. Thus, a C# structure on M can always be extended
10 a C* structure in a unique wayj; the smaller structure is the “stronger” one,
the C° structure (consisting of all homeomorphisms x: U — R" being the
largest. The converse of this trivial remark is a hard theorem: For a > 1,
every C¥ structure contains a C# structure for each 8 > «; it is not unique, of
course, but it is unique up to diffeomorphism. This will not be proved here.*
In fact, C* manifolds for @ # oo will hardly ever be mentioned again. One
rcmark is in order now; the proof of Lemma 2 produces an appropriate C*
fimetion f on a C* manifold, for 0 < a < co. Of course, for @ = @ the proof

*TFor a proof see Munkres, Elementary Differential Topology.
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fails completely (and the result is false—an analytic function which is 0 on an
open set is 0 everywhere).

With differentiable functions now at our disposal, it is fitting that we begin
differentiating them. What we shall define are the partial derivatives of a dif-
ferentiable function f': M — R, with respect to a coordinate system (x,U). At
this point classical notation for partial derivatives is systematically introduced,
s0 it is worth recalling a logical notation for the partial derivatives of a function
f: R" = R. We denote by D; f(a) the number

f@ . d e d = f(@)
lim .
h—0 h
The Chain Rule states that if g: R” — R” and f: R" — R, then

n
Di(fog)@) =) Dif(g(@))- Dig'(a).
i=1
Now, for a function f: M — R and a coordinate system (x,U) we define
a a
D=2 = s oxaton,
X p
{or simply % = D{(f ox"")ox, as an equation between functions). If we
define the curve ¢;: (—&,6) = M by
cith) = x~1(x(p) + (0,..., h,...,0)),

—

then this partial derivative is just

i 2D = 1(p)
im —
h—0 h

50 it measures the rate change of f along the curve cj; in fact it is just (foc;)’(0).
Notice that ) -

ax! : ifi = j

—(p) =8 =

g P =0 {0 ifi # j.
If x happens to be the identity map of R”, then D;f(p) = af/8x*(p), which
is the classical symbol for this partial derivative.
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Another classical instance of this notation, often not completely clarified, is
the use of the symbols 8/dr and 8/96 in connection with “polar coordinates”.
On the subset 4 of R? defined by

A=R*—{(x,y) €R?:y =0and x >0}
=R?-L

we can introduce a “coordinate system” P : 4 — R? by
P(x, y) = (r(x, ),6(x, ),

where r(x,y) = vVx% + y? and 6(x, ¥) is the unique number in (0,27) with

y,d\/‘ (x,y)
m

This really is a coordinate system on 4 in our sense, with its image being the
set {r 1 r > 0} x (0,2m). (Of course, the polar coordinate system is often

x = r(x,y)cosf(x,y)
y =r(x,p)sin0(x, y).

) “g.axis?

not restricted to the set 4. One can delete any ray other than L if 6(x, y)
is restricted to lie in the appropriate interval (6p,60 + 27); many results are
essentially independent of which line is deleted, and this sometimes justifies the
sloppiness involved in the definition of the polar coordinate system.)
We have really defined P as an inverse function, whose inverse P~ is defined
simply by
P=1(r,60) = (r cosf,r sinh).
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From this formula we can compute 3f/dr explicitly:
(f o P~N)(r,0) = f(rcosh, rsinb),

SO

%fr:(x, ¥) = Di(f o P~Y(P(x, )

= Dif(PTH(P(x,)) - Di[PT'H(P(x,))
+ D2 f (P (P(x,y)) - Di[PT'P(P(x, )
by the Chain Rule
= Dif(x,y) - cos6(x, y) + Daf(x, y) - sin6(x, y).
This formula just gives the value of the directional derivative of j at (x,y),

along a unit vector v = (cosf(x, y),sin 6(x, y)) pointing outwards from the
origin to (x, y). This is to be expected, because ¢, the inverse image under P

/ } sin6(x,))
(x, »)

€ l,"'cuse(x,y)
By

ofa curve along the “r-axis”, is just a line in this direction.
A similar computation gives
3

@(A‘,J') = D1 f(x,y)[=r(x,y) sin6(x, )] + Dz f(x, y)[r(x, y) cosb(x, y)].

The vector w = (—sin 6(x, y),cos8(x, y)) is perpendicular to v, and thus the
direction, atthe point (x,)), of the curve ¢z which is the inverse image under P
of a curve along the “G-axis”. The factor r(x, y) appears because this cuive

"W
P.—'— h v

ez
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goes around a circle of that radius as 6 goes from 0 to 27, so it is going r(x,y)
times as fast as it should go in order to be used to compute the directional
derivative of j in the direction w. Note that 8f/36 is independent of which
line is delcted from the plane in order to define the function § unambiguously.

Using the notation 8f/8x for D, f, etc., and suppressing the argument (x, )
evervwhere (thus writing an equation about functions), we can write the above
equations as

of _of af .
a a—c056+55m6
o _of . of

% 3_( rsinf) + Sr cosf.

In particular, these formulas also tell us what 9x/dr etc., are, where (x,y)
denotes the identity coordinate system of R2. We have dx/dr = cos®, etc., so
our formulas can be put in the form

of _ofox afdy
a axar oy or

of _afox af ay

96 ox 86 « 9y a6

In classical notation, the Chain Rule would always b e written in this way. It is
a pleasure to report that henceforth this may always be done:

3. PROPOSITION. If (x, U) and (y, V) are coordinate systems on M, and
f: M — Ris differentiable, then on U NV we have

af ox/
0 W Jzaxl ayi’

PROOF. 1t’s the Chain Rule, of course, if you just keep your cool:
av, L oy=Dits oy )

= Di([f o x "o [x 0y D((p))

=D DitS oxT)x oy Wp(p)) - Dilx 0y (9(p))

j=1
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=" Di(f o x™")x(p)) - Dilx? 0y (p))

Jj=1
Zm(p) a—y,(p) *

At this point we could introduce the “Einstein summation convention”. No-
tice that the summation in this formula occurs for the index j, which appears
both “above” (in 3x7 /dy’) and “below” (in 8f/dx/). There are scads of for-
mulas in which this happens, often with hoards of indices being summed over,
and the convention is to omit the )_ sign completely—double indices (which
by luck, the nature of things, and felicitous choice of notation, almost always
occur above and below) being summed over. I won't use this notation because
whenever I do, I soon forget I'm supposed to be summing, and because by do-
ing things “right”, one can avoid what Elie Cartan has called the “debauch of
indices”.

We will often write formula (1) in the form

ax/ 9
Z ayt Bxf
here 8/8y is considered as an operator taking the function f to 9f/3y'. The

operator taking f to 9f/9y*(p) is denoted by

i, ; thus —
ay! p

Z 5 (p) ax,

P

For later use we record a property of € = 8/8x|,: it is a “point-derivation”.

4. PROPOSITION. For any differentiable f, g: M — R, and any coordinate
system (x,U) with p € U, the operator £ = 8/9x! | satisfies

e(fg) = £ (DU + E(Ng(p).
PROOF. Left to the reader. «»

If (x,U) and (x',U") are two coordinate systems on M, the n x n matrix

3,\”
(ax, (p))
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is just the Jacobian matrix of x’'o x~! at x(p). Itis non-singular; in fact, its

axt
(a—x—,j'(P)) .

Nowif f: M" — N™is C* and (y, V) is a coordinate system around f(p),

the rank of the m x n matrix
0y o 1)
(————ax ()

inverse is clearly

clearly does not depend on the coordinate system (x, U) or (y,V). Itis called
the rank of f at p. The point p is called a critical point of f if the rank of f
at p is < m (the dimension of the image N); if p is not a critical point of f,
t & called a regular point of f. If p & a critical point of f, the value f(p) is
called a critical value of f. Other points in N are regular values; thus ¢ € N
is a regular value if and only if p is a regular point of f for every p € 7' (¢).
This is true, in particular, if ¢ ¢ f(M)—a non-value of f is still a “regular
value”.

If f:R — R, then x is a critical point of f if and only if f'(x) = 0. It
1s possible for all points of the interval [«, b] to be critical points, although this
can happen only if f is constant on [¢,b]. If f: R? — R has all points as
critical values, then Dy f = Dz f = 0 everywhere, so f i again constant. On
the other hand, a function f: R?> — R? may have all points as critical points
without being constant, for example, f(x, ) = x. In this case, however, the
image f(R?) = R x {0} C R?isstill 2 “small” subset of R%. The most important
theorem about critical points generalizes this fact. Tostate it, we will need some

terminology.
Recall that a set 4 C R"” has “measure zero” if for every € > 0 there is a
sequence By, Bz, By, ... of (closed or open) rectangles with
oo
Acl B,
n=1
and
oo

D u(B) <6,

n=1
where v(B,) is the volume of B,. We want to define the same concept for a
subset of a manifold. To do this we need a lemma, which in turn depends on
alemma from Calculus on Manifolds, which we merely state.
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5. LEMMA. Let A C R" be a rectangle and let f: A — R” be a function
such that |Djff| < K on A fori,j=1,...,n. Then

() = fO) £ n? Klx = |

forall x,y € A.

6. LEMMA. If f: R" — R" is C! and 4 C R" has measure 0, then f(4) has
measure 0.

PROOF. We can assume that 4 is contained in a compact set C (since R" is a
countable union of compact sets). Lemma 5 implies that there is some K such
that

I/(x) = 7] € n* Kix = y|

forall x,y € C. Thus f takes rectangles of diameter d into sets of diameter
< n?Kd. This clearly implies that f(A) has measure 0 if 4 does. <

A subset A of a C™ n-manifold M has measure zero if there is a sequence
of charts (x;,U;), with A C U; Ui, such that each set x;(4 NU;) C R" has
measure 0. Using Lemma 6, it is easy to see that if A C M has measure 0, then
x(4 NU) C R" has measure 0 for any coordinate system (x, U). Conversely,
if this condition is satisfied and M is connected, or has only countably many
components, then it follows easily from Theorem -2 that 4 has measure 0. (But
if M is the disjoint union of uncountably many copies of R, and A consists of
one point from each component, then 4 does not have measure 0). Lemma 6
thus implies another result:

7. COROLLARY. If f: M — N isa C' function between two n-manifolds
and A C M has measure 0, then f(4) C N has measure 0.

PROOF. There is a sequence of charts (xi, U;) with A C {U; Ui and each set
xi(ANU;) of measure 0. If (y, V) isa charton N, then f(A)NV = J; /(AN
Uy) N V. Each set

YSANUYOV)=yo fox~ (x(ANUY)

has measure 0, by Lemma 6. Thus y(f(4)NV) has measure 0. Since 1 (U; Ui)
1s contained in the union of at most countably many components of N, it follows
that f(A) has measure 0.
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8. THEOREM (SARD’S THEOREM). If f: M — N isa C' map between
n-manifolds,and M has at most countably many components, then the critical
values of f form a set of measure 0 in N.

PROOF. 1t clearly suffices to consider the case where M and N are R". But
this case is just Theorem 3.14 of Calculus on Manifolds. €

The stronger version of Sard’s Theorem, which we will never use (except once,
in Problem 8-24), states* that the critical values of a C¥ map f: M" — N™
are a set of measure 0 if k& > 1 + max(n — m,0). Theorem 8 is the easy case,
and the case m > n is the trivial case (Problem 20). Although Theorem 8 will
be very important later on, for the present we are more interested in knowing
what the image of f: M — N looks like locally, in terms of the rank k of f
at p € M. More exact information can be given when f actually has rank k
in a neighborhood of p. It should be noted that f must have rank > k in
some neighborhood of p, because some k x k submatrix of (3(y o f)/8x7)
has non-zero determinant at p, and hence in a neighborhood of p.

9. THEOREM. (1) If f: M™ — N™ hasrankk at p, then there is some coor-
dinate system (x, U) around p and some coordinate system (y, V) around f(p)
with y o f o x~1 in the form

yofox (@, . ,a"y=(d,....d" v (@), ...y (@)).

Moreover, given any coordinate system y, the appropriate coordinate system
on N can be obtained merely by permuting the component functions of .
(2) If f hasrank k in a neighborhood of p, thenthereare coordinate systems
(x,U) and (y, V) such that

yofox~l(d,...,a")y = (d,...,d*,0,...,0).

Remark: The special case M =R", N = R™ is equivalent to the general theo-
rem, which gives only local results. If y is the identity of R™, part (I) says that
by first performing a diffeomorphism on R”", and then permuting the coordi-
nates in R™, we can insure that f keeps the first k components of a point fixed.
These diffcomorphisms on R” and R™ are clearly necessary, since f* may not
even be one-onc on R¥ x {0} € R”, and its image could, for example, contain
only points with first coordinate 0.

*For a proof, sec Milnor, Topology From the Differentiable Viewpoint or Sternberg, Lectures on
Dijferential Geometry.
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In part (2) we must clearly allow more leeway in the choice of y, since f(R")
may not be contained in any k-dimensional subspace of R".

PROOF. (1) Choose some coordinate system u around p. By a permutation of
the coordinate functions # and y we can arrange that

o) det(a(y W e N, )) aB=1, ..k

Define
x*=y%0 f a=1...,k
x'=u" r=k+1,...,n

Condition (1) implies that

3% f) ><
_ duf
2 det <W(‘D)) = det O : #0.
1

This shows that x = (x o »™') o u is a coordinate system in some neighbor-
hood of p, since (2) and the Inverse Function Theorem show that x o#~1 is a
diffeomorphism in a neighborhood of u(p). Now

—

g=x"'(a%,...,a") means x(g) =(,...,a"),
hence x'(g) =a’,
hence {y"‘of(q)=a"‘ @=Lk
u'(g) =a" r=k+1,...,n,
50
yofoxT(a,...,a") =yo f(g) forg=x"'@',...,a"
=(a’,.“,ak, )

(2) Choose coordinate systems x and v so that vo f o x~) has the form in (I).
Since rank f = k in a neighborhood of p, the lower square in the matrix

] 0

(M) = D+

T X

mem
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must vanish in a neighborhood of p. Thus we can write
¥@) =9 @a,...,a% r=k+1,...,m.

Define

o

y
}" =v —&'o(vl,u-,’)k)-

v

1

Since

(3) yovl(b....,b™M)=plg)  foru(g) = (b',...,H")
= (b, b5, BT R, BE), L BT - b)),

the Jacobian matrix

—

BT

has non-zero determinant, so y is a coordinate system in a neighborhood
of f(p). Moreover,

yofox~1a!,...,a"
1ouofo)c_’(a’,,..,a”)
=yov~l(d,...,a, y¥*t(a),...,¥"(a))
=(a',...,ak, ¥*a) - @, L ak), L, ) — L at)
by (3)
=(a',...,a*,0,...,0). <

=)ov~

Theorem 9 acquires a special form when the rank of f isn or m:

10. THEOREM. (1) If m < nand f: M" > N™ has rank m at p, then for
any coordinate system (y, V) around f(p), there is some coordinate system
(x,U) around p with

yo fox7l@,...,a") =(@',...,a™).
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(2 If n <mand f: M" — N™ has rank n at p, then for any coordinate
system (x, U) around p, there is a coordinate system (y, V) around f(p) with
yofox7la',...,a") = (d,...,d",0,...,0).

PROOF. (1) This is practically a special case of (1) in Theorem 9; it is only
necessary to observe that when k = m, it is clearly unnecessary, in the proof of

this case, to permute the y* in order to arrange that

(a(y =, )) aB=1...,m

only the u’ need be permuted.
(2) Since the rank of f at any point must be < n, the rank of f equals n
in some neighborhood of p. It is convenient to think of the case M = R”
and N = R” and produce the coordinate system y for R” when we are given
the identity coordinate system for R”. Part (2) of Theorem 9 yields coordinate
systems ¢ for R"” and ¥ for R™ such that

Yo fop(a,...,a") = (d',...,a",0,...,0).

Even if we do not perform ¢! firsy, the map f still takes R” into the subset

n n SR™) = f(p(R"))
g‘i e # 1, v,
f

V(S (RY)

JS(R™ which ¥ takes to R” x {0} C R™—the points of R” just get moved to
the wrong place in R” x {0}. This can be corrected by another map on R”.
Define A by

AB, .. By = (o B, . BT, T, L.
Then
Aovo flal,...,a")y=AoWo fop I(bl,...,0"
for (b',...,b") = ¢(a)
=A(b',...,0",0,...,0)
= (¢~ (b,...,6M),0,...,0)
=(@,...,a",0,...,0),
50 A o ¥ is the desired y. If we are given a coordinate system x on R” other
than the identify, we just define
AT, 0™ = (g7 B0 L™,

it is easily checked that y = 4 o ¥ is now the desired y.
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Although p is a regular point of f in case (1) of Theorem 10 and a critical
pointin case (2) (if n < m), it is case (2) which most interests us. A differentiable
function f: M™ — N™ is called an immersion if the rank of f is n, the
dimension of the domain M, at all points of M. Of course, it is necessary that
m = n, and it is clear from Theorem 10(2) that an immersion is Jocally one-one
(so it is a topological immersion, as defined in Chapter 1). On the other hand,
a differentiable map / need not be an immersion even if it is globally one-one.
The simplest example is the function f: R — R defined by f(x) = x3, with
f'(0) = 0. Another example is

e x>0 ( &
gx)=19 x=0

- x <0. \

A more illuminating example is the function /: R — R? defined by

h(x) = (g(x):1g(x)D);

although its image is the graph of a non-differentiable function, the curve itself
manages to be diflerentiable by slowing down to velocity 0 at the point (0,0).
One can easily define a similar curve whose image looks like the picture below.

—

Three immersions of R in R? are shown below. Although the second and
third immersions f; and B2 are one-one, their images are not homeomorphic

5/ Y
B2(R)
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to R Of course, even if the one-one immersion f: P — M is not a homeo-
morphism onto its image, there is certainly some metric and some differentiable
structure on f(P) which makes the inclusion map i: f(P) —» M an immer-
sion. In general, a subset M; C M, with a differentiable structure (not nec-
cssarily compatible with the metric Mj inherits as a subset of M), is called an
immersed submanifold of M if the inclusion mapi: M; — M is an immersion.
The following picture, indicating the image of an immersion f3: R —» S! x §1,

first time around
second time around

shows that M; may even be a dense subset of M.

Despite these complications, if M), is a k-dimensional immersed submanifold
of M" and U is a neighborhood @ Mj of a point p € M, then there is a
coordinate system (y, V) of M around p, such that

UinV ={geM:y**(g)=-..= y'(g) =0}

y

U

this is an immediate consequence of Theorem 10(2), with f = i. Thus, if
g&: My — N is C® (considered as a function on the manifold M) in a neigh-
borhood of a point p € M), then there is a C*® function § on a neighborhood
V C M of psuchthat g =g oi on VN M;—we can define

y(g)=y%g) ae=1...,k
S0Y — oo N
g(g) =g(g"),  where {y'(q’):O r=kAl.
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On the other hand, even if g is C*® on all of M; we may not be able to
define g on M. For example, this cannot be done if g is one of the functions
B: Bi(M) > R.

One other complication arises with immersed submanifolds. If M; C M is
an immersed submanifold, and f: P — M isa C® function with f(P) C M,
itis not necessarily true that f is C® when considered as a map into M, with its
C structure. The following figure shows that f* might not even be continuous

S(P)

Myc M =R? M

as a map into M,. Actually, this is the only thing that can go wrong:

11. PROPOSITION. If M; € M is an immersed manifold, f: P - M is
a C* function with f(P) C Mj, and f is continuous considered as a map
into M, then f is also C* considered as a map into Mj.

PROOF. Leti: My = M be the inclusion map. We want to show that i~ o f
is C* ifit is continuous. Given p € P, choose a coordinate system (y, V) for M
around f(p) such that

Ui={geV: g =--=1"(¢)=0)

is a neighborhood of f(p) in M, and ('|Uy,..., Y¥|Uy) is a coordinate system
of My on U,.
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By assumption, i~ o f is continuous, so
S i(openset) is an openset.

Since Uy is open in M), this means that f~1(U;) C P is open. Thus f takes
some neighborhood of p € P into Uy. Since all y/ o f are C®, and y!,..., yk
are a coordinate system on Uj, the function f is C* considered as a map
into M. &

Most of these difficulties disappear when we consider one-one immersions
J: P > M which are homeomorphisms onto their image. Such an immersion
is called an imbedding (“embedding” for the English). An immersed subman-
ifold M; C M is called simply a (C) submanifold of M if the inclusion map
i: My = M is an imbedding; it is called a closed submanifold of M if M; is
also a closed subset of M.

a closed
cer submanifold

There is one way of getting submanifolds which is very important, and gives
the sphere $”~! C R* — {0} € R”, defined as {x : |x|> = 1}, as a special case.

12. PROPOSITION. If f: M™ — N has constant rank k on a neighborhood
of f7'(y), then f~'(y) is a closed submanifold of M of dimension n — k (or
is empty). In particular, if y is a regular value of f: M" — N™, then ')
is an (n — m)-dimensional submanifold of M (or is empty).

PROOF. Left to the reader. <

It is to be hoped that however abstract the notion d C* manifolds may
appear, submanifolds of RY will scem like fairly concrete objects. Now it turns
out that every (connected) C* manifold can be imbedded in some RY, so that
manifolds can be pictured as subsets of Euclidean space (though this picture
is not always the niost uscful one). We will prove this fact only for compact
manifolds, but we first develop some of the machinery which would be used in



50 Chapter 2

the general case, since we will need it later on anyway. Unfortunately, there are
many definitions and theorems involved.

If @ is a cover of a space M, a cover @' of M is arefinement of @ (or
“refines @) if for every U in @’ there issome V in @ with U C V (the sets of @’
are “smaller” than those of @)—a subcover is a very special case of a refining
cover. A cover @ is called locally finite if every p € M has a neighborhood W
which intersects only finitely many sets in @.

13. THEOREM. If @isanopen cover of amanifold M, then there is an open
cover @ of M which is locally finite and which refines @. Moreover, we can
choose all members of @’ to be open sets diffeomorphic to R”.

PROOF. We can obviously assume that M is connected. By Theorem 1.2, there
are compact sets Cy,C2,Gs,... with M = GUGUC3U--- . Clearly C) has
an open neighborhood U; with compact closure. Then U, UG has an open
neighborhood U with compact closure. Continuing in this way, we obtain
open sets U;, with U compact and U; C Uiy, whose union contains all C;,
and henceis M. Let U_; = Uy = 0.

Now M isthc union for i > 1 of the “annular” regions 4; = U; —U;_. Since
cach 4; is compact, we can obviously cover 4; by a finite number of open sets,
each contained in some member of @, and each contained in V; = U4y — U,—a.
We can also choose these open sets to be diffleomorphic to R”. In this way we
obtain a cover @' which refines @ and which is locally finite, since a point in U;
isnotin Vjfor j 2 241 %
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Notice that if @ is an open locally finite cover of a space M and C C M is
compact, then C intersects only finitely many members of @. This shows that
an open locally finite cover of a connected manifold must be countable (like the
cover constructed in the proof of Theorem }3).

14. THEOREM (THE SHRINKING LEMMA). Let @ be an open locally
finite cover of a manifold M. Then it is possible to choose, for each U in @, an
open set U’ with U’ C U in such a way that the collection of all U’ is also an
open cover of M.

PROOF. We can clearly assume that M is connected. Let @ = {U}, U2, U3, ... }.
Then

Ci=U = (hUUsU---)
is a closed set contained in Uy, and M = C,UU, UU3 U---. Let U] be an
openset with C; C U] C U/ C U;. Now

G=U - (UjUlU--)

is a closed set contained in Uz, and M = U/ UG U U3 U---. Let U; be an
open set with G2 C U; C U; C Uz. Continue in this way.
For any p € M there is a largest n with p € Uy, because @ is locally finite,
Now
pEU/UUSU-- . UU U (Ung1 UUpg2 U---);
it follows that
peU/UUU...,

since replacing Upn4; by U,,; cannot possibly eliminate p. <

15. THEOREM. Let @ be an open locally finite cover d a manifold M. Then
there is a collection of C* functions ¢y: M — [0,1], one for each U in @,
such that
(1} supportgy C U for each U,
(2 X¢u(p) = 1 for all p € M (this sum is really a finite sum in some
U

neighborhood of p, by (1)).
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PROOF. Case 1. Each U in @ has compact closure. Choose the U’ as in Theorem
14. Apply Lemma 2 to U’ C U C M to obtain a C* function Yy : M — [0,1]
which is 1 on U7 and has support C U. Since the U’ cover M, clearly

Z Yu >0 everywhere.
Ueo

Define
Yu

> Yy

Ueo

du =

Case 2. General case. This case can be proved in the same way, provided that
Lemma 2 is true for C C U € M with C closed (but not necessarily compact)
and U open. But this is a consequence of Case /:

For each p € C choose an openset U, C U with compact closure. Cover
M — C with open sets V, having compact closure and contained in M — C.
The open cover {U , ¥, } has an open locally finite refinement @ to which Case /
applies. Let

f= Z U, where @' ={U € @ :U C U, for some p}.
veo’

This sum is C®, since it is a finite sum in a neighborhood of each point. Since
Sudu(p) = 1 for all p, and ¢u(p) = 0 when U C Vg, clearly f(p) = 1
for all p € C. Using the fact that @ is locally finite, it is easy to see that

support /| C U. <

16. COROLLARY. If @ is any open cover of a manifold M, then there is a
collection of C* functions ¢;: M — [0, 1] such that

(1} the collection of sets {p: @;i(p) # 0} islocally finite,

@ Xi¢ip)=1forall pe M,
(3) for each i there is a U € @ such that support¢; C U.

(A collection {¢;: M — [0,1]} satisfying (1) and (2) is called a partition of unity;
if it satisfics (3), it is called subordinate to @.)

It is now fairly easy to prove the last theorem of this chapter.

17. THEOREM. If M" is a compact C* manifold, then there is an imbed-
cing /: M — RV for some N.
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PROOF. There are a finite number of coordinate systems (x1, Us), -- - , (Xk, Uk)
with M = U;U---UUy. Choose U/ as in Theorem 14, and functions y; : M -»
[0,1] which are 1 on 7,’ and have support C U;. Define f: M -» RY, where
N = nk +k, by

S=0nxn ke XY V)

This is an immersion, because any point p is in U/ for some i, and on U/, where
Wi = 1, the N x n Jacobian matrix

afe . . ox¥
_ﬂ contams th »n X n matrix _ﬂ =].
ox; 0x;

i

It is also one-one. For suppose that f(p) = f(g). There is some i such that
p € U/. Then y(p) = 1, so also y¥i(g) = 1. This shows that we must have
q € U;. Moreover,

Vi - xi(p) = ¥i - xi(q),

s0 p = ¢, since x;i is one-one on U;. %

Problem 3-33 shows that, in fact, we can always choose N = 2n + 1.

PROBLEMS

1. (a) Show that being C®-related is not an equivalence relation.
(b) In the proof of Lemma ], show that all charts in A’ are C®-related, as
claimed.

2. (a) If M is a metric space together with a collection of homeomorphisms
x: U — R” whose domains cover M and which are C®-related, show that
the n at each point is unique withou! using Invariance of Domain.

{b) Show similarly that dM is well-defined for a C* manifold-with-boundary M.

3. (a) All C* functions are continuous, and the composition of C® functions
is C*.

(b) A function f: M -» N is C*® if and only if g o f is C* for every C®
function g: N -» R.

4. How many distinct C® structures are there on R? (There is only one up to
difleomorphism; that is not the question being asked.)
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5. (a) If N C M is open and A’ consists of all (x,U) in A with U C N, show
that A’ is maximal for N if 4 is maximal for M.

(b) Show that A’ can also be described as the set of all (x]V NN,V N N) for
(x,V)in A.

(c) Show that the inclusion i: N ~» M is C*, and that A’ is the unique atlas
with this property.

6. Check that the two projections P; and P, on S =1 are C® related to the 2n
homeomorphisms f; and gi.

7. (a) If M is a connected C® manifold and p,qg € M, then there is a C®
curve ¢: [0,1]--> M with ¢(0) = pandc(l) =¢.
(b) Itis even possible to choose ¢ tobe one-one.

8. (a) Show that (M; x M3) x Mj is diffeomorphic to M; x (M2 x M3) and
that M; x M3 is diffeomorphic to Mz x M;.
(b) The differentiable structure on M; x M; makes the “slice” maps

p > (pr, p2)
p2 > (P, p2)

of My, My > M x M, differentiable for all p; € M, p; € Ma.

(c) More generally, amap f: N —» M x M is C* if and only if the compo-
sitions sty o f: N ~> My and 5z 0 f: N -» M, are C®. Moreover, the C*®
structure we have defined for M; x M; is the only one with this property.

@ If fi: N - M;are C*® (i = 1,2), can one determine the rank of (f, /2): N
~> Mj x M; at p in terms of the ranks of f; at p? For fi: N; > M, show that
S1% fa: Ni x Na—> My x My, defined by fi x f2(p1, P2) = (/i(p1), J2(p2)),
is C* and determine its rank in terms ofthe ranks of fi.

9. Let g: S” -» P" be the map p +»> [p). Show that f: P" —» M is C* if and
onlyif fog: §"-» M is C®. Compare the rank of / and the rank of fog.

10. (@) If U Cc R"isopen and f: U -» R isJocally C® (every point has a
neighborhood on which f is C®), then f is C®. (Obvious.)

(b) If f: H” > R is Jocally C®, then [ is C®, ie., [ can be extended to a
C® function on a neighborhood of H”. (Not so obvious.)

11. If f: H" -> R has two extensions g,/ to C® functions in a neighborhood
of H”, then D;g and Dk are the same at points of R~ x {0} (so we can speak
of Dj f at these points).

12. If M is a C® manifold-with-boundary, then there is a unique C® structure
on @M such that the inclusion map i: M -+ M is an imbedding.
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13. (a) Let U C M" be an open set such that boundary U is an (n — 1)-dimen-
sional (differentiable) submanifold. Show that U is an n-dimensional manifold-
with-boundary: (It is well to bear in mind the following example: if U = {x €
R": d(x,0) < 1 or 1 < d(x,0) < 2}, then U is a manifold-with-boundary; but
80 # boundary U.)

(b) Consider the figure shown below. This figure may be extended by putting

smaller copies of the two parts of S’ into the regions indicated by arrows, and
then repeating this construction indefinitely. The closure S of the final resulting
figure is known as Alexander’s Horned Sphere. Show that S is homeomorphic to S2.
(Hint: The additional points in the closure are homeomorphic to the Cantor
set.) If U is the unbounded component of R? — S, then S = boundary U, but
U is not a 2-dimensional manifold-with-boundary; so part (a) is true only for
differentiable submanifolds.

14. (a) There isa map f: R* - R? such that
() £(x,0) = (x,0) for all x,
(2) f(x,y) CH? for y >0,
() f(x,y) CR? —H?for y <0,
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(4) f restricted to the upper half-plane or the lower half-plane is C, but /'
itself is not C. :

(b) Suppose M and N are C* manifolds-with-boundary and f: M -» 3N
is a diffecomorphism. Let P = M Uy N be obtained from the disjoint union
of M and N by identifying x € dM with f(x) € N. If (x,U) is a coordinate
system around p € dM and (y, V) a coordinate system around f(p), with
SUNAM) =V NaN,and (y o /)IU NIM = x|U N IM, we can define a
homeomorphism from U UV C P to R” by sending U to H"” by x and V to
the lower half-plane by the reflection of y. Show that this procedure does not

//_X\
reflection
\L/ of y

define a C® structure on P.

(c) Now suppose that there is a neighborhood U of M in M and a diffeo-
morphism a: U ~» M x [0, 1), such that a(p) = (p,0) forall p € 3M, and a
similar diffeomorphism B: V ~» 3N x [0, 1). (We will be able to prove later that
such diflecomorphisms always exist). Show that there is a unique C* structure

on P such that the inclusions of M and N are C® and such that the map from
UUYV todM x (~1, 1) induced by o and B is a diffecomorphism.

(d) By using two different pairs (, B), define two different C structures on R?,
considcred as the union of two copies of H? with corresponding points on dH?
identified. Show that the resulting C* manifolds are diffeomorphic, but that
the diffeomorphism cannot be chosen arbitrarily close to the identity map.
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15. (a) Find a C® structure on H' x H' which makes the inclusion into R?
a C® map. Can the inclusion be an imbedding? Are the projections on each
factor C* maps?

(b) If M and N are manifolds-with-boundary, construct a C® structure on
M x N such that all the “slice maps” (defined in Problem 8) are C®.

16. Show that the function f: R — R defined by
e VX x>0

f(x)={0 =

is C®° (the formula e~/*" is used just to get a function which is > 0 for x < 0,
and e~'/*! could be used just as well).

17. Lemma 2 (as addended by the proof of Theorem 15) shows that if C; and C2
are disjoint closed subsets of M, then there is a C* function f: M — [0,1]
such that G; € f~'(0) and G c f7'(1). Actually, we can even find f with
Cy = f7'(0) and C2 = f~'(1). The proof turns out to be quite easy, once you
know the trick.

(a) Tt suffices to find, for any closed C € M, a C® function f with C = f~'(0).
(b) Let {U;} be a countable cover of M — C, where each U, is of the form

Ui=x"'({aeR": ja < 1})

for some coordinate system x taking an open subset of M — C onto R”. Let
Jit M — [0,1] be a C* function with f; > 0on U; and f; = 0 on M — Ui;.
Functions like

afi

will be called mixed partials of f;, of order 1,2,.... Let

a; = sup of all mixed partials of f;,..., f; of all orders <.

Show that
Ji

d,‘Zi

fo=

s

i=1

is C®, and C = f~'(0).

18. Consider the coordinate system (3", y?) for R? defined by
y(ab)=a
y*(a,b) = a+b.
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() Compute 3f/3y*(a,b) from the definition.

(b) Also compute it from Proposition 3 (to find 8/ /dy/, write each 17 in terms
of y' and y?).

Notice that 8//8y" # 8//81" even though y' = J7; the operator 8/3y’ depends
on y and i, not just on ¥

19. Compute the “Laplacian”

92 92
Frae

in terms of polar coordinates. (First compute 3/3x in terms of d/dr and 8/36;
then compute 2/3x? from this). Answer: %[%(raa—,) + 3%(%3%)].

20. If /: M" — N™is C! and m > n, then f(M) has measure O (provided
that M/ has only countably many components).

21. The following pictures show, for n = 1,2, and 3, a subdivision of [0,1] x
[0,1] into 22" squares, An,1. .., Ap,221; Square Apx is labeled simply k. The
numbering is determined by the following conditions:

(a) The lower left square is A, 1.
(b)

(¢
d

The upper left square is 4, 2.

) Squares A4, x and Ap,k+1 have a common side.

Squares Ap 4141, An,al+2, An,a1+3; Ansi+4 are contained in Ap_y 141.

16 13 12| 11
4 3
15|14 9|10
517 |To[11
1 2 2|33 HE BIE
33| |3
1 4 516 T2
Define /: [0,1] = [0,1] x [0, 1] by the condition
k—~1 k
S(t) € Apx forall > <t < o

Show that f is continuous, onto [0, 1] x [0, 1], and not one-one.
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22. For p/2" € [0,1), define f(p/2") € R? as shown below.

A= f(0) B=s()

OII6))

(a) Show that f is uniformly continuous, so that it has a continuous extension
g:[0,1] > R2 Show that g is one-one, and that its image will not have
measure 0 if the shaded triangles are chosen correctly.

(b) Consider the homeomorphic image of S! obtained by adding, below the
image of g, a semi-circle with diameter the line segment AB. What does the
inside of this curve look like?

23. Let ¢: [0,1] — R” be continuous. For each partition P = {lo,..., &} of
[0, 1], define

k
e, P)= Y d(c(t),cltimn)).
i=1
The curve c¢ is rectifiable if’ {£(c, P)} is bounded above (with length equal to
sup{{(c, P)}). Show that the image of a rectifiable curve has measure 0.

24. (a) If M is a C* manifold, a set My C M can be made into a k-dimen-
sional submanifold of M if and only if around each point in M; there is a
coordinate system (x,U) on M such that M, NU = {p: xkt!(p) = ... =
x"(p) =0}

(b) The subset My can be made into a closed submanifold if and only if such
coordinate systems exist around every point of M.

25. The set {(x,|xl): x € R} is not the image of any immersion of R into R2.

26. (2) If U C R¥ is open and f: U — R"* is C®, then the graph of
S =A(p, f(P)) € R": p € U} is a submanifold of R”,

(b) Every submanifold of R” is locally of this form, after renumbering coor-
dinates. (Neither Theorem 9 nor 10 is quite strong enough. You will need
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the implicit function theorem (Calcuus on Manifolds, pg. 41). Theorem 10 is es-
sentially Theorem 2-13 of Calculus on Manifolds; comparison with the implicit
function theorem will show how some information has been allowed to escape.)

27. (a) An immersion from one n-manifold to another is an open map (the
image of an open set is open).

(b) If M and N are n-manifolds with M compact and N connected, and
f: M — N is an immersion, then f is onto.

28. Prove Proposition 12: If f: M" — N has constant rank k on a neigh-
borhood of f~!(»), then f~'(y) is a (closed) submanifold of M of dimension
n —k (or is empty).

29. Let f: P? - R’ be the map
&([x,y,z)) = (yz,xz,xy)

defined in Chapter 1, whose image is the Steiner surface. Show that g fails to
be an immersion at 6 points (the image points are the points at distance +1/2
on each axis). There is a way of immersing P2 in R3, known as Boy’s Surface.
See Hilbert and Cohn-Vossen, Geomelry and the Imagination, pp. 317-321.

30. A continuous function f: X — Y is proper if f~!(C) is compact for
every compact C C Y. The limitset L(f) of f is the set of all y € Y such
that y = lim f(x,) for some sequence xi,x2,X3,... € X with no convergent
subsequence.

(@) L(f) =0 if and only if f is proper.

(b) f(X) CY isclosed if and only if L(f) C f(X).

(c) There is a continuous f: R —» R? with f(R) closed, but L(f) # @.

(d) A one-one continuous function f: X — Y is a homeomorphism (onto its
image) if and only iff L(f) N f(¥Y) = 0.

(e) A submanifold M, C M is a closed submanifold if and only if the inclusion
map i: My — M is proper.

(f) If M is a manifold, there is a proper map f: M — R; the function f can
be made C® if M is a C* manifold.

31. (a) Find a cover of [0, 1] which is not locally finite but which is “point-
finite”: every point of [0, 1] is in only finitely many members of the cover.

(b) Prove the Shrinking Lemma when the cover @ is point-finite and countable
(notice that local-finiteness is not really used).

(c) Prove the Shrinking Lemma when @ is a (not necessarily countable) point-
finite cover of any space. (You will need Zorn’s Lemma; consider collections C
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of pairs (U, U’) where U € @, U’ C U,andthe union ofall U’ for (U,U") € C,
together with all other U € @ covers the space.)

32. (a) If M; C M is a closed submanifold, U D M; is any neighborhood,
and f: My - Ris C*, then there is a C® function f: M — Rwith f = f
on Mi, and with support f ¢ U.

(b) This is false if M =R and M; = (0,1).

(¢) This is false if R is replaced by a disconnected manifold N.

Remark: 1t is also false if M = R?, M; = N = S', and f = identity; in fact, in
this case, f has no continuous extension to a map from R2 to S?, but the proof
requires some topology. However, f can always be extended to a C* function
in a neighborhood of M (extend locally, and use partitions of unity).

33. (a) The set of all non-singular n x 1 matrices with real entries is called
GL(n, R), the general linear group. It is a C* manifold, since it is an open
subset of R”. The special linear group SL(n,R), or unimodular group, is the
subgroup of all matrices with det = 1. Using the formula for D(det) in Calculus
on Manifolds, pg. 24, show that SL(n, R) is a closed submanifold of GL(n,R) of
dimension 7% — 1.

(b) The symmetric n x n matrices may be thought of as R*"*1/2_ Define
¥: GL(n,R) — (symmetric matrices) by y(4) = A - 4, where A" is the
transpose of A. The subgroup y~!(I) of GL(1,R) is called the orthogonal
group O(#). Show that 4 € O(n) ifand only if the rows {or columns] of A are
orthonormal.

(c) Show that O(n) is compact.

(d) For any 4 € GL(n,R), define R4q: GL(1,R) = GL(n,R) by R4(B) = BA.
Show that Ry4 is a diffeomorphism, and that ¥ o Rq = ¥ for all 4 € O(n). By
applying the chain rule, show that for 4 € O(n) the matrix

i ij
(Bw (A)) has the same rank as (BL,{II(I)) .
ax:

axk!
(Here x*! are the coordinate functions in IR"Z, and ¥/ the n(n+1)/2 component
functions of y.) Conclude from Proposition 12 that O(n) is a submanifold of
GL(n,R).
(e) Using the formula

Vi) =) ama (A= (ay)),
k
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show that .
aj k=i#]
3yt ayp k=j#i
Bx"‘(A)= 2y k=i=j
it =t=]
0 otherwise.

Show that the rank of this matrix is 7(n + 1)/2 at I (and hence at 4 for all
A € O(n).) Conclude that O(n) has dimension n(n — 1)/2.

(f) Showthatdet A = =1 for all A € O(n). The group O(n)NSL(7, R) is called
the special orthogonal group SO(7), or the rotation group R(n).

34. Let M(m,n) denote the set of all m x n matrices, and M (m,n;k) the set
of all m x n matrices of rank k.

(a) For every Xo € M(m,n;k) there are permutation matrices P and Q such
that

PXoQ = ('ég g(;) , where Ao is k x k and non-singular.

(b) There is some & > 0 such that A is non-singular whenever all entries of

A~ Agare <e¢.
A B
PXQ—(C D)

(c) If
where the entries of 4 — Ao are < ¢, then X has rank k if and only if D =
CA™'B. Hint: If Iy denotes the k x k identity matrix, then

L 0 \(4 BY_{ A4 B

X Ipei C D) \XA+C XB+D)/
(d) M(m,nik) C M(m,n) is a submanifold of dimension k(m + n — k) for all
k <m,n.



CHAPTER 3
THE TANGENT BUNDLE

point v € R” is frequently pictured as an arrow from 0 to v. But there are
many situations where we would like to picture this same arrow as starting

at a different point p € R":

For example, suppose ¢: R — R”" is a differentiable curve. Then c'(t) =
(c"(2), . ..,c™(1)) is just a point of R”, but the line between c(¢) and c() +c'(¢)
is tangent to the curve, and the “velocity vector” or “tangent vector” ¢’(¢) of
the curve ¢ is customarily pictured as the arrow from c(f) to ¢(t) + ¢'(¢).

c(y+c'()

e ct(1)

(1)

63
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Togive this picture mathematical substance, we simply describe the “arrow”
from p to p + v by the pair (p, v). The set of all such pairs is just R” x R",
which we willalsodenoteby TR”, the “tangent space of R””; elements of TR”"
are called “tangent vectors” of R”. We will often denote (p,v) € TR” by v,
(“the vector v at p”); n conformity with this notation, we will denote the set
of all (p,v) for v € R" by R",. At times, it is more convenient to denote a
member of TR” by a single letter, like v. Torecover the first member of a pair
v € TR", we define the “projection” map n: R" x R” — R” by n(a,b) = a.
For any tangent vector v, the point x(v) is “where it’s at”.

The set 7='(p) may be pictured as all arrows starting at p. Alternately,

it can be pictured more geometrically as a particular subset of R" x R”, the
one visualizable case occurring when # = 1. This picture gives rise to some

TR"

U H_I(P)

R”

P

terminology—we call 7 ~!(p) the fibre over p. This fibre can be made into a
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vector space in an obvious way: we define

(P, v) ® (p,w) = (p, v+ w)
a«(p,v)=(p,a-v).

(The operations @ and e« should really be thought ofas defined on

U a7 (p) x 77 (p), and R x TR", respectively.
peRN

Usually we will just use ordinary + and - instead of @ and » )

If f:R" — R™ is a differentiable map, and p € R”, then the linear trans-
formation Df(p): R" — R™ may be used to produce a linear map from
R", — R™y(,) defined by

v, &> [DF(P)W)]s ().

This map, whose apparently anomalous features will soon be justified, is de-
noted by f,,; the symbol fi denotes the map f,: TR" — TR™ which is the
union of all f,,. Since fip(v) is defined to be a vector € R™s(,), the follow-
ing diagram “commutes’ (the two possible compositions from TR” to R™ are
equal),
TR" L) TR™

nl ln Rofu=fon.

wrdgm

——y

Thus, fi has the map f, as well as all maps Df(p), built into it.

This is not the only reason for defining f, in this particular way, however.
Suppose that g: R”™ — R is another differentiable function, so that, by the
chain rule,

) D(g o f)(p) = Dg(f(p)) o Df (p).
By our definition,

2 (D1 (PYW)r () = (DS PNDSPYON) g1 iryy
This looks horribly complicated, but, using (1), it can be written

&+(f2(0p)) = (& © )a(vp);
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thus we have
gvofx=1(g0 N

This relation would clearly fall apart completely if f,(v,) were not in R™r(,);
with our present definition of f,, it is merely an elegant restatement of the
chain rule.

Henceforth, we will state almost all concepts about Jacobian matrices, like
rank or singularity, in terms of fi, rather than Df. The “tangent vector” of a
curve ¢: R — R” can be defined in terms of this concept, also. The tangent
vector of ¢ at f may be defined as

Weqy € R%qay-

[If ¢ happens to be of the form

c)=( f@) for /1R R

then
'Wery = (L, S ey

this vector lies along the tangent line to the graph of f at (¢, f(¢)).] Notice
that the tangent vector of ¢ at ¢ is the same as

e(1e) = [De()(D)etry = (1), - ™ D)ty

where 1, = (¢, 1) is the “unit” tangent vector of R at ¢.

If g: R" -» R™ is differentiable, then g o ¢ is a curve in R™. The tangent
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vector of gocatiis

(g 0 0)ul(ly) = gxleu(1y))
= g.(tangent vector of ¢ at 7).

v
%
By 5

g(e(n)
gx(v)

Consider now an n-dimensional manifold M and an imbedding i: M — RV.
Suppose we take a coordinate system (x,U) around p. Then i o x~! is a map
from R” to RV with rank n. Consequently, (i ox—‘),(]}&"x(p)) is an n-dimen-
sional subspace of ]RNg(p). This subspace doesn’t depend on the coordinate

. B
S

x(p)

44

RN
B > 2

system x, for if y is another coordinate system, then
(io y_]), =(io xloxo y_l),
= (i °x_’)¢ o(x °}’_l)x
and
o3 Dyt RMyip) = Ry

is an isomorphism (with inverse (y o x_‘)'X(p))'
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There is another way to see this, which justifies the picture we have drawn.
If ¢: (—&,6) = R” is a curve with ¢(0) = x(p), thena = ioxtocisa
curve in R¥ which lies in i(M), and every differentiable curve in i(M) is of this

' ©0)x(pn

e e

form (Proof?). Now
a(lo) = (o x™ w0 eu(lo),
so the tangent vector of every @ isin (i ox™'),(R"x(,)). Moreover, every vector
in this subspace is the tangent vector of some e, since every vector in R",(,y is
the tangent vector of some curve ¢. Thus, our n-dimensional subspace is just
the set of all tangent vectors at i(p) to differentiable curves in i(M). We will
denote this n-dimensional subspace by (M, 7).
We now want to look at the (disjoint) union

T(M,i)= | ) (M), c i(M)xRY c TR".
peEM

We can define a “projection” map

n: T(M,i) > M

by
rw)y=p if ve((M,),

As in the case of TR”, each “fibre” 7 ~!(p) has a vector space structure also.
Beyond this we have to look a little more carefully at some specific examples.

Consider first the manifold M = S' and the inclusion i: ' — R2 The
curve ¢(f) = (cos@,sinf) passes through every point of S, and

¢'(8) = (—sinf, cos§) # 0.

For each p = (cosf,sinf) € S, let u, = (—sinf,cosf), (it clearly doesn’t
matter which of the infinitely many possible §’s we choose). Then (S',), con-
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sists of all multiples of the vector u,. We can therefore define a homeomorphism

N T(SYi) > §' xR by fi(Aup) = (p,A), which makes the following dia-
gram commute.

T(s’,f)-—ﬁ——>s' x R!
b3 T [7'(a,b) = a]
M

If we define the “fibres” of 7 to be the sets 7'~ (p), then each fibre has a vector
space structure in a natural way. Commutativity of the diagram means that f;
takes fibres into fibres; clearly f) restricted to a fibre is a linear isomorphism
onto the image.

Now consider the manifold M = §? and the inclusion i: §2 ¢ R In this
case there is wo map f2: T(S2,i) ~» S? x R? with the properties of the map /.
If there were, then, for a fixed vector v # 0 in R2, the set of vectors

{27 (wp): pe 51

would be a collection of non-zero tangent vectors, one at each point of S2,
which varied continuously. It is a well-known (hard) theorem of topology that
this is impossible (you can’t comb the hair on a sphere).
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There is another example where we can prove that no appropriate homeo-
morphism T(M, i) - M x R? exists, without appealing to a hard theorem of
topology. The map 7 will just be the inclusion M — R3 where M is a Mébius
strip, to be precise, the particular subset of R? defined in Chapter 1— M is the
image of the map f: [0,27) x (=1,1) = R® defined by

f6,n= (2cos€+lcos§cos€, 25in9+tcosgsin9, t sin g)

At each point p = (2cos6,25in6,0) of M, the vector

o 6.0}

2

v, = (~2sin6,2c0s6,0), = £((1,0)9,09)

is a tangent vector. The same is true for all multiples of f((0,1)¢s,0y), shown
as dashed arrows in the picture. Notice that

£:(0,D,0) = [Df(0,0)(0, Dliz,0,0y
[af (o, 0)] = (1,0,0)2,0,0,

(2,0,0)

while

L0 Dany) = [ (21, 0)] =(~1,0,0)¢,0,0)-
(2,0,0)

This means that we can never pick non-zero dashed vectors continuousfy on the
set of all points (2cos8,2sin6,0): If we could, then each vector would be

7020 0.0)

for some continuous function A: [0,2:r] — R. This function would have to be
non-zero everywhere and also satisly A(2sr) == —A(0), which it can’t (by an easy
theorem of topology). The impossibility of choosing non-zero dashed vectors
continuously clearly shows that there is no way to map T(M, i), fibre by fibre,
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homeomorphically onto M x R% We thus have another case where T(M,)
does not “look like” a product M x R”.

For any imbedding i: M — R¥, however, the structure of T(M, i) is always
simple locally: if (x,U) is a coordinate system on M, then =~!(U), the part
of T(M,i) over U, can always be mapped, fibre by fibre, homeomorphically
onto U x R". In fact, for each p € U, the fibre

(M,1), equals (io x_‘)*x(p) (]R"X(p)) =Mmp (]R"x(p))’

where the abbreviation m, has been introduced temporarily; we can therefore
define

[ (U) > UxR*
by

f (mﬁ(vx(p))) = (p, v).
In standard jargon, T(M,i) is “locally trivial”. This additional feature qualifies
T(M., i) to be included among an extremely important class of structures:

An n-dimensional vector bundle (or »n-plane bundle} is a five-tuple

§=(E,n, B,®,0),
where
(1) E and B are spaces (the “total space” and “base space” of &,
respectively),
(2) 7. E — B is a continuous map onlo B,
(3) ® and O are maps

D Un"(p)xn“'(p)—)E, O:Rx E > E,
peB

with ® (x~' (p) x 7' (p)) € =~'(p) and OR x 7~ (p)) C
771 (p), which make each fibre =~ (p) into an n-dimensional
vector space over R,

such that the following “local triviality” condition is satisfied:
For each p € B, there is a neighborhood U of p and ahomeomor-

phism z: 771 (U) » U x R" whichis a vector space isomorphism
from each 7! (g) onto ¢ x R, for all g € U.
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Because this local triviality condition really is a local condition, each bundle
& = (E,n, B,®,0) automatically gives rise to a bundle &|4 over any subset
A C B; to be precise,

Eld = (n_'(A), xlr™'(4), 4, | Uyes 7' (p) x 7' (p), OIR x n—'(A)).

Notation as cumbersome as all this invites abuse, and we shall usually refer
simply to a bundle . E — B, or even denote the bundie by E alone. For
vectors v, w € 7~ !(p) and a € R, we will denote ®(v, w) and O(a, v) by v+ w,
anda - v or av, respectively. ’

The simplest example of an #-plane bundle is just X x R” with : X xR" —
X the projection on the first factor, and the obvious vector space structure on
each fibre. This s called the trivial #-plane bundle over X and will be denoted
by £"(X). The “tangent bundle” TR” is just £"(R").

The bundie T(S',i) considered before is equivalent to e'(s). Equivalence
is here a technical term: Two vector bundles § = n;: £1 —» B and & =
n2: E2 — B are equivalent (§ = &) if there is a homeomorphism h: Ey — E3
which takes each fibre 7;~!(p) isomorphically onto 727! (p). The map h is
called an equivalence. A bundle cquivalent to £"(B) is called trivial. (The
local triviality condition for a bundle & just says that &{U is trivial for some
neighborhood U of p.)

The bundles T(S2,7) and T'(M,i) are not trivial, but there is an even simpler
example of a non-trivial bundle. The Mébius strip iself (not T(M,i)) can be
ronsidered as a l-dimensional vector bundle over S', for M can be obtained
firom [0, 1] x R by identifying (0,a) with (1, —a), while S! can be obtained from
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[0, 1) by identifying 0 with 1; the map » is defined by #(t,a) =7 for0 <7 < 1
and #({(0,a), (1,—a)}) = {0,1}. The diagram above illustrates local triviality
near the point {0, 1} of S*. Suppose that s: S' — M is a continuous function
with 7 o s = identity of M (such a function is called a section). Such a map

M
5
§ n
Sl
corresponds to a continuous function §: [0,1] — R with 35(0) = —5(1). Since §

must be 0 somewhere, the section s must be 0 somewhere (that is, s(8) € 7~ (6)
must be the 0 vector for some 6 € S!). This surely shows that M is not a trivial
bundie.

An equivalence is obviously the analogue of an isomorphism. The analogue
of a homomorphism is the following.* A bundle map from & to & is a pair of
continuous maps (f, /), with f-: FEy - E; and f: By — B2, such that

(1) the following diagram commutes

E, E;

ml l:rz

B ——— By,

2 VE m(p) - ! (f(p)) is a linear map.

The pair (3, f) is a bundle map from TR¥ to TR for any differentiable
f: R - RLIf M" € R¥ and N™ C R! are submanifolds, i: M — R¥ and
j: N = R! are the inclusions, and the map [ satisfies f(M) C N, then f,

*There are actually several possible choices, depending on whether one is consider-
ing all bundles at once, fixed bundles over various spaces, or a fixed base space with
varying bundles. Thus f may be restricted to be an isomorphism on fibres and f to
be the identity, or a homeomorphism. The relations between some of these cases are
considered in the problems.
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takes T(M,i) to T(N, j); to see this, just remember that v € T(M, ), is the
tangent vector of a curve ¢ in M, so fi(v) is the tangent vector of the curve
focin N, and consequently f,(v) € T(N, /). In this way we obtain a bundle
map from T(M,i) to T(N, j). Actually, it would have sufficed to begin with
a C® function f: M — N, since f can be extended to R¥ locally. In fact,
this construction could be generalized much further, to the case where i and j
are merely imbeddings of two abstract manifolds M and N,and /: M - N
is C; we just consider the function jo f oi™': i(M) — i(N) and extend it
locally to R¥. The case which we want to examine most carefully is the simplest:
where M = N and f is the identity, while i and ;j are two imbeddings of M
in R and R/, respectively. Elements of T'(M, i), are of the form (i o X7 (w)

for w € R"y(,), while elements of T(M, j), are of the form (j o x™1),(w) for
w € R";(,). If we map

(o x)u(w) > (foxTu(w)

we obtain a bundle map from T(M,i)|U to T(M, j)|U, which is obviously an
equivalence. The map (M,i), = (M, j), induced on fibres is independent of
the coordinate system x, for if (y, V) is another coordinate system, then

(F oy u(w) = (o x™i((x 0 ¥ (w))

l I

oy ™) = (fox Nu((x 0 y7Hu(w)).

We can therefore put all these maps together, and obtain an equivalence from
T(M,i) to T(M, j). In other words, the dependence of T(M,i) on i is al-
most illusory; we could abbreviate T'(M,7) to TM, if we agreed that TM really
denotes an equivalence class of bundles, rather than one bundle. That is the
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sort of thing an algebraist might do, and it is undoubtedly ugly. What we would
like to do is to get a single bundle for each M, in some natural way, which has
all the properties any one of these particular bundles 7(M,{) has. Can we do
this? Yes, we can. When we do, TR" will be different from our old defini-
tion (namely, £”(R")), and so will f, for f: R" —» R", so in stating our result
precisely we will write “old /i when necessary.

1. THEOREM. It & possible to assign to each n-manifold M an n-plane bun-
dle TM over M, and to each C*® map f: M — N a bundie map ( /s, /), such
that:

() If 1: M — M is the identity, then 1.: TM — TM is the identity. If
g: N — P then (go f)«= gxo fx

(2) There are equivalences t": TR” — £"(R") such that for every C® func-
tion f: R” = R”™ the following commutes.

S A
I m
&' (R") old fi 0C Jx, o (]Rm)

(3) If U c M is an open submanifold, then TU is equivalent to (TM)|U,
and for f: M — N the map (f|U).: TU — TN is just the restriction
of fi.. More precisely, there is an equivalence TU = (TM)|U such that
the following diagrams commute, where i: U — M is the inclusion.*

S1U)«

TU b ™M™ v— W . r

N A \/

(TM)IU

PROOF. The construction of TM is an ingenious, though quite natural, sub-
terfuge. We will obtain a single bundle for 7M, but the elements of TM will each
be Jarge equivalence classes.

*When using the notation J,, it must be understood that the symbol “f” really refers to
atriple(f, M, N) where f: M — N. Theidentitymap 1 of U toitself and the inclusion
map i: U — M have to be considered as different, since the maps 1x: TU — TU and
iy: TU — TM are certainly different (they map TU into wo diff erent sets).
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The construction is much easier to understand if we first imagine that we ai-
ready had our bundles TM. Then if (x,U) is a coordinate system, we would
have a map x,: TU — T(x(U)), and this would be an equivalence (with
inverse (x~'),). Since TU should be essentially (TM)|U, and T(x(U)) should
essentially be x(U) x R”, a point e € 5r7!(p) would be taken by x, to some
(x(p), v). Here v is just an element of R” (and every v would occur, since x4
maps 7t7! (p) isomorphically onto {p} x R”). If y is another coordinate system,
then yu(e) would be (y(p), w) forsome w € R”. We can easily figure out what
the relationship between v and w would be; since (x(p), v) is taken to (y(p), w)
by y.ox,~ = (yox7"),,and (y o x~"), is supposed to be the old (y o x 1),
we would have

(@) w=D(yox~")(x(p))v).

This condition makes perfect sense without any mention of bundles. It is the
clue which enables us to now define TM.

If x and y are coordinate systems whose domains contain p, and v, w € R”,
we define

(x,v) 5O w) if (a) is satisfied.

It is easy to check (using the chain rule) that 5 is an equivalence relation; the
equivalence class of (x,v) will be denoted by [x, v],. These equivalence classes
will be called tangent vectors at p, and TM is defined to be the set of all tangent
vectors at all points p € M; the map n takes ~ equivalence classes to p. We
define a vector space structure on 777! (p) by the formulas

[x,v], + [x,w], = [x,v + w],

a.[x,v], =[x,a-v],

this definition isindependent of the particular coordinatesystem x or y, because
D(y o x~1)(x(p)) is an isomorphism from R” to R”.
Our definition of TM provides a one-one onto map

(b) te: M U) » U x R*, namely [x,v]q = (q,v).

We want this to be a homeomorphism, so we want £x~" (4) to be open for every
open A C U x R”, and thus we want any union of such sets to be open. There
is a metric with exactly these sets as open sets, but it is a little ticklish to produce,
so we leave this one part of the proof to Problem 1.

We now have a bundle 7: TM — M. We will denote the fibre 7} (p)
by M,, in conformity with the notation R”,, though TM, might be better. If
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Jf: M — N,and (x, U) and (y, V) are coordinate systems around p and f(p),
respectively, we define

© Sux, ) =1, Do f o x)(x(P) W)y (-

Of course, it must be checked that this definition is independent of x and y
(the chain rule again),

Condition (1) of our theorem is obvious.

To prove (2), we define t" to be t;, where [ is the identity map of R” and tx
is defined in (b); it is trivial, though perhaps confusing to the novice, to prove
commutativity of the diagram.

Condition (3) is practically obvious also. In fact, the fibre of TU over p € U
is almost exactly the same as the fibre of TM over p; the only difference is that
cach equivalence class for M contains some extra members, since in M there
are more coordinate systems around p than there are in U C M. &

Henceforth, the bundle 7 : TM — M will be called the tangent bundle of M.
Ifi: M > R¥isan imbedding, then TM is equivalent to T(M,i). In fact, if
(x,U) is a coordinate system around p, and I is the identity coordinate system
of RX, then

iw([x,v]p) = [, D(i o x“ ) (x(PNW)iy by (©)

t"=1 I

(i(p), D(i o x~")(x(P) (W) € (M, i)p;

the composition ", is easily seen to be an equivalence. But T(M, ) will play
no further role in this story—the abstract substitute 7M will always be used
instead.

Having succeeded in producing a bundle over each M, which is equivalent to
T(M, i), we next ask how fortuitous this was. Can one find other bundles with
the same properties? The answer is yes, and we proceed to define two different
such bundles.

For the first example, we consider curves c: (—¢,6) — M, each defined
on some interval around 0, with ¢(0) = p. If (x,U) is a coordinate system
around p, we define

x o q and x o ¢z, mapping R to R”,

¢y ®c, ifand only if A
1r 2 Y have the same derivative at 0.

The equivalence classes, for all p € M, will be the elemen® of our new bun-
dle, T'M. For f: M — N there is a map f; taking the % equivalence class
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of ¢ to the /"'(";) equivalence class of f o c. Without bothering to check details,
we can already see that this example is “really the same” as TM —

the 5 equivalence class of x~1 oy,

X,V corresponds to: . . .
[,y P where y is a curve in R" with y’(0) = y;

under this correspondence, f corresponds to fi.

In the second example, things are not so simple. We define a tangent vector
at p to be a linear operator £ which operates on all C* functions f and which
is a “derivation at p”:

L(fg) = f(p)(g) + g(p)eS).

We have already seen that the operators £ = 3/dx |p have this property. For
these operators, clearly £(f) = £(g) il f = g in a neighborhood of p. This
condition is actually true for any derivation £. For, suppose that f = 0in a
neighborhood of p. There is a C* function h: M — R with h(p) = 1 and
supporth C f~1(0). Then

0=4(0) = £(fh) = £(0)4h) + h(0)e(f) =0+ £(f).

Thus, if f = g in a neighborhood of 0, then 0 = £(f —g) = £(/)—£(g). If f
is defined only in a neighborhood of p, we may use this trick to define £(f):
choose h to be 1 on a neighborhood of p, with support & C f~1(0), and define

©S) as &S h).
Theset of all such operators is a vector space, but it is not a priort clear what
its dimension is. This comes out of the following.

2. LEMMA. Let f be a C* function in a convex open neighborhood U of 0
in R" with f(0) = 0. Then there are C* functions g;: U — R with

) SOy x") = S0, xgi(x, ..o x") forx € U,
@ &i(0) = D;f(0).
(The second condition actually follows from the first.)

PROOF. ¥or x € U, let hx(t) = f(tx); this is defined for 0 <t < 1, since U is
convex. Then

1 1.1 .
S0 = £ = f(0) = fo he'(t)dt = /0 S Dif(tx) - ¥ dt.
i=1

Therefore we can let g(x) = fol D f(tx)dt. &
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3. THEOREM. The set of all linear derivations at p € M" is an n-dimen-
sional vector space. In fact, if (x,U) is a coordinate system around p, then
3 3

a1l AR
ax B Ix p

span this vector space, and any derivation £ can be written

= Xn: 2!
i=1

(so £ is determined by the numbers £(x*)).
PROOF. Notice that
L) =L(1-1)=1-£(1)+1-£(Q1),

so £(1) = 0. Hence £(c) = ¢ - £(1) = 0 for any constant function ¢ on U.
Consider the case where M = R" and p = 0. Assume U is convex. Given [
on U, choose g; as in Lemma 2, for the function /' — f(0). Then

€f)=L2f - [(O) = Z(ZI g,) (I' denotes the ith

coordinate function)

= Z [€(11)g:(0) + I'(0)e(g1)]

i=1

-—ZZ([ )W(owo

This shows that 3/81°lo span the vector space; they are clearly linearly inde-
pendent. It is a simple exercise to use the coordinate system x to transfer this
result from R" to M. %

From Theorem 3 we can see that, once again, a bundle constructed from all
derivations at all points of M is “really the same” as TM. We can let

n
{= correspond to  [x,a),;

the formula
il

o,

B

2 oyd ]
=Za£,~ (P)F
j=1 P lp
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derived in Chapter 2, shows that

n
il
Z ax‘

i=]

Zb' —’ ifand only if 7 = Za (p),
= :

and this is precisely the equation which says that (x,a) ~ (y,b). It is easily
checked that under this correspondence, the map which corresponds to fy can
be defined as follows:

U ©0)(g) = Ug © /)

Notice that if x denotes the identity coordinate system on R”, then Z a' a

corresponds to @, when we identify TR” with £" (R"). i=l
We will usually make no distinction whatsoever between a tangent vector

v € M, and the linear derivation it corresponds to, that is, between [x,a], and

LI
Z”'ﬁp

i=1

i
*p

consequently, we will not hesitate to write v(f) for a differentiable function f
defined in a neighborhood of p. In fact, a tangent vector is often most easily
described by telling what derivation it corresponds to, and the map f, is often
most easily analyzed from the relation

(fxv)(8) = v(g o f)

It is customary to denote the identity coordinate system on R by 7, and to

write
d ]

ull for —
dil, al,

this is a basis for Ry,. I ¢: R > M i a differentiable curve, then

d
7 o

is called the tangent vector to ¢ at 10. We will denote it by the suggestive symbol

) € Mey)

de
al,,
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This symbol will be subjected to the standard abuses one finds (unexplained) in
calculus textbooks: the symbol
de will often stand for de N
dt dt |,
the subscript “t” now denoting a particular number ¢ € R, as well as the identity
coordinate system.

As you might well expect, it is no accident that our second and third examples
turned out to be “really the same” as TM. There is a general theorem that all
“reasonable” examples will have this property, but it is a little delicate to state,
and quite a mess to prove, so it has been quarantined in an Addendum to this
chapter.

The tangent bundle TM of a C* manifold has a little more structure than
an arbitrary n-plane bundle. Since TM locally looks like U x R”, clearly TM
is itself a manifold; there is, moreover, a natural way to put a C* structure
on TM. If x: U — R”" is a chart on M, then every element v € (TM)|U is
uniquely of the form

n
;0
- i__
vE Za axi|,

i=1

; p=n(v).

Let us denote a’ by x/(v). Then the map
v (N (), .., X" (2()), X (v), ..., 2" (v)) € R*"
is a homeomorphism from (TM)|U to x(U) x R”. This map, (x o 7,x), is

simply the map x, when we identify TU with U x R”" in the standard way. If
(¥, V) is another coordinate system, and

"
U=Zb‘757

j=1

B

4

then, as we have already seen,
ooyt L :
b =3 a5 (p) =3 @ Dity o xTx(p)):
i=1 i=1
This shows that if (t,a) = (:},...,t",a’,...,a") € R¥, then
Va0 (xa)7 (1,0)
=yox(t), T a Dy ox7N)(1), ..., Yi=yal Di(y" o x~) (1))

This expression shows that y o ()c,)‘l is C®.
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We thus have a collection of C®-related charts on TM, which can be ex-
tended to a maximal atlas.

With this C® structure, the local trivializations x, are C®. In general, a
vector bundle n: E — B is called a C* vector bundie if E and B are C*
manifolds and there are C* Jocal trivializations in a neighborhood of each
point. It follows that 7: E — B is C*.

Recallthat asection of abundle 7 : E — B is a continuous functions: B — E
such that 7 os = identity of B; for C* vector bundles we can also speak of C*®
sections. A section of TM is called a vector field on M; for submanifolds M
of R", a vector field may be pictured as a continuous selection of arrows tangent
to M. The theorem that you can’t comb the hair on a sphere just states that

there is no vector field on S? which is everywhere non-zero. We have shown that
there do not exist two vector fields on the Mébius strip which are everywhere
linearly independent.

Vector fields are customarily denoted by symbols like X, Y, or Z, and the
vector X (p) is often denoted by X, (sometimes X may be used to denote a
single vector, in some M,). If we think of TM as the set of derivations, then for
any coordinate system (x, U), we have

forall pe U.

no P
X(py=) aP) s
IZ=1: 0x »

The functions a' are continuous or C* if and onlyif X: U — T M is contin-
uous or C*.
If X and Y are two vector fields, we define a new vector field X + Y by
X +Y)P)=X(p)+Y(P).
Similarly, if f: M — R, we define the vector field fX by

(SX)(p) = f(P)X(p).
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Clearly X +7Y and fX are C*®if X, Y, and f are C®°. On U we can write
n
; 0
X = f—
;a axi’

the symbol 9/3x' now denoting the vector field

9

ad =

If f: M — Risa C* function, and X is a vector field, then we can define
a new function X (f): M — R by letting X operate on f at each point:

X =x,0/)

1t is not hard to check that if X is a C vector field, then X (/) is C® for
every C* function f; indeed, iflocally

n . F
X(p) = a‘(p)—,-’ ;

then

- 2 Lof
XN = Z]:a' L
i=
which is a sum of products of C* functions. Conversely, if X (f) is C® for
every C° function f; then X & a C* vector field (since X (x') = a).
Let ¥ denote the set of all C* functions on M. We have just seen thata C*
vector field X gives rise to a function X : ¥ — F. Clearly,

YSf+g)=xXxN+Xxw@
XU =sX@+eX(f)

thus X is a “derivation” of the ring ¥. Often, a C® vector field X is identified
with the derivation X. The reason for this is that if A: ¥ — ¥ is any deriva-
tion, then 4 = X for a unique C* vector field X. In fact, we clearly must
define

Xp(f) = A/ NP,

and the operator X, thus defined is a derivation at p.
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The tangent bundle is the true beginning of the study of differentiable mani-
folds, and you should not read further until you grok it.* The next few chapters
constitute a detailed study of this bundle. One basic theme in all these chap-
ters is that any structure one can put on a vector space leads to a structure on
any vector bundle, in particular on the tangent bundle of a manifold. For the
present, we will discuss just one new concept about manifolds, which arises in
this very way from the notion of “orientation” in a vector space.

The non-singular linear maps f: V — V from a finite dimensional vector
space to itselffall into two groups, those with det f >0, and those with det f < 0;
linear transformations in the first group are called orientation preserving and
the others are called orientation reversing. A simple example of the latter is
the map f: R" — R" defined by f(x) = (x!,...,x""!, ~x") (reflection in the
hyperplane x™ = 0). There is no way to pass continuously between these two
groups: if we identify linear maps R”" — R" with n x n matrices, and thus
with ]R"z, then the orientation preserving and orientation reversing maps are
disjoint open subsets of the set of all non-singular maps (those with det # 0).
The terminology “orientation preserving” is a bit strange, since we have not yet
defined anything called “orientation”, which is being preserved. The problem
becomes more acute if we want to define orientation preserving isomorphisms
between two different (but isomorphic) vector spaces V and W; this clearly
makes no sense unless we supply V and W with more structure.

To provide this extra structure, we note that two ordered bases (vy,. .., vn)
and (v'1,...,v'n) for V determine an isomorphism f: V — V with f(v;) = v'j;
the matrix 4 = (a;;) of [ is given by the equations

n
L 1)
vi= ajivj.
j=1

We call (vy,...,vn) and (v'1,...,V'n) equally oriented if det4 > 0 (i.e.,if [ is
orientation preserving) and oppositely oriented if det4 < 0.

Therelation of being equally oriented is clearly an equivalence relation, divid-
ing the collection of all ordered bases into just two equivalence classes. Either of
these two equivalence classes is called an orientation for V. The class to which
(v1,...,Vn) belongs will be denoted by [vy,...,va), so that if p is an orientation
of V, then (vy,...,vn) € pif and only if [v,...,v,) = p. If p denotes one

* A cult word of the sixties, “grok” was coined, purportedly as a word from the Martian
language, by Robert A. Heinlein in his pop science fiction novel Stranger in a Strange
Land. ts sense is nicely conveyed by the definition in The American Heritage Dictionary:
“To understand profoundly through intuition or empathy”.
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Wy v3

Uz vz

w2 N plane of
wy and w2

Uy

Examples of equally oriented ordered bases in R, R?, and R?.

orientation of V, the other will be denotedby ~p, and the orientation [e, . - ., €x]
for R™ will be called the “standard orientation”.

Now if (V,p) and (W, v) are two n-dimensional vector spaces, together with
orientations, an isomorphism f: V — W is called orientation preserving (with
respect to g and v) if [f(v1),..., f(va)] = v whenever [v1,...,v,] = p; if this
holds for any one (vy,...,vs), it clearly holds for all.

For the trivial bundle £"(X) = X x R" we can put the “standard orientation”
[(x,e1),...,(x,en)] on each fibre {x} x R". If f: &"(X) — &"(X) is an equiva-
lence, and X is connected, then f is either orientation preserving or orientation
reversing on each fibre, for if we define the functions a;;: X — R by

f(x,e) = Zaj,»(x) - (x,€),

Jj=1

then det(a;;): X — R is continuous and never 0. If #: E — B is a non-
trivial n-plane bundle, an orientation p of E is defined to be a collection of
orientations p, for 7 ~!(p) which satisfy the following “compatibility condition”
for any open connected set U C B:

If t: =" (U) - U xR" is an equivalence, and the fibres of U x R” are
given the standard orientation, then ¢ is either orientation preserving
or orientation reversing on all fibres.

Notice that if this condition is satisfied for a certain ¢, and ': 7~ (U) — U xR"
is another equivalence, then t’ automatically satisfies the same condition, since
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ot} : U xR" — U xR" is an equivalence. This shows that the orientations p,,
define an orientation of E if the compatibility condition holds for a collection
of sets U which cover B.

If a bundle E has orientation p = {u,}, it has another orientation ~p =
{~t,}, but not every bundle has an orientation. For example, the Mébius
strip, considered as a i1-dimensional bundle over S', has no orientation. For,
although the Mabius strip has no non-zero section, we can pick two vectors
from each fibre so that the totality A4 looks like two sections. For example,
we can Jet 4 be [0, 1] x {—1,1} with (0,a) identified with (1, ~a); then A4 just
looks like the boundary of the Mébius strip obtained from [0,1] x [~1, 1). If

RN

=

we had compatible orientations p,, we could define a section s: S' — M by
choosing s(p) to be the unique vector s(p) € A Nx~!(p) with [s(p)] = o

A bundle is called orientable ifit has an orientation, and non-orientable oth-
erwise; an oriented bundle is just a pair (£,pt) where p is an orientation for &.
This definition can be applied, in particular, to the tangent bundle TM of a
C® manifold M. In this case, we call M itself orientable or non-orientable de-
pending on whether TM is orientable or non-orientable; an orientation of TM
k also called an orientation of M, and an oriented manifold & a pair (M,p)
where p is an orientation for TM.,

The manifold R” is orientable, since TR" =~ £"(R"), on which we have the
standard orientation. The sphere S”~! C R" is also orientable. To see this we

/ Pp=w
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note that for each p € S"! the vector w = p, € &"(R") =~ TR" is nol in
i,(S™1,) € TR", (Problem 21, so for vy,...,va~1 € S™"', we can define
(v15...,0n=1) € p, if and only if (w,is(v1),...,ix(vn=1)) is in the standard
orientation of R”,. The orientation p = {, : p € S7=1} thus defined is called
the “standard orientation” of S"~!.

The torus ! x S! is another example of an orientable manifold. This can
be seen by noting that for any two manifolds M) and M, the fibre (M) x M),
of T(M x Mz) can be written as V), @ V2, where (7;)x: Vi = (M;), is an
isomorphism and the subspaces V;, vary continuously (Problem 26). Since TS
is trivial, this shows that T(S' x S') is also trivial, and consequently orientable.
Any n-holed torus is also orientable—the proof is presented in Problem 16,
which also discusses the tangent bundle of a manifold-with-boundary:

The Mébius strip M is the simplest example of a non-orientable 2-manifold.
For the imbedding of M considered previously we have already seen that on the

4
o (6,0:
2n

v

subset S = {(2cos6,2sin6,0)} C M there are continuously varying vectors v,
but that it is impossible to choose continuously from among the dashed vectors
w, = £u((0,1)g,0)) and their negatives. If we had orientations p, for p € S,
then we could simply choose wj, if [v,, w,] = pt, and ~w), otherwise.

The projective plane P? must be non-orientable also, since it contains the
Mobius strip (for any orientable bundle § = n: E — B, the restriction &|B’
to any subset B’ C B is also orientable). Non-orientability of P2 can be seen
in another way, by considering the “antipodal map” 4: $2 — 52 defined by
A(p) = —p. This map is just the restriction of a linear map AR > RS
defined by the same formula. The map Ax: S%, = S%4(,) is just (p,v) >
(A(p), A(v)), when 52, is identified with a subspace of {p} x R®. The map 4
is orientation reversing, so if vi = (p,u:) € 5%, the bases

(u1,u2,p) and  (A(wr), Au2), A(p))

are oppositely oriented. This shows that if p is the standard orientation of 52
and [v,v2] € B, then [Ayv1, A4v2] € —p4(p). Thus the map A: §2 — 5% is
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“orientation reversing” (the notion of an orientation preserving or orientation
reversing map f: M — N makes sense for any imbedding / of one oriented
manif old into another oriented manifold of the same dimension). From this fact
it follows easily that P? is not orientable: If P? had an orientation v = {1}
and g: S — P? is the map p + [p), then we could define an orientation
{ftp} on S™ by requiring g to be orientation preserving; the map 4 would then
be orientation preserving with respect to f, which is impossible, since £ = p
or ~p.

For projective 3-space P* the situation is just the opposite. In this case, the
antipodal map A: S* — S? is orientation preserving. If g: S* — P3 is the
map p +> [p], we obviously can define orientations v, for P? by requiring g
to be orientation preserving. In general, these same arguments show that P is
orientable for » odd and non-orientable for n even.

There is a more “elementary” definition of orientability, which does not use
the tangent bundle of M at all. According to this definition, M is orientable if
there is a subset A’ of the atlas 4 for M such that

(1) the domains of all (x,U) € A’ cover M,
(2) for all (x,U) and (¥, V) € &/,

i
det(al.)>0 on UNV.
axJ

An orientation p of TM allows us to distinguish the subset 4’ as the collection
of all (x,U) for which x,: TM|U —» T(x(U)) =~ x(U) x R”" is orientation
preserving (when x(U) x R" is given the standard orientation). Condition (2)
holds, because it is just the condition that (¥ o x=h,: T(xU)) » Tx(U))
is orientation preserving. Conversely, given 4’ we can orient the fibres of
TM|U insuch a way that x, is orientation preserving, and obtain an orientation
of TM. Although our original definition is easier to picture geometrically, the
determinant condition will be very important later on.
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ADDENDUM
EQUIVALENCE OF TANGENT BUNDLES

The fact that all reasonable candidates for the tangent bundle of M turn out
to be essentially the same is stated precisely as follows.

4. THEOREM*. Ifwe have a bundle 7'M over M for each M, and a bundle
map (fi, f) for each C®° map f: M — N satis{ying

(1) of Theorem 1,
(2) of Theorem 1, for certain equivalences t'?,
(3) of Theorem 1, for certain equivalences T'U = (T'M)|U,

then there are equivalences
em:TM - T'M
such that the following diagram commutes for every C® map f: M — N.

™ L TN

eMl leN

T'MLT'N

PROOF. The details of this proof are so horrible that you should probably skip
it (and you should definitely quit when you get bogged down); the welcome
symbol s occurs quite a ways on. Nevertheless, the idea behind the proof is
simple enough. If (x, U) is a chart on M, then both (TM)|U and (T'M)|U
“look like” x(U) x R”, so there ought to be a map taking the fibres of one to
the fibres of the other. What we have to hope is that our conditions on TM and
T’M make them “look alike” in a sufficiently strong way for this idea to really
work out. Those who have been through this sort of rigamarole before know
(i.e., have faith) that it’s going to work out; those for whom this sort of proof is
a new experience should find it painful and instructive.

* Functorites will notice that Theorems 1 and 4 say that there is, up to natural equiv-
alence, a unique functor from the category of C® manifolds and C* maps to the
category of bundles and bundle maps which is naturally equivalent to (¢”, old f;) on
Euclidean spaces, and to the restriction of the functor on open submanifolds.
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Let (x,U) be a coordinate system on M. Then we have the following string
of equivalences. Two of them, which are denoted by the same symbol = , are
the equivalences mentioned in condition (3). Let ax denote the composition
ax = ("x(U)) oo xy0 ()71

~

Xx

(TMU = TU T(x(U)) (TRM)x(U) w &(R™)|x(U)

ox

Similarly, using equivalence =’ for T/, we can define Bx.

(T'MIU Sy T/ (x(UY) =, (TR™)|x(U) —ﬂi(u—)m"(m")uw)

Bx

Then

Bx"t o ax: (TM)IU — (T'M)IU
isan equivalence, so it takes the fibre of TM over p isomorphically to the fibre
of T'M over p for each p € U. Our main task is to show that this isomorphism

between the fibres over p is independent of the coordinate system (x, U). This
will be done in three stages.

(I) Suppose V C U is open and y = x|V. We will need to name all the inclusion
maps

itU->M
V- M
j:V-ouU
k:yV)—> x(U).

To compare ax and a,, consider the following diagram.

T == TU 2, T(x0y) —Z TRx() 22D, i)

o oo ke | @

= d = "y V), neon
@MV = 1v 2 T(yvy) —— @RYIp(v) LlLON (RDIy(V)
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Each ofthe four squares in this diagram commutes. To see this for square @,
we enlarge it, as shown below. The two triangles on the left commute by con-
dition (3) for TM, and the one on the right commutes because i o j =1.

(TM)IU

CyTU
™ } A
'\l*
c TV
—=

TM)lV

Square @ commutes because k oy = x o j. Square @ commutes for the
same reason as square (1); the inclusions x(U) — R" and y(V) — R" come
into play. Square @ obviously commutes. Chasing through diagram (1) now
shows that the following commutes.

(TMIWU —25 s " (R x(U)
C C
(T —2s " ®R")| (V)

This means that for p € V, the isomorphism «, between the fibres over p
is the same as ax. Clearly the same is true for Bx and B, since our proof
used only properties (I), (2), and (3), not the explicit construction of TM. Thus
By~ oy, = Bx~! o &tk on the fibres over p, forevery p € V.

(I) We now need a Lemma which applies to both TM and T'M. Again, it will
be proved for TM (where it is actually obvious), using only properties (1), (2),
and (3), so that it is also true for 7/M.
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LEMMA. If 4 CR" and B C R™ are open, and f: 4 —» B is C*, then the
following diagram commutes.

T4 —= 5 (TRYA —A onmyny 4
ﬂl lo]d S«
™| B

TB—= (TR™)B £™(R)™|B

PROOF. Cuse 1. Thereis amap f: R" — R™ with f = f on A. Consider the
following diagram, where i: A — R" and j: B — R™ are the inclusion maps.

n MA nn
(TRY") A —— s " (R")| 4

= lc lc

Ta— TR o
(R")

fv{ lf; lold fu

Bt TRm 1", mgm

ST

m
(TR B LB, om ey

Everything in this diagram obviously commutes. This implies that the two
compositions

old fx

T4 = TR A DA o mey 4 _S ey £M(R™)

and

TA 2>, S TB = (TR™)|B 12, "B LA omrmy B < " (R™)
are cqual and this proves the Lemma in Case 1, since the maps “old f,” and
“old f,” are equal on A.

Case 2. General case. For each p € A, we want to show that two maps are the
same on the fibre over p. Now there is a map [ R" = R™ with _f = fonan
open set A, where p € A’ C A. We then have thie following diagram, where
every = comes from the fact that some set is an open submanifold of another,
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and i: A’ — A is the inclusion map.

1A

T4 (TR™)|4 e(R)"|A
\\C i i
\\‘
i @ @ | @ |
A
e 1y 4t
2 ® v = TRy A @4 ®
; ld fi
Fo . @ od (flan.| 0
78 Tr™1B 1B, o ey

Boxes @, @, and @ obviously commute, and @ commutes by Case 1. To
see that square @ (which has a triangle within it) commutes, we imbed i in
a larger diagram, in which j: 4 — R" is the inclusion map, and other maps
have also been named, for ease of reference.

TR"
V X ©)

Ta— =W gy

f*l IC ()
T — =8 (TR
To prove that A o i, = p ok, it suffices to prove that
Voloi,=Vopok,

since v is one-one. Thus it suffices to prove jx o iy = v o pt o k, which amounts
to proving commutativity of the following diagram.

TR"
(o fV X
y p——— Y

Since J o1 is just the inclusion of 4’ in R”, this does commute.
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Commutativity of diagram (2) shows that the composition

S ~ m "B mipm
TA -2 TB — (TR™)| B —— ™ (R™)| B

coincides, on the subset (T A)| A’, with the composition

~ n £
TA = (TRM|A t"|A E"(]R")|A old fi Sm(]Rm)|B;

and on A’ we can replace “old f—*” by “old f,”. In other words, the two com-
positions are equal in a neighborhood of any p € A4, and are thus equal, which
proves the Lemma.

(III) Now suppose (x,U) and (¥, V) are any two coordinate systems with p €
U N V. Toprove that ,~! oy and Bx~" o @, induce the same isomorphism
on the fibre of TM at p, we can assume without loss of generality that U = V,
because part (I) applies to x and x|U NV, as well as to y and y|U N V.

Assuming U = V, we have the following diagram.

7)) == TRMIW) TEY @y (v

Xu
@ Tmv—TU yoxh., old (yox™1),

)
TW) — (TRYIYW) 22D, n @y 0y

The triangle obviously commutes, and the rectangle commutes by part (II).
Diagram (3) thus shows that

ay =old (yox7'), o0y
Exactly the same result holds for T/
By=old (y ox™1), 0 Byx.
The desired result ﬁy" oay = Bx~1oax follows immediately.
Now that we have a well-defined bundie map TM — T’M (the union of all

Bx~! oay), it isclearly an equivalence €. The proof that ey o f = fyoeps is
left as a masochistic exercise for the reader. o
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PROBLEMS

1. Let M be any set, and {(x;, U;)} a sequence of one-one functions x; : U; » R”
with U; C M and x(U;) open in R, such that each

xjoxi ™t x; (Ui NU;) = x; Ui NU))

is continuous. It would seem that M ought to have a metric which makes
each U; open and each x; a homeomorphism. Actually, this is not quite true:

(@) Let M = RU {*}, where * ¢ R. Let U; = R and x;: U; — R be the
identity, and let Uz = R ~ {0} U {*}, with x2: U2 — R defined by

x2(a) =a, a#0,%
xa(%) =0.

Show that there is no metric on M of the required sort, by showing that every
neighborhood of 0 would have to intersect every neighborhood of *. Never-
theless, we can find on M a pseudometric p (a function p: M x M — R with
all properties for a metric except that p(p,q) may be 0 for p # g) such that p
is a metric on each U; and each x; is a homeomorphism:
(b) If A C R" is open, then there is a sequence A1, 432, 43,... of open subsets
of A such that every open subset of A4 is a union of certain 4;’s.
(c) There is a sequence of continuous functions f;: 4 — [0, 1], with support f;
C A, which “separates points and closed sets™: if C is closed and p € 4 ~ C,
then there is some f; with fi(p) ¢ fi(ANC). Hint: First arrange in a sequence
all pairs (4;, 4;) of part (b) with 4; C 4;-
(d) Let /1,5, / =1,2,3,... besuch a sequence for each open set x;(U;). Define
gij: M — [0,1] by
e {/;.,,-(p) peU;
8i,j p)= 0 P ¢ Ui-
Arrange all g;,; in a single sequence Gi, G2,Gs3, ..., let d be a bounded metric
on R, and define p on M by
21
p(p.g) =) > d(Gi(p), Gilg)).
i==1
Show that p is the required pseudometric.
(¢) Suppose that for every p,qg € M there is a U; and U; with p € U; and
g € Uj and open sets B; C x;(U;) and B C x;(U;) so that p € x;~'(B;),
g € x;71(By), and x;~1(B;) N x;~(B;) = 0. Show that p is actually a metric
on M.
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2. (a) Suppose (x,U) and (, V) are two coordinate systems, giving rise to two
maps on TM,

eV U) » U xR, [x, 0]y > (g,0),

Tl (V) V xR, [y, wly ~ (g, w).
Show that in 2c71(U N V) the sets of the form tx™!(4) for 4 C U x R" open
are exactly the sets of the form 1,71 (B) for B C V x R" open.
(b) Show that if there is a metric on TM such that t; is a homeomorphism for
a collection (x;,U;) with M = |; U;, then all tx are homeomorphisms.

(c) Conclude from Problem I that there is a metric on TM which makes each 7,
a homeomorphism,

3. Show that in the definition of an equivalence it suffices to assume that the
map E; — E; is continuous. (To prove the inverse continuous, note that locally
itisjustamap U x R" - U x R™).

4. Show that in the definition of a bundle map, continuity of f: B1 ~» B
follows automatically from continuity of f': Ej - Ea.

5. A weak equivalence between two bundles over the same base space B is
a bundle map (f, f) where J is an isomorphism on each fibre, and f is a
homeomorphism of B onto itself. Find two inequivalent, but weakly equivalent,
bundles over the following base spaces:

(i) the disjoint union of two circles,

(i) a figure eight (>,

(iii) the torus.

6. Given a bundie map (f, f), show that f = g oh where g and / are contin-
uous maps such that / takes fibres linearly to fibres, while g is an isomorphism
on cach fibre.

7. (a) Show that for any bundle #: E -> B, the map s: B > E with s(p)
the 0 vector of 7~!(p) is a section.

(b) Show that an n-plane bundle £ is trivial if and only if there are n sections
$1,...,8, which are everywhere linearly independent, i.e., si(p),---,sa(P) €
7=1(p) are linearly independent for all p € B.

(c) Show that locally every n-plane bundle has » linearly independent sections,

8. (a) Check that ~ is an equivalence relation on the set of pairs (x, v).

(b) Check that the definition of f; is independent of the coordinate systems x
and y which are used.

(c) Check the remaining details in Theorem 1.
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9. (a) Show that the correspondence between TM and equivalence classes of
curves under which [x, v], corresponds to the 5 equivalence class of x™! oy,
for y a curve in R” with y'(0) = v, makes f, correspond to fj.
(b) Show that under the correspondence [x,a], > 3_; aiB/Bxilp, the map f,
can be defined by

[(D1@©) =g o f)

10. If V is a finite dimensional vectorspaceover R, define a C* structure on V
and a homeomorphism from V x V to TV which is independent of choice of
bases. As in the case of R”, for v, w € V we will denote by vy € Vy the vector
corresponding to (w, v).

11. If g: R — R is C* show that
g(x) = g(0) + &' (0)x + x2h(x)

for some C® function fi: R — R.

12. (a) Let ¥, be the set of all C* functions f: M — R with f(p) =0, and
let £: F, — R be a linear operator with £(fg) = 0 for all f,g € ¥,. Show
that £ has a unique extension to a derivation.

(b) Let W be the vector subspace of ¥, generated by all products fg for f,g €
F,. Show that the vector space of all derivations at p is isomorphic to the dual
space (F,/ W)*.

(c) Since (F,/ W)* has dimension n = dimension of M, the same must be true
of F,/W. If x is a coordinate system with x(p) = 0, show that x+w,...,
x" + W is a basis for ¥,/ W (use Lemma 2). The situation is quite different for
C! functions, as the next problem shows.

13. (a) Let V be the vector space of all C! functions f: R — R with f(0) =0,
and let W be the subspace generated by all products. Show that ,lriino fx)/x?
exists for all f € W.

(b) For0 <e <1, Jet

e x >0

X
i) = {0

x <0.

Show that all f; are in V, and that they rcpresent linearly independent elements
of V/W.
(c) Conclude that (V/W)* has dimension ¢¢ = 2¢.

14. If f: M — N and f, is the 0 map on each fibre, then f is constant on
each component of M.
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15. (@) Amap f: M — N is an immersion if and only if fi is one-one on
each fibre of TM. More generally, the rank of f at p € M is the rank of the
linear transformation fyx: M, — Ny(p).

(b) If f og = f, where g is a diffeomorphism, then the rank of fog ata
equals the rank of f at g(a). (Compare with Problem 2-33(d).)

16. (a) If M is a manifold-with-boundary, the tangent bundle TM is defined
exactly as for M; elements of M, are ~ equivalence classes of pairs (x,v).
Although x takes a neighborhood of p € dM onto H”, rather than R”, the
vectors v still run through R", so M, still has tangent vectors “pointing in all
directions”. If p € 9M and x: U — H" is a coordinate system around p, then

xx N (R" () C M, is a subspace. Show that this subspace does not depend
on the choice of x; in fact, it is /4(dM),, where i: dM — M is the inclusion.

(b) Let a € R"™! x {0} C H™ A tangent vector in H”, is said to point “in-
ward” if, under the identification of TH” with ¢"(H"), the vector is (a, v) where
v" > 0. A vector v € M, which is not in i,(dM), is said to point “inward” if

n
H ﬂward
a\)Au tward

x+(v) € H"x(,) points inward. Show that this definition does not depend on
the coordinate system x.

(c) Show that if M has an orientation p, then dM/ has a unique orientation
dp such that [vy, ..., va—1) = (p)p if and only if [w,isv1,.. ., ix05—1] = p, for
every outward pointing w € M,.

(d) If p is the usual orientation of H”", show that dp is (—1)" times the usual
orientation of R"~! = gH”". (The reason for this choice will become clear in
Chapter 8.)

(¢) Suppose we are in the setup of Problem 2-14. Define g: dM x [0,1) —
9N x [0,1) by g(p,t) = (f(p),t). Show that TP is obtained from TM U TN
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by identifying

ve (@M)y with (B71).gsu(v) € ON)s(p)-
(f) If M and N have orientations p and v and f: (9M,9p) — (N,dv) is
orientation-reversing, show that P has an orientation which agrees with g and v
on M CPand N CP.
(€) Suppose M is S? with two holes cut out, and N is [0, 1) x S!. Let f be
a diffcomorphism from M to N which is orientation preserving on one copy
of S! and orientation reversing on the other. What is the resulting manifold P?
17. Show that TP? is homeomorphic to the space obtained from T(S2,7) by
identifying (p,v) € (52, 1)p with (—p, —v) € (S2,1)-p.
18. Although there is no everywhere non-zero vector field on S2, there is one
on 5% —{(0,0, 1)}, which is diffecomorphic to R2. Show that such a vector field
can be picked so that near (0,0, 1) the vector field looks like the following picture
(a “magnetic dipole”):

19. Suppose we have a “multiplication” map (a, b) +> a-b from R" x R" to R"
that makes R" into a (non-associative) division algebra. That is,

(@ar+az) - b=aj-b+ay-b
a-(bi+b))=a-by+a-by
Ma-b)y=(ra)-b=a-(Ab) forreR
a-(1,0,...,0)=a
and there are no zero divisors:

a,b #£0 = ab #0.
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(For example, for » = 1, we can use ordinary multiplication, and for n = 2
we can use “complex multiplication”, (a,b) - (¢,d) = (ac — bd,ad + bc).) Let
e1,...,en be the standard basis of R".

(@) Every pointin "7 is a - e; for a unique a € R".

(b) If @ # 0, thena-ei,...,a - ey are linearly independent.

(c) If p=a-e € S"!, then the projection of a - e2,...,a -ex on (S"~1,1),
are linearly independent.

(d) Multiplication by a is continuous.

(e) TS"! is trivial.

(f) TP ! is wivial.

The tangent bundles TS? and TS’ are both trivial. Multiplications with
the required properties on R* and R® are provided by the “quaternions” and
“Cayley numbers”, respectively; the quaternions are not commutative and the
Cayley numbers are not even associative. It is a classical theorem that the
reals, complexes, and quaternions are the only associative examples. For a
simple proof, see R.S. Palais, The Classification of Real Division Algebras, Amer.
Math. Monthly 75 (1968), 366—368. J. F. Adams has proved, using methods of
algebraic topology, that n =1, 2, 4, or 8.

[Incidentally, non-existence of zero divisors immediately implies thatfor a # 0
there is some b with ab = (1,0,...,0) and &’ with b'a = (1,0,...,0). If the
multiplication is associative it follows easily that b = &’, so that we always have
multiplicative inverses. Conversely, this condition implies that there are no zero
divisors if the multiplication is associative; otherwise it suffices to assume the
existence of a unique b witha b =5 -a=(1,0,...,0).]

20. (a) Consider the space obtained from [0, 1] x R” by identifying (0, v) with
(1, Tv), where T: R" — R”" is a vector space isomorphism. Show that this can
be made into the total space of a vector bundle over S? (a generalized Mébius

strip).
(b) Show that the resulting bundle is orientable if and only if T is orientation

preserving.

21. Show that for p € S2, the vector p, € R3, is not in i4(S2,) by showing that
the inner product (p,c’(0)) = 0 for all curves ¢ with ¢(0) = p and [c(!)] = 1
for all ¢. (Recall that

(L8O = ('O g0 + (S8 )",
where  denotes the transpose; see Calculus on Manifolds, pg. 23.)

22. Let M be a C* manifold. Suppose that (TM )| A4 is trivial whenever 4 C M
is homeomorphic to S'. Show that M is orientable. Hinl: An arc ¢ from
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Po € M to p e M is contained in some such A4 so (TM)|c is trivial. Thus one
can “transport” the orientation of M, to M,. It must be checked that this is
independent of the choice of c¢. First consider pairs ¢, ¢’ which meet only at po
and p. The general, possibly quite messy, case can be treated by breaking up ¢
into small pieces contained in coordinate neighborhoods.

Remark: Using results from the Addendum to Chapter 9, together with Prob-
lem 29, we can conclude that a neighborhood of some S! C M is non-orientable
if’ M is non-orientable.

The next two problems deal with important constructions associated with
vector bundles.

3. (a) Suppose § = : E — X is a bundle and f: ¥ — X is a continu-
ous map. Let E' C Y x E be the set of all (y,e) with f(y) = sn(e), define

1 E' > Y by i#/(y,e) = y, and define /: E' - E by f(y,e) = e. A vector
space structure can be defined on

Tl ={e)een (SN

by using the vector space structure on 7c~1(f()). Show that 7e": E' - Y isa

bundle, and (f, /) abundle map which is an isomorphism on each fibre. This

bundle is denoted by f*(&), and is called the bundle induced (from &) by f.

(b) Suppose we have another bundie §”” = ”: E” — Y and a bundle map

(f, /) from §” to & which is an isomorphism on each fibre. Show that &” ~
= J*(§). Hint: Map e € E” to ("(¢), /(¢)) € E".

(C) If g: Z — Y, then (f 08)*(§) = g*(S* ().

(d) If AC X andi: A — X is the inclusion map, then i*(§) =~ &|A4.

(e) If & is orientable, then f*(§) is also orientable.

(f) Give an example where £ is non-orientable, but f*(&) is orientable.

(g) Let § = n: E - B be a vector bundle. Since #: E — B is a continuous

map from a space to the base space B of &, the symbol 77*(§) makes sense.

Show that if & is not orientable, then 7c*(&) is not orientable.

24. (a) Given an n-plane bundle § = x: E — B and an m-plane bundle n =
't E' > B, let E” C E x E’ be the set of all pairs (e,e’) with 1(e) = x’(e’).
Let 1t"(e,e') = 5t(e) = 1’'(e’). Show that #”: E” — B is an (n + m)-plane
bundle. It is called the Whitney sum & ® 5 of & and #; the fibre of & ® 5 over p
is the direct sum e~ (p) ® '~} (p).

() If f: Y - B,show that f*E@n) =~ /*E) & /*).
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(c) Given bundles & = ;: E; -> B, define w: Ey x E; -» By x B; by
n(ey, e2) = (m1(e1),ma(e2))- Show that this is a bundle & x & over By x B.
(d) If A: B -» B x B is the “diagonal map”, A(x) = (x,x), show that § ®n =~
&% x ).

(e) If & and n are orientable, show that & @ 5 is orientable.

(f) If & is orientable, and 7 is non-orientable, show that & @ 5 is also non~
orientable.

(g) Define a “natural” orientation on V @ V for any vector space V, and use
this to show that £ ® £ is always orientable.

(h) If X is a “figure eight” (c.f. Problem 5), find two non-orientable I-plane
bundles & and 7 over X such that £ & 7 is also non-orientable.

25. (@) If w: E - M is a C® vector bundle, then s has maximal rank at
rach point, and each fibre =1 (p) is a C* submanifold of E.
(b) The 0-section of E is a submanifold, carried diffeomorphically onto B by 7.

26. (a) If M and N are C® manifolds, and s [or ty] : M xN -> M [or N]
is the projection on M [or N], then T(M x N) = wp*(TM) ® nn*(TN).

(b) If M and N are orientable, then M x N is orientable.

(¢) If M x N is orientable, then both M and N are orientable.

27. Show that the Jacobian matrix of y, o ()c,.)‘l is of the form

Djylox™! O
< >< Djyioxwl)‘

This shows that the manifold TM is always orientable, i.e., the bundle T (TM) is
orientable. (Here is a more conceptual formulation: for v € TM, the orientation
for (T M), can be defined as

v] ’

the form of y, o (x4)~' shows that this orientation is independent of the choice
of x.) A different proof that TM is orientable is given in Problem 29.

9
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28. (a) Let (x,U) be a coordinate system on M with x(p) =0andlet v € M,
be 37y a’ 8/ax’|,. Consider the curve ¢ in TM defined by

cl)=v+1 8
O=v axi [,
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Show that
de ]
_— D = T .
a =5,

(b) Find a curve whose tangent vector at 0 is 8/3(x o )], .

29. This problem requires some familiarity with the notion of exact sequences

S g
(c.f. Chapter 11). A sequence of bundle maps E; — E; —> E3with f =g =
identity of B is exact if at each fibre it is exact as a sequence of vector space
maps.

(@) If § = n: E > B isa C® vector bundle, show that there is an exact
sequence
0— n*)—> TE - »*(TB) > 0.

Hint: (1) An element of the total space of 7*(§) is a pair of points in the same
fibre, which determines a tangent vector of the fibre. (2) Map X € (TE). to
(e, X).

(b) If 0 > E; > E2 —» Ej3 — 0is exact, then each bundle E; is orientable if
the other two are.

(c) T(TM) is always orientable.

(d) If #: E — M is not orientable, then the manifold E is not orientable. (This
is why the proof'that the Mébius strip is a non-orientable manifold is so similar
to the proof that the Mobius bundle over S’ is not orientable.)

The next two Problems contain more information about the groups intro-
duced in Problem 2-33. In addition to being used in Problem 32, this informa-
tion will all be important in Chapter 10.

30. (a) Let po € S"! be the point (0,...,0,1). For n > 2 define f: SO(n) >
S"™1 by f(A) = A(po). Show that f is continuous and open. Show that
/" (pe) is homeomorphic to SO(n — 1), and then show that f~!(p) is home-
omorphic to SO — 1) forall p € S~

(b) SO(1) is a point, so it is connected. Using part (a), and induction on n,
prove that SO(n) is connected for all n > 1.

(c) Show that O(12) has exactly two components.

31. (a) If T: R" > R" is a linear transformation, T*: R" — R”, the adjoint
of T, is defined by (T*v, w) = (v, Tw) (for each v, the map w > (v, Tw) is
linear, so it is w +> (T*v, w) for a unique T*v). If 4 is the matrix of T with
respect to the usual basis, show that the matrix of T* is the transpose A'.
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(b) A linear transformation T: R” — R" is self-adjoint if T = T*, so that
(Tv,w) = (v, Tw) for all v, w € R". If A is the matrix of T with respect to the
standard basis, then T is self-adjoint if and only if 4 is symmetric, 4' = 4. It
is a standard theorem that a symmetric 4 can be written as CDC~' for some
diagonal matrix D (for an analytic proof, see Calculus on Manifolds, pg. 122).
Show that C can be chosen orthogonal, by showing that eigenvectors for distinct
eigenvalues are orthogonal.

(c) A self-adjoint T (or the corresponding symmetric A) is called positive semi-
definite if’ (T'v,v) > 0 for all v € R, and positive definite if (T'v,v) > 0 for all
v # 0. Show that a positive definite 4 is non-singular. Hint: Use the Schwarz
inequality.

(d) Show that A" - 4 is always positive semi-definite.

(¢) Show that a positive semi-definite 4 can be written as A = B? for some B.
(Remember that A4 is symmetric.)

(f) Show thatevery A € GL(n,R) can be written uniquely as 4 = A4; - 42 where
A; € O(n) and 4, is positive definite. Hint: Consider A*- 4, and use part (e).
(€) The matrices 4; and A are continuous functions of A. Hint: If A — 4
and A = 4, . 4, then some subsequence of {4} converges.

(h) GL(1,R) is homeomorphic to O(n) x R""+1/2 and has exactly two com-
ponents, {A: det4 > 0} and {A: det 4 < 0}. (Notice that this also gives us
another way of finding the dimension of O(n).)

32. Two continuous functions fg, fi: X — Y are called homotopic if there is
a continuous function H': X x [0,1] = Y such that

fitx)=H,i)  i=0,1.
The functions H;: X — Y defined by H,(x) = H(x,!) may be thoughtofasa
path of functions from Ho = Joto Hi = fi. The map H is called a homotopy
between fy and f;.

The notation f: (X,4) — (Y, B), for A C X and B C Y, means that
i1 X > Yand f(4)C B. Wecall fy, fi: (X,A)— (¥, B) homotopic (as maps
from (X, A) to (¥, B)) if there is an H as above such that each H;: (X, 4) —
Y, B).

(a) If 4: [0,1] - GL(#, R) is continuous and H: R”x [0,1] — R”"is defined by
H(x,t) = A(t)(x),show that H is continuous, so that Ho and H; are homotopic
as maps from (R",R" — {0}) to (R",R" — {0}). Conclude that a non-singular
linear transformation T: (R",R" ~ {0}) — (R",R" — {0}) with detT > 0 is
homotopic to the identity map.

(b) Suppose f: R" — R"is C*®° and f(0) = 0, while f(R" — {0}) C R" — {0}.
If Df(0) is non-singular, show that f: (R*,R" — {0}) — (R",R" — {0}) is
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homotopic to Df(0): (R",R" —{0}) —» (R",R" — {0}). Hint: Define H(x,t) =
f(tx) for 0 < ¢ <1 and H(x,0) = Df(0)(x). To prove continuity at points
(x,0), use Lemma 2.

(c) Let U be a neighborhood of 0 € R" and f: U - R" a homeomorphism
with f(0) = 0. Let B, C V be the open ball with center 0 and radius r, and let
h: R" —> B, be the homeomorphism

h(x)= (Z_r arctan |x|) x;
be

then
fok: ®",R"—{0}) > (R",R" — {0}).

We will say that f is orientation preserving at 0 if f o /i is homotopic to the
identity map 1: (R",R" — {0}) —» (R",R"” — {0}). Check that this does not
depend on the choice of B, C V.

(d)Forp e R, let T,: R" —» R be Tp(9) = p+g. If 21U = Visa
homeomorphism, where U, V C R” are open, we will say that f is orientation
preservingat p if T_ y(,)0 f o T, is orientation preserving at 0. Show that if M
is orientable, then there is a collection C of charts whose domains cover M such
that for every (x,U) and (y, V) in C, the map yox~" is orientation preserving
at x(p)forall peUNV.

(e) Notice that the condition on y o x~! in part (d) makes sense even if yox
is not diflerentiable. Thus, if’ M is any (not necessarily differentiable) manifold,
we can define M to be orientable if there is a collection C of homeomorphisms
x: U — R" whose domains cover M, such that C satisfies the condition in
part (d). To prove that this definition agrees with the old one we need a fact
from algebraic topology: If f: R” — R" is a homeomorphism with f(0) =0
and T: R” — R" is T(x',...,x") = (x',...,x""}, —x"), then precisely one
of fand T o f is orientation preserving at 0. Assuming this result, show that
if M has such a collection C of homeomorphisms, then for any C* structure
on M the tangent bundle TM is orientable.

-1

33. Let M" C RY be a C*® n-dimensional submanifold. By a chord of M we
mean a point of RN of the form p — g for p,g e M.

(a) Prove thatif N > 2n + 1, then there is a vector v € S™-1 such that
(i) no chord of M is parallel to v,
(i) no tangent plane M, contains v.

Hint: Consider certain maps from appropriate open subsets of M x M and
TMto SV,
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(b) Let R¥=! ¢ R¥ be the subspace perpendicular to v, and 7 : R¥Y — RN-1
the corresponding projection. Show that x|M is a one-one immersion. In
particular, if M is compact, then x| M is an imbedding.

(¢) Every compact C*° n-dimensional manifold can be imbedded in R2*+!.

Note: This is the easy case of Whitney’s classical theorem, which gives the
same result even for non-compact manifolds (H. Whitney, Differentiable manifolds,
Ann. of Math. 37 (1935), 645-680). Proofs may be found in Auslander and
MacKenzie, Introduction to Differentiable Manifolds and Sternberg, Lectures on Dif-
Jerential Geometry. In Munkres, Elementary Diffrential Topology, there is a different
sort of argument to prove that a not-necessarily-compact n-manifold M can be
imbedded in some RV (in fact, with N = (n+1)?). Then we may show that M
imbeds in R2**+! using essentially the argument above, together with the exis-
tence of a proper map f: M — R, given by Problem "2-30 (compare Guillemin
«nd Pollack, Diffaential Topology). A much harder result of Whitney shows that
M™ can actually be imbedded in R?" (H. Whitney, The self-intersections of a smooth
w-manifold in 2n-space, Ann. of Math. 45 (1944), 220-246).



CHAPTER 4
TENSORS

I the constructions on vector bundles carried out in this chapter have a

common feature. In each case, we replace each fibre 7' (p) by soime
other vector space, and then fit all these new vector spaces together to form a
new vector bundle over the same base space.

The simplest case arises when we replace each fibre V by its dual space V*.
Recall that V* denotes the vector space of all linear functions A: V — R, If
f:V — W is a linear transformation, then there is a linear transformation
J*: W* > V* defined by

(S*M)) = A(Sv).

Itis clearthatif 1y: V — V is the identity, then 1p* is the identity map of V*
andif g: U — V, then (f o g)* = g* o f*. These simple remarks already
show that f* is an isomorphism if f: V — W is, for (/™' o f)* = Iy* and
(fof™)=1w

The dimension of V* is the same as that of V, for finite dimensional V. In
fact, if vy,...,vn is a basis for V, then the elements v*; € V*, defined by

Vi) = &,

are easily checked to be a basis for V*. The linear function v*; depends on the
entire set v, ..., Un, NOt just on v; alone, and the isomorphism from V to V*
obtained by sending v; to v*; is not independent of the choice of basis (consider
what happens if v; is replaced by 2vy).

On the other hand, if v € V, we can define v** € V** = (V*)* unambigu-
ously by

v () = (@) forevery A € V*.

If v**(A) = 0forevery A € V*, then A(v) = 0forall A € V* which implies that
107
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v = 0. Thus the map v > v** is an isomorphism from V to V**. It is called
the natural isomorphism from V to V**.

(Problem 6 gives a precise meaning to the word “natural”, formulated only
after the term had long been in use. Once the meaning is made precise, we can
prove that there is 70 natural isomorphism from V to V*.)

Now let £ =s: E — B be any vector bundle. Let

E =o' (o)

peB

and define the function ’: E’ — B to take each [7~'(p)]* to p. If U C B,
and 1: 17" (U) > U x R is a trivialization, then we can define a function

o TNU)Y > U x (R)*
in the obvious way: since the map 7 restricted to a fibre,
i (p) > {p) xR,
is an isomorphism, it gives us an isomorphism
@™ TR - {p) x R

We can make 57’: E' — B into a vector bundle, the dual bundle £* of £, by
requiring that all such ¢’ be local trivializations. (We first pick an isomorphism
from (R")* to R”, once and for all.)

At first it might appear that £* =~ &, since each 77~'(p) is isomorphic to
7' (p). However, this is true merely because the two vector spaces have the
same dimension. The lack of a natural isomorphism from V to V* prevents
us from constructing an equivalence between &* and &. Actually, we will see
later that in “most” cases £* is equivalent to &; for the present, readers may
ponder this question for themselves. In contrast, the bundle £** = (£*)* is
always equivalent to £&. We construct the equivalence by mapping the fibre V
of & over p to the fibre V** of £** over p by the natural isomorphism. If you
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think about how &* is constructed, it will appear obvious that this mapis indeed
an equivalence.

Even if & can be pictured geometrically (e.g., if § is TM), there is seldom a
geometric picture for £*. Rather, £* operates on &: If s is a section of & and o
is a section of &*, then we can define a function from B to R by

s(p) € JI_l(p)
P a(p)s(p)) o(p) e '~ (p) =M (p)*.

This function will be denoted simply by o(s).

When this construction is applied to the tangent bundle TM of M, the re-
sulting bundle, denoted by T*M, is called the cotangent bundle of M the fibre
of T*M over p is (M,)*. Like TM, the cotangent bundle T*M is actually a
C® vector bundle: since two trivializations x, and y, of TM are C®-related,
the same is clearly true for x,’ and y./ (in fact, y«' o (x,))™!' = puo (x)7).
We can thus define C®, as well as continuous, sections of T*M. If w isa C*®
section of T*M and X is a C™ vector field, then w(X) is the C* function
p = o(p)(X(p)).

If /: M — Risa C® function, then a C® section df of T*M can be
defined by

af(p)X)=X(f) for X e M,.

The section df is called the differential of /. Suppose, in particular, that X is
dc/dt|,, where c(tg) = p. Recall that
ru) '

_ d

o T E
d

’“) =Cx (E ‘") (f)

(fo0)

o

de
dt

This means that

d
df(d—f

T dr

d(f (<))

= (f cC')I(lo) a

o
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Adopting the elliptical notations

de f de

de o 4 dg(1)
dt dt

~ar for g'(0),

s
!
this equation takes the nice form

)
a (E) - da

If (x,U) is a coordinate system, then the dx' are sections of T*M over U.
Applying the definition, we see that
) =&
4

Thus dx'(p),...,dx"(p) isjust the basis of M,* dual to the basis 3/dx|,...,
8/0x", of M.
This means that every section w can be expressed uniquely on U as

dx'(p) (%

w(p) =Y wi(p)dx'(p),

for certain functions w; on U. The section w is continuous or C* if and only if
the functions w; are.
We can also write

n
w= Zw; dx',
i=1
if we define sums of sections and products of functions and scctions in the
obvious way (“pointwise” addition and multiplication).

The section df must have some such expression. In fact, we obtain a classical
formula:
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1. THEOREM. If (x,U) is a coordinate system and f is a C* function, then

"9
df=ZKf1d'

i=]

on U we have

PROOF. If X, € M, s

3

then
@' = Xp(x¥) = dx' (p)(Xp).
Thus

af (p)(Xp) = Xp(f) = Z o= (p)

Z P B (pyaxi ()X p).

i=1

Classical differential geometers (and classical analysts) did not hesitate to talk
about “infinitely small” changes dx' of the coordinates x*, just as Leibnitz had.
No one wanted to admit that this was nonsense, because true results were ob-
tained when these infinitely small quantities were divided into each other (pro-
vided one did it in the right way).

Eventually it was realized that the closest one can come to describing an
infinitely small change is to describea direction in which this change is supposed
to occur, i.e., a tangent vector. Since df is supposed to be the infinitesimal
change of / under an infinitesimal change of the point, d/ must be a function
of this change, which means that df should be a function on tangent vectors.
The dx' themselves then metamorphosed into functions, and it became clear
that they must be distinguished from the tangent vectors 3/9x".

Once this realization came, it was only a matter of making new definitions,
which preserved the o/d notation, and waiting for everybody to catch up. In
short, all classical notions involving infinitely small quantities became functions
on tangent vectors, like df, except for quotients of infinitely small quantities,
which became tangent vectors, like dc/dt.

Looking back at the classical works firom our modern vantage point, one can
usually see that, no matter how obscurely expressed, this point of view was in



112 Chapier 4

some sense the one always taken by classical geometers. In fact, the differential
df was usually introduced in the following way:

CLASSICAL FORMULATION

Let / be a function of the x!,... x",

say [ = f(x', ..., x").

MODERN FORMULATION

Let f be a function on M, and x a
coordinate system (so that /' = fox
for some function f on R”, namely

f =fox_'l).

Let x be functions of ¢, say x' =
x'(t). Then S becomes a function

Let ¢c: R - M be a curve. Then
Jfoc: R— R, where

of 4, f(1) = f(x'(1),...,x"(1)). Soct)= J(x"oc(r),...,x"oc(t)).
We now have We now have
df af dx’ (foe)()
Z axi dr

(The classical notation, which
suppresses the curve c, is still used
by physicists, as we shall point out
once again in Chapter 7.)

= 3" DT xte) - (x o ) (1)

i=1
Z S () - (o))

or

n

d
(f(C(t))) ZW( o) dx' (C(I))

Multiplying by dt gives

df = Z—d)

(This equation signifies that true
results are obtained by dividing by
dt again, no maller what the functions
x%(1) are. It is the closest approach
in classical analysis to the realiza-
tion of df as a function on tangent
vectors.)

Consequently,
[ S of i fde
df (E) = § () - dx (3?)

Since every tangent vector at c(¢) is
of the form dc/dt, we have

df = Z—d)
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In preparation for our reading of Gauss and Riemann, we will continually
examine the classical way of expressing all concepts which we introduce. After
a while, the “translation” of classical terminology becomes only a little more
difficult than the translation of the German in which it was written.

Recall that if f: M — N is C*, then there is a map f,: TM — TN,
for each p € M, we have a map fip: M, — Ny(p). Since f,, is a linear
transformation between two vector spaces, it gives rise to a map

Nipy" — M*".

Strict notational propriety would dictate that this map be denoted by (/xp)*,
but everyone denotes it simply by

Ip s Nyt = My,

Notice that we cannot put all /; together to obtain a bundle map from T*N
to T*M; in fact, the same ¢ € N may be f(p;) for more than one p; € M,
and there is no reason why f,p, should equal f,,,. On the other hand, we can
do something with the cotangent bundle that we could not do with the tangent
bundle. Suppose w is a section of T*N. Then we can define a section 7 of T*M
as follows:

n(p) =w(f(P)) e fip,

ie.,
1(p)(Xp) = ([ (P SapXp) for Xp € M.

{The complex symbolism tends to hide the simple idea: to operate on a vector,
we push it over to N by fi, and then operate on it by w.) This section 7 is
denoted, naturally enough, by f*w. There is no corresponding way of trans-
ferring a vector field X on M over to a vector field on N.

Despite these differences, we can say, roughly, that a map f: M — N pro-
duces a map f going in the same direction on the tangent bundle and a map
/* going in the opposite direction on the cotangent bundle. Nowadays such
situations are always distinguished by calling the things which go in the same
direction “covariant” and the things which go in the opposite direction “con-
travariant”. Classical terminology used these same words, and it just happens
to have reversed this: a vector field is called a contravariant vector field, while
a section of T*M is called a covariant vector field. And no one has had the
gall or authority to reverse terminology so sanctified by years of usage. So
it’s very easy to remember which kind of vector field is covariant, and which
contravariant—it’s just the opposite of what it logically ought to be.
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The rationale behind the classical terminology can be seen by considering
coordinate systems x on R” which are linear transformations. In this case, if
x(vi) = ey, then

x(@'vi+ - +a"v) = (a',...,a"),

so the x coordinate system is just an “oblique Cartesian coordinate system”.

- ep

-7

A R

Vi

If x’ is another such coordinate system, then x/ = 3°7_; a;jx’ for certain ajj.
Clearly a;; = dx" [3x, s0

LI W)
() =% %x';

i==]

11is can be seen directly from the fact that the matrix (3x"/ /dx!) is the constant

inatrix D(x' o x~') = x’ o x™!. Comparing (*) with

2 ax'
ax?

(%) dx'l = dx!,

i=1

from Thcorem 1, we see that the differentials dx? “change in the same way” as
> g Yy

the coordinates %, hence they are “covariant”. Consequently, any combination
n
w= Z w;j dxt
i=1
is also called “covariant”. Notice that if we also have

n
w= Zw'i dx"t,

=1
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then we can express the @'; in terms o f the ;. Substituting

" .
dax’
axJ

dx! = x'/

j=1

into the first expression for  and comparing coefficients with the second, we
find that
n ;
ax'
L
w'j = E w; T
t=1

On the other hand, given two expressions

for a vector field, the functions a’/ must satisfy

n ;
; ;0x
o i

a’=>Y"a .

These expressions can always be remembered by noting that indices which are
summed overalways appear once “above” and once “below”. (Coordinate func-
tions x!, ..., x" used to be denoted by x1,...,xn. Thissuggested subscripts w;
for covariant vector fields and superscripts af for contravariant vector fields. Af
ter this was firmly established, the indices on the x’s were shifted upstairs again
to make the summation convention work out.)

Covariant and contravariant vector fields, i.e., sections of T*M and TM,
respectively, are also called covariant and contravariant tensors (or tensor fields)
of order 1, which is a warning that worse things are to come. We begin with
some worse algebra,

If V,,..., Vi are vector spaces, a function

T:-Vix.-«.xVy,—>R
is multilinear if
V> T(V1,- oy Vgl Us Ukt - - + 5 Um)

is linear for each choice of vy,...,Vg—1,Vk+15--.>Um. The set of all such T
is clearly a vector space. If W;,...,V,, = V, this vector space will be denoted
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by 77(V). Notice that 7/(V) = V*. If f: V — W is a linear transfor-
mation, then there is a linear transformation f*: 7™(W) — 7™ (V), defined
completely analogously to the case n = 1:

S*T .. vm) =TS 01),. .., f(vm)).
For T € T%(V), and S € T!(V) we can define the “tensor product” T®S €
T"H(V) by
T @SWiy--es Uk Ukl -y Uktd) = T (V1,0 -, Uk) - S(Vkt1s -+ o5 Vietl)-

Ofcourse, T®S isnot S®T. Onthe other hand, (S®T)QU =S (T QU),
so we can define n-fold tensor products unambiguously; this tensor product
operation is itself multilinear, (S} + S2)® T = §; @ T + S ® T, etc. In
particular, if vi,..., v, is a basis for V and v*,...,v*, is the dual basis for
V* = T1(V), then the elements
v ® - ® vy, 1 <ip,..., i <n

are easily scen to be a basis for 7% (V), which thus has dimension #¥.

We can use this new algebraic construction to obtain a new bundle from any
vector bundle £ =n: E — B. Welet

E'= T o)),

peB

and let
7' E' > B take T*@7(p)) to p.

If U C B and
i (U) > U xR"

is a trivialization, then the isomorphisms
1,77 (p) > {p} x R"
yield isomorphisms
97 THE T ) = (p) x THRY).

Ifwe choose an isomorphism 7% (R") — R"™ once and for all, these maps can
be put together to give a map

¢V U) - U x R,
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We make 7': E’ — B into a vector bundle 7% (&) by requiring that all such '
be local trivializations. The bundle &* is the special case & = 1.

For the case of TM, the bundle T%(T M) is called the bundle of covariant
tensors of order k, and a section is called a covariant tensor field of order k. If
(x, U) is a coordinate system, so that

dx'(p),...,dx"(p)
is a basis for (M))*, then the k-fold tensor products

dx1(p) ®---@dxl(p) e TE(M,) 1<iy,...,ix<n

are a basis for 7%(M,). Thus, on U every covariant tensor field 4 of order &
can be written

Ap) = Z Aby.2e (D) AX (D) ® - - - ® dx* (p),
i1y eemsihe
or simply
Z A ik dx" R -1 dx’k,
iy esif
where dx1 @ - -- ® dx'* now denotes a section of T*(TM). Ifwe also have
Z Ay i X ® @ dx',

i

then ot o
Xt Xk
Ala((...a(k = Z Aiq.. R vl
ax gxten

[{PR /3

(the products are just ordinary products of functions). To derive this equation,
we just use equation (*+) on page 114, and multilinearity of ®. The section A
is continuous or C* if and only if the functions A;,. i, are.

A covariant tensor field A of order & can just be thought of as an operation 4
on k vector fields X7,. .., Xx which yields a function:

AXy,..., X)) = AP X1 (D), ..., Xu(P))-
Notice that A is multilinear on the set 'V of C® vector fields:
AX, . X+ X X)) = AKX LX)+ AKX, X X0
AX1,..aXi .. X)) =aA(X,..., Xe).
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Moreover, because 4 is defined “pointwise”, it is actually linear over the C®
Sunctions F i.e.,if [ is C™, then

AXy, L X LX) = JAKG, L XL X0,
for we have
AXis o, [ Xy o, X)) = ADYX1 (D), -, S(P)Xi (P, -, Xu(P))

= S(P)APYXK (), ., Xe(P)s ... Xu(P))
=/(p)- AXr, ..., Xp, ., X))

We are finally ready for another theorem, one that is used over and over.

2. THEOREM. If
A Vx-..xV > F
~————

k times
is linear over ., then there is a unique tensor fild 4 with o = 4.

PROOF. Note first that if v € M, is any tangent vector, then there is a vector
field X € 'V with X(p) = v. In fact, if (x, U) is a coordinate system and

n ai a
0=

7|

o X,

then we can define

n
]
T
Y= f’;:a o on U
0 outside U,

where each a’ now denotes a constant function and / is a C* function with

f(p) =1 and support / C U.
Now if vy,...,v¢ € M, are extended to vector fields Xi,-.., X € V we
clearly must define

AP, o) = A, X (P)-

The problem is to prove that this is well-defined: If X;(p) = Y;(p) for each i,
we claim that
AKX L X )(p) = AT, L Y)(p).
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(The map s “lives at points”, to use the in terminology.) For simplicity, take the
case k = 1 (the general case is exactly analogous). The proof that A(X)(p) =
A(Y)(p) when X(p) = Y(p) is in two steps.

(1) Suppose first that X = Y in a neighborhood U of p. Let f be a C*®
function with f(p) = 1 and support / C U. Then fX = f7,so
SAMX) = ASX) = AST) = [AT);
evaluating at p gives
AX)(p) = AX)(p).

(2) To prove the result, it obviously suffices to show that A(X)(p) = 0 if
X(p) = 0. Let (x,U) be a coordinate system around p, so that on U we
can write

n
X =§b'w where all b'(p) =0.
If g is 1 in a neighborhood V of p, and support g C U, then
I “ il
= b — = fg—
Y=¢ g dxi ; b 85x

is a well-defined C™ vector field on all of M which equals X" on V, so that

AX)(P) = A )(p), by(l).

- d
AONP) =5 80) - 4 (2557 ) ()
i=1
=0, sincebi(p)=0. &

Because of Theorem 2, we will never distinguish between the tensor field 4
and the opcration A, nor will we use the symbol A any longer. Note that
Theorem 2 applies, in particular, to the case k = 1, where T"(TM) =T*M,
the cotangent bundle: a function from V — ¥ which is linear over ¥ comes
firom a covariant vector field w. Just as with covariant vector fields, a C* map
f: M — N gives a map J* taking covariant tensor fields 4 of order £ on N
to covariant tensor fields /* A of order k on M:

AP Xy X)) = AP S Xy foXiy)-
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Moreover, if A and B are covariant tensor fields of orders k£ and /, respectively,
then we can define a new covariant tensor field A ® B of order k +{:

(A®B)(p)= A(p) ® B(p) (operatingon Mp x -+ x M, k +1 times).

Although covariant tensor fields will be our main concern, if only for the
sake of completeness we should define contravariant tensor fields. Recall that
a contravariant vector field is a section X of TM. So each X, € Mp. Now an
element v of a vector space V can be thought of as a linear function v: V* — R;
we just define v(A) to be A(v). A contravariant tensor field of order k is just
a section A of the bundle T4(T*M); thus, each A(p) is a k-linear function
on Mp*. We could also use the notation Tz (TM), if we use Tx (V) to denote all
k-linear functions on V*. In local coordinates we can write

® ®8

P a
Ap)= 3 A 3o

Jisendk

P

(remember that each 3/dx7|, operates on M p*), or simply

d d

— Jreedk e ® ——
A_AZ_ A Bxil® ®3xik'
Jtyeees Jk
If we have another such expression,
oD a
p— HiJke . _
A= Z 4 axn & e
VARV
then we easily compute that
L axBe gxrBe

ABr-Be = Ao 2 T
. Z axh dxJx
Tl
A contravariant tensor field A of order k can be considered as an operator 4
taking k covariant vector fields i, ..., wx into a function:

Alwr,....00)(p) = A(p)(@1(P)s. .., 0k (P)).

Naturally, there is an analogue of Theorem 2, proved exactly the same way, that
allows us to dispense with the notation 4, and to identify contravariant tensor
fields of order k& with operators on k covariant vector fields that are linear over
the C* functions F.
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Finally, we are ready to introduce “mixed” tensor fields. To make the intro-
duction less painful, we consider a special case first. If V is a vector space, let
.7']' (V) denote all bilinear functions

T:VxV*>R

Avectorbundle £ = 7: E — Bgivesrise to a vector bundle T,' (&), obtained by
replacing each fibre 7~1(p) by 7;' (v~ (p)). In particular, sections of 7' (T'M)
are called tensor fields, covariant of order 1 and contravariant of order 1.
There are all sorts of algebraic tricks one can play with 7;'(V); although they
should be kept to a minimum, certain ones are quite important. Let End(V)
denote the vector space of all linear transformations T': V — V (“endomor-
phisms” of V). Notice that each S € End(V) gives rise to a bilinear Se TI' V),

S:VxV*SR,
by the formula
) Sw,1) =MS)).

Moreover, the correspondence S — S from End(V) to T,' (V) is linear and one-
one, for S=0 implies that A (S(v)) = 0 for all A, which implies that S(v) =0,
for all v. Since both End(V) and T,'(V) have dimension n?, this map is an
isomorphism. The inverse, however, is not so easy to describe. Given S, for
each v the vector S(v) € V is merely determined by describing the action ofa A
on it according to (*). It is not hard to check that this isomorphism of End(V)
and ‘T,'(V) makes the identity map 1: V — V in End(V) correspond to the
“evaluation” map
e:VxV*sR inT(V)
given by
e(v,A) = A(v).

Generally speaking, our isomorphism can be used to transfer any operation

from End(V) to TII(V). In particular, given a bilinear

T:VxV*>R,

we can take the trace of the corresponding S: ¥V — V; this number is called
the contraction of 7. If wi,...,v, is a basis of V and
T= Z 7}iu‘; ] vy,
4
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then we can find the matrix 4 = (a;;) of S, defined by

n
Sw) =Y aiv,
j=1
in terms of the T,-j ; in fact,
aj = v(S) = T(pv*) = T/
Thus
n
contraction of T = ZTii.
i=1
(The term “contraction” comes from the fact that the number of indices is con-
tracted from 2 to 0 by setting the upper and lower indices equal and summing.)
These identifications and operations can be carried out, fibre by fibre, in any
fibre bundle T,' (¢). Thus, a section 4 of '.T,'(E) can just as well be considered
as a section of the bundle End(£), obtained by replacing each fibre 7~'(p) by

End(x~"(p)). In this case, each A(p) is an endomorphism of 7~!(p). More-
over, each section A gives rise to a function

(contraction of 4): B - R
defined by
p > contraction of A(p)
= trace A(p) if we consider A(p) € End(x ™ (p)).

In particular, given a tensor field 4, covariant of order 1 and contravariant
of order 1, which is a section of 7} (TM), we can consider each A(p) as an
endomorphism of M), and we obtain a function “contraction of 4”. If in a
coordinate system

.9
A= 4ldx'®-—,
] 9xJ

then »
(contraction of A) = Z AL
i=
The general notion of a mixed tensor field is a straightforward generalization.
Define 7’,"(V) to be the set of all (k + /)-linear
T:V® - ®VxV*'®---@V*—> R
ML AL AN LA

k times 1 times
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Every bundle & gives rise to a bundle T," (&). Sections of 7}" (T M) are called
tensor fields, covariant of order k and contravariant of order /, or simply of type
(’,‘), an abbreviation that also saves everybody embarrassment about the use of
the words “covariant” and “contravariant”. Locally, a tensor field 4 of type (’,‘)
can be expressed as

- Juedt gyl @ L e — @ @ —
4= ) Aldxt e edh e n e @ T,
! s
and if
oo ) d
" it 1iy . 127 .
A= Y AR AN @ @A @ aTn @ @5y,
then
(*) ABBr Ji axh .. ﬂal\_lﬂl. - axh
a..ax k 9x'l Oxtar Jxit AxJt

Classical differential geometry books are filled with monstrosities like this
equation. In fact, the classical definition of a tensor field is: an assignment
of n**! functions to every coordinate system so that () holds between the n**!
functions assigned to any two coordinate systems x and x’. (!) Or even, “a set
of 1%+ functions which changes according to (*)”. Consequently, in classical
differential geometry, all important tensors are actually defined by defining the
functions A{ , in terms of the coordinate system x, and then checking that (x)
holds.

Here is an important example. In every classical differential geometry book,
one will find the following assertion: “The Kronecker delta §; is a tensor.” In
other words, it is asserted that if one chooses the same n? functions §; for each
coordinate system, then (*) holds, i.e.,

; ox' ax'#

+ 7 xra gxi’
4J

8=

this is certainly true, for

joxt axh Z e LAY
e~ gx'e gx i dx' oxi o
5J =
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From our point of view, what this equation shows is that

i ]
A=Z8,-’dx’®—.

— axJ
1)

is a certain tensor field, independent of the choice of the coordinate system x
To identify the mysterious map

A(p): Mpx Mp* > R,
we consider v € M, and A € M ,* with the expressions

n
. =D bgdxf(p);

B=1

u—Za ax“

=]

then

Ap)w )= 8

bJ
= Zs/ dx’ (p)(Za P
= ZJ;—’a’bj

isJ
n

= Z a'b;
i=1

= A(v).

) axi

(Z bpdx? (p))

Thus A(p) isjust the evaluation map M, x M,* — R; considered as an endo-
morphism of M), it is just the identity map.

The contraction of a tensor is defined, classically, in a similar manner. Given
a tensor, i.e., a collection of functions 47, one for each coordinate system, sat-
isfying

ax’ x'P
A= ZA’ axre 9xJ
i
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we note that

“ “ i ax? gx'®
— j

S a- 3(T )

a=1 a=1 N {,f

n ;
oax? ax'®

=2 ALY gy g
iJ as=]

-3 4ty
iJ
n .

= ZA;,

=1

so that this sum is a well-defined function. This calculation tends to obscure
the one part which is really necessary—verification of the fact that the trace of
a linear transformation, defined as the sum of the diagonal entries of its matrix,
is independent of the basis with respect to which the matrix is written.

Incidentally, a tensor of type (’,‘) can be contracted with respect to any pair
of upper and lower indices. For example, the functions

n
R W
=]

“transform correctly” if the AZ{’,K do. Ifwe consider each A(p) € T7(M,), then

we are taking B(p) € 752(M),) to be
B(p)(vy,v2,A1,A2) = contraction of: (v, A) = A(p)(v,v1,v2, A1, Az, A).

While a contravariant vector field is classically a set of n functions which
“transforms in a certain way”, a vector at a single point p is classically just an
assignment of n numbers a',...,a" to each coordinate system x, such that the
numbers a’!,...,a’" assigned to x' satisfy

& axt
al = Z”'—(p)'
l
= ax

This is precisely the definition we adopted when we defined tangent vectors as
equivalence classes [x, a],. The revolution in the modern approach is that the
set of all vectors is made into a bundle, so that vector fields can be defined as
sections, rather than as equivalence classes of sets of functions, and that all other
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types of tensors are constructed from this bundle. The tangent bundle itself was
almost a victim of the excesses of revolutionary zeal. For a long time, the party
line held that TM must be defined either as derivations, or as equivalence classes
of curves; the return to the eld definition was influenced by the “functorial”
point of view of Theorems 3-1 and 3-4.

The modern revolt against the classical point of view has been so complete
in certain quarters that some mathematicians will give a three page proof that
avoids coordinates in preference to a three line proof that uses them. We won’t
go quite that far, but we will give an “invariant” definition (one that does not
use a coordinate system) of any tensors that are defined. Unlike the “Kronecker
delta” and contractiens, such invariant definitions are usually not so easy to
come by. As we shall see, invariant definitions of all the important tensors in
differential geometry are made by means of Theorem 2. We seldom define A(p)
directly; instead we define a function 4 on vector fields, which miraculously
turns out to be linear over the C* functions #, and hence must come from
some A. At the appropriate time we will discuss whether or not this is all a big
cheat.
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PROBLEMS

1. Let f: M" — N™, and suppose that (x,U) and (y, V) are coordinate
systems around p and f(p), respectively.

(a) If g: N - R, then

dgo /)

ax!

a(y f)

(p) = (f (P)-

(Proposition 2-3 is the special case f/ = identity.)

(b) Show that
i}
& (W 4

and, more generally, express /3(3_7.; a'8/8x'|) in terms of the 3/3/,.
{c) Show that

_ia(yfof) (-2
- Buct ¥ lim”

j=1

: )
(i) = 322D ). axi ),

i=]
(d) Express
f*( 2. G dyf'®...®dyj,,)

Jsensdn
in terms of the dx'.
2. If /,g: M — N are C®, show that
d(/g) = fdg+gdf.
3. Let /: M — R be C®. For v e M, show that
J+@) = df W)sp) € Rrpy-
4. (a) Show thatifthe ordered basesvy, ..., v, and w, ..., w, for V are equally

oriented, then the same is true of the bases v*y,...,v*, and w*y,..., w*, for V*.
(b) Show that a bundle § is orientable ifand only if §* is orientable.
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5. The following statements and problems are all taken from Eisenhart’s clas-
sical work Riemannian Geometry. In each case, check them, using the classical
methods, and then translate the problem and solution into modern terms. An
“invariant” is just a (well-defined) function. Remember that the summation
convention is always used, so Afgt; means 37, Aigt;. Hints and answers are
given at the end, after (xiii).

(i) If the quantity Afge; is an invariant and either A’ or y; are the components
of an arbitrary [covariant or contravariant] vector field, the other sets are com-
ponents of a vector field.
(ii) If Aey are the components of n vector fields [in an n-manifold], where i
for i = 1,...,n indicates the component and « for @ = 1, ..., n the vector, and
these vectors are independent, that is, det(Ae®) # 0, then any vector-field A’ is
expressible in the form A

A’I = aalal’y
where the a’s are invariants.
(iii) If p; are the components of a given vector-field, any vector-field Af satisfy-
ing M p; = 0 is expressible linearly in terms of # — I independent vector fields
Aoy for @ = 1,...,n — 1 which satisly the equation.
(iv) If @ = a’' for the components of a tensor field in one coordinate system,
then a’/ = @' for the coordinates in any other coordinate system.
(v) If a”/ and b are components of a tensor field, so are a’/ + 6. If a”/ and
by are components of a tensor field, so are aliby.
(vi) If @;;A'}J isan invariant for A’ an arbitrary vector, then aj; + aj; are the
components of a tensor; in particular, if ai,)\ikj =0, then a;; +a; = 0.
(vii) If ai;A*AJ = 0 for all vectors A’ such that A'p; = 0, where p; is a given
covariant vector, if v is defined [cf. (iii)] by aijAef’v/ =0,@ =1,...,n—1and
wiv' #0, and by definition

i i
aijv = 0j Vi =rt,

then (a;j — Le;0)67€7 = 0is satisfied by every vector field &/, and consequently
1
aij + aji = = (10 + 1 0i).

(viil) If a,s are the components of a tensor and & and ¢ are invariants, show
that if ba,s + cas, =0, then either b = —c¢ and a,s is symmetric, or b = ¢ and
ars 1s skew-symmetric.

(ix) By definition the rank of a tensor of the second order a;j is the rank of
the matrix (a;;). Show that the rank is invariant under all transformations of
coordinates.
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(x) Show that the rank of the tensor of components a;b;, where a; and b;
are the components of two vectors, is one; show that for the symmetric tensor
a;bj + ajb; the rank is two.
(xi) Show that the tensor equation a;A; = aAj, where a is an invariant, can
be written in the form (aij — aﬁij))\i = 0. Show also that ai,- = &%, if the
equation is to hold for an arbitrary vector A;.
(xif) If a’;A; = a; holds for all vectors A; such that p'A; = 0, where @/ is a
given vector, then

a'; = ad'y +o5ul.

(xin) If
0 if ju = jpforsomea # P orix = ig for some a # B
§i-in _ orif {ji,...,jp} Z i, dp)
ey ™ if ji,..., jp isaneven permutation of iy,...,ip

=1 if ji,...,jp is an odd permutation of i1,...,ip

then 8{:“"_}: " are the components of a tensor in all coordinate systems.

HINTS AND ANSWERS.

(1) w is determined if w(X') is known for all X, and vice versa.

(111) Given w [with w(p) # 0 for all p], there are everywhere linearly indepen-
dent vector fields Xj,..., X—; which span kerw at each point. (This is true
only locally. For example, on S x R there is an w such that ker w(p, ?) consists
of vectors tangent to S? x {}.)

()For T: Vx V = R, let T'(v,w) = T(w,v). Then T + T is determined by
S(v) = T(v,v). For, Tw+w,v+w) = T(v,v)+ T(v,w)+ T (w,v) + T (w, w).
Similarly, T(v,v) = 0 for all v implies that T + 7/ = 0.

(vii) Given w [with w(p) # 0 for all p], choose ¥ complementary to kerw at
all points. If 0(Z) = T(Y, Z), then T(Z,Z) = o(Z)o(Z)/w(Y) for all vector
fields Z.

(ix) T: V x V — R corresponds to T vy [where Tw)(w) = T(v,w)].
The rank of 7 may be defined as the rank of 7 (consider the matrix of T with
respect to bases vy,..., v, and v*y,...,V*).

(xi)Let V=M,* If T: V - V and n € V* and T(v) = av for all v € kerp,
there is a y complementary to ker g such that

T(v) =av+p(v)y forallv.

(Begin by choosing yo complementary to ker ¢t and writing v uniquely as vo+cyo
for vo € ker p.)
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(xiii) Define
8: Vx---xVxV*x...xV* 5 R

p times p times

by

8(u1,. .5 Up, A1y, Ap) = det(hi(v)).
6. (a) Letiy: V — V** be the “natural isomorphism” iy (v)(A) = A(v). Show
that for any linear transformation f: V — W, the following diagram com-
mutes: :
1% iy V**

I

w lw Ww**
b} Show that there do not exist isomorphisms iy : ¥V — V* such that the fol-
lowing diagram always commutes.

17 iy V*

1l

w w w*
Hint: There does not even exist an isomorphism i: R — R* which makes the
diagram commute for all linear /: R — R.

7. A covariant functor from (finite dimensional) vector spaces to vector spaces is a
function F which assigns to every vector space V a vector space F(V) and to ev-
cry linear transformation f: V — W a linear transformation F(/): F(V) —
F(W), such that F(ly) = 1 gy and F(go [) = F(g) o F(v).
(a) The “identity functor”, F(V) =V, F(f) = f is a functor.
(b) The “double dual functor”, F(V)= V**, F(f) = f** isa functor.
(¢) The “Ty functor”, F(V) = Tx(V) = Tk(V*),

FINTYAs .., )=Tao fooo o f)
is a functor.
(d) If F is any functor and f: V — W is an isomorphism, then F(/f) is an
isomorphism.
A contravariant functor is defined similarly, except that F(f): F(W) — F(V)and
F(g o /) = F(f) o F(g). Functors of more than one argument, covariant in
some and contravariant in others, may also be defined.

(e) The “dual functor”, F(V) = V* F(f)= f* is a contravariant functor.
(f) The “T* functor”, F(V) = T*(V), F(f) = f* is a contravariant functor.
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8. {a) Let Hom(V, W) denote all linear transformations from ¥ to W. Choos-
ing a basis for V and W, we can identily Hom(V, W) with the m x n matrices,
and consequently give it the metric of R"™. Show that a different choice of
bases leads to a homeomorphic metric on Hom(V, W).

(b) A functor F givesa map from Hom(V, W) to Hom(F(V), F(W)). Call F
continuous if this map is always continuous [using the metric in part (a)]. Show
that if £ =s: E — B is any vector bundle, and F is continuous, then there is
abundle F(§) = »': E' — B for which 5t'~1(p) = F(r~}(p)), and such that
to every trivialization

MUY= U xR"

corresponds a trivialization
N U) - U x FR").

() The functor T3(V) = T'(V*) = V** is continuous. (The bundle 77 (TM) is
just a case of the construction in (b).)

(d) Define a continuous contravariant functor £, and show how to construct a
bundle F(&).

(e) The functor F(V) = V* is continuous. (The bundle T*M is a special case
of the construction in (d).)

Generally, the same construction can be used when F is a functor of several
arguments. The bundles 7'," (M) are all special cases. See the next two problems
for other examples, as well as an example of a functor which is not continuous.

9. (a) Let F be a functor from V", the class of n-dimensional vector spaces,
to V¥. Given A4 € GL(n,R) we can consider it as a map A: R” - R"” Then
F(A): F(R") > F(R"). Choose, once and for all, an isomorphism F(R") —
RX. Then F(A) can be considered as a map #(4): R* — R¥. Show that
&: GL(n,R) - GL(k,R) is a homomorphism.

(b) How does the homomorphism 4 depend on the initial choice of the isomor-
phism F(R") - Rk?

(c) Let v = (vy,...,v,) and w = (w,, ..., w,) be ordered bases of V and let
e = (e,...,e,) be the standard basis of R”. If € — v denotes the isomorphism
taking e; to v;, show that the following diagram commutes

R" e—>v v

1 i

R”
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where A = (a;;) is defined by
n
wi = Z ajivj.
je=1

After identifying F(R”) with R¥, this means that

R* _F_(e_'fl)_,p(v)

h(A
A

Rk
also commutes. This suggests a way of proving the following.

THEOREM. If /k: GL(n,R) -> GL(k,R) is any homomorphism,
there is a functor Fj: V7 -» V¥ such that the homomorphism defined
in part(a) is equal to A.

(d) For ¢,q" € R, define

v.9) ~ (w,q")
if ¢ = h(A)g' where w; = Z};, ajvj. Show that ~ is an equivalence relation,
and that everyequivalence class contains exactly one element (v, ¢) for a given v.
We will denote the equivalence class of (v,¢) by [v,g].
(e) Showthat the operations

[vsq1]+ [v,q2] = [V.q1 + q2]
a-[v.q] = [v,aq]

are well-defined operations making the set of all equivalence classes into a
k-dimensional vector space F (V).

N ITV,W € V" and f: V - W, choose ordered bases v,w, define 4 by
Jwi) = Yj_, ajiwj, and define

Fr(N)v,q] = [w, h(A)(@)].

Show that this is a well-defined linear transformation, that £} is a functor, and
that F4(A4) = #(A) when we identify F,(R”) with R* by [e,q] > g¢.

(g) Let a: R -» R be a non-continuous homomorphism (compare page 380),
and let #: GL(n,R) -+ GL(I,R) = R be #(4) = a(det A). Then F,: V" -» V!
is a non-continuous functor.
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10. Inclassical tensor analysis there are, in addition to mixed tensor fields, other
“quantities” which are defined as sets of functions which transform according
to yet other rules. These new rules are of the form

ax
A’ = A operated on by # (_ﬂ) .
ax’

For example, assignments of a single function a to each coordinate system x
such that the function a’ assigned to X' satisfies

] "
a' = det (L) -a
ax'’

are called (even) scalar densities; assignments for which

i
det ( ox )
Ixt/

are called odd scalar densities. The Theorem in Problem 9 allows us to con-
struct a bundle whose sections correspond to these classical entities (later we
will have a more illuminating way):

(a) Let #: GL(n,R) — GL(],R) take A4 into multiplication by det A. Let
be the functor given by the Theorem, and consider the 1-dimensional bundle
F,(TM) obtained by replacing each fibre M, with 7, (Mp). If (x,U) is a

coordinate system, then
) s 1} € Fr(Mp)
P

d
ax(p) = |:(W

is non-zero, so every section on U can be expressed as a - ax for a unique
function a. If x’ is another coordinate system and a - &y = a’ - @+, show that

] "
a’ = det (L) a

ax'/
(b) If; instead, h takes A into multiplication by |det A|, show that the corre-
sponding equation is )

&)
det = 1| - a.

Ixt

(c) For this h, show that a non-zero element of F;(V) determines an orientation

for V. Conclude that the bundle of odd scalar densities is not trivial if M is not
orientable.

a = -a

]

[EREE ivorl
B dx

a' =
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kel

(d) We can identify 7% (R") with R™ " by taking

e ® - ®e*, ®e;, ® Qe > (i1, -~ sy J1s- - - j1)™ basis vector of R,
Recall that if f: V — V, we define TX(/): T%(V) — T*(V) by
TEOTI1, - v hse e h) = T s S Ao fo-o s hio f).

Given A € GL(1,R), we can consider it as a map A: R” — R”. Then
TX(A): THR™) — T*(R") determines an element 7,%(A4) of GL(n**! R).
Let h: GL(1,R) = GL(n**!,R) be defined by

h(A) = (det A)*T;%(4) w an integer.

The bundle F(TM) is called the bundle of (even) relative tensors of type (II‘)
and weight w. For kK =7 = 0 we obtain the bundle of (even) relative scalars of
weight w [the (even) scalar densities are the {even) relative scalars of weight 1].
If (det A)¥ is replaced by |det A|” (w any real number), we obtain the bundle
of odd relative tensors of type (’,‘) and weight w. Show that the transformation
law for the components of sections of these bundles is

A\ i ix gytB B
BB _ ax’ Jrewdy 0X8 ax's Ox ax
fsonsitc
Jses i

(or the same formula with dcl(ax"/ax'j) replaced by | det(&xi/ax'j)l).
(€) Define

+1 if i1,...,i, is an even permutation of 1,...,n
iyonin = § —1 i i1,...,in is an odd permutation of 1,...,n

0 if ix = ig for some & # B.

Show that there is a covariant relative tensor of weight —1 with these compo-
nents in every coordinate system. Also show that &'~ = g; ;. are the com-
ponents in every coordinate system of a certain contravariant relative tensor
of weight 1. (See Problem 7-12 for a geometric interpretation of these relative
tensors.)
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VECTOR FIELDS AND
DIFFERENTIAL EQUATIONS

We return to a more detailed study of the tangent bundle TM, and its
sections, i.e., vector fields. Let X be a vector field defined in a neigh-
borhood of p € M. We would like to know if there is a curve p: (—g,¢) > M
through p whose tangent vectors coincide with X, that is, a curve p with

— —
pO)=p T
d|\_de| _ 7
(@)= e T IN

Since this a local question, we wish to introduce a coordinate system (x, U)
around p and transfer the vector field X to x(U) C R”. Recall that, in general,
ax X does not make sense for C* functions «: M — N. However, if ¢ is a
diffeomorphism, then we define

@ X)g =ou(Xomri)  [ie, = amig(Xamig)]:

It is not hard to check (Problem 1) that ay X is C* on a(M). In particular, we
have a vector field x,X on x(U) C R". There is a function f: x(U) - R”
with

(+X)g = fg)g € R,

i.e., (X« X), has “components” S1(g)s..., /"(g). Consider the curve ¢ = xop.
The condition

dp _
i X(p(2))
means that
o (5] ) = reen

135
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hence

de
de|,

d
= X4Ps (E‘ ) =X (X(p(1))) = (X2 X)x(0(r))
t
= (X X)et0)-

If we use c(f) to denote the ordinary derivative of the R"-valued function c,
then this equation finally becomes simply

@) = fle().

This is a simple example of a differential equation for a function ¢: R — R”,
which may also be considered as a system of » differential equations for the
functions ¢!,

&'y = f1 (@), ....c"@) i=1,...,n
We also want the “initial conditions”
(o) = x(p).

Solving a differential equation used to be described as “integrating” the
equation (the process & integration when the equation has the special form
c'(t) = f(t) for /: R —> R, a form to which our particular equations never
reduce); solutions were consequently called “integrals” of the equation. Part of
this terminology is still preserved. A curve p. (—¢,€) —» M with

p0)=p
dp _
I X(p(1))

is called an integral curve for X with initial condition p(0) = p. Similar ter-
minology is applied, of course, to the differential equations one obtains upon
introducing a coordinate system. For quite some time, we will work entirely in
Euclidean space, and for a while x, y, ctc., will denote points of R”. If U c R*
isopenand f: U — R”, then a curve c: (—& &) > M with

c(0) = x xeU
(1) = f(c(0))

is called an integral curve for / with initial condition ¢(0) = x.
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Before stating the main theorem about the existence and uniqueness of such
integral curves, we consider some special cases.
The equation for a curve ¢ with range R,

) = —[e(P,

which would be written classically in terms of a function y: R — R as

dy _
Ir -y
is the special case f(a) = —a®. The standard method of solving this equation
is to write
dy
— =dx
Z yz
dx
y2 /
1
—=x+C
y
1
YExv o
Thus the curves )
=3¢

are supposed to be solutions. This can be checked directly if you don’t believe
the above manipulations. (They really do make sense; the equation in question

asserts that ) = f o y, so
(I y) y=1
—oyl-y =1
J

(Foy)=1
Fy(x)=x+C

hence, if F' =1/f,then

for some C.) To obtain the initial conditions ¢(0) = a, we must take

1
c{t) = ——.
0=
This works in all cases except @ = 0. In this case, the correct solution is

c(t) =0 for all 1
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(which we missed by dividing by y). In terms of vector fields, the curves ¢ are
the integral curves of

d
X(a) =—azz.

T
A
k

1 1
0 3 z

Nl

Notice that no integral curve, except c(¢) = 0, can be defined for all 7, even
though X is defined on all of R. It might be thought that this somehow reflects
the fact that X'(0) = 0, but this has nothing to do with the case. For a > 0, the
curve c(t) = 1/(t + 1/a) is defined for all large ¢, and as ¢ — o0 it approaches,
but never reaches, 0. On the other hand, as 7 — —1/a the curve escapes to
infinity because the vector field gets big too fast. This will continue to be true
even if we modify the vector field near 0 so that it is never 0.
Another phenomenon is illustrated by the equation

@) =c@)??,

written classically as

Y

ax v
There are two different solutions with the initial condition ¢(0) = 0, namely
(0] c(t)=0 for alt ¢,
) ) = 2l7z3 for all 1.

In this case, the function f, given by f(a) = a*?*, isnot differentiable. Unique-
ness will always be insured when /: U — R" is C!, but it can also be obtained
with a rather less stringent condition. We say that the function f satisfies a
Lipschitz condition on U if there is some K such that
V)~ /DI sKix—yl  forallx,ye U
Notice that f(a) = a*? is not Lipschitz; in fact, there is no K with
If(x) = SO)] = K|x|

for X near 0, since

-2/3
L0 ax B koo as x> 0%, Sx) =
x
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A Lipschitz function is clearly continuous, but not necessarily differentiable (for
example, f(x) = |x|). On the other hand, a C' function is Jocally Lipschitz,
that is, it satisfies a Lipschitz condition in a neighborhood of each point—this
follows from Lemma 2-5. A Lipschitz function is also clearly bounded on any
bounded set.

The basic existence and uniqueness theorem for differential equations de-
pends on a simple Jemma about complete metric spaces.

1. THEOREM (THE CONTRACTION LEMMA). Let (M,p) be a non-
empty complete metric space, and Jet /: M — M be a “contraction”, that is,
suppose there is some C < 1 such that

(S (x), () < Cp(x,¥) forallx,ye M.

Then there is a unique x € M such that f(x) = x (the function / has a unique
“fixed point”).

PROOF. Notice that f is clearly continuous. Let xo € M and define a sequence
{xn} inductively by
Xnpl = / (Xn),

ie.,
Xnpt = " (x0) = f o f o0 f(x0).
n times

Then an easy induction argument shows that
POn, Xp41) < C" plx0, X1).
Thus

P(Xns Xn+k) < P(Xps Xpa1) + -+ P(Xn-f-k—-lyxn-f-k)
< (C" 4+ + C" ) p(xg, x1).

Since C < 1, the sum Y22 o C" converges,so C"+- - -+C"**~1 5 0 as n — oo.
Thus the sequence {x,} is Cauchy, so there is some x with

x = Hm Xx,.
n—>oo
Continuity of f then shows that

S(x)= lm f(xp)= Hm xpy =x. %
n—oo n—>o00
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Weare going to apply the Contraction Lemma to certainspaces of functions.
Recall that if (M, p) is a metric space and X is compact, then the set of all
continuous functions f: X — M is a metric space if we define the metric o by

o (/,8) = sup p(f(x),g(x))-
xeX

If M is bounded, then we do not even need X to be compact. Moreover, if M
is complete, then the new metric space is also complete; this is basically just the
theorem that the uniform limit of continuous functions is continuous, plus the
fact that each X&rr;aj;,(x) exists since M is complete. In particular, if M is a
compact subset of R”, then the set of all continuous functions f: X — M is
complete with the metric

a(/,.8) =1/ -2l where ||f||=su§|f(x)|.
X€E

Our basic strategy in solving differential equations will be to replace differen-
tiable functions and derivatives by continuous functions and integrals. If U C
R” and f: U — R”" is continuous, then a continuous function &: (=b,b) — U,
defined on some interval around 0, clearly satisfies
0 o)) = f(a(0)

a(0) =x
if it satisfies the integral equation

@ a(t) = x +/0 S(a()) du,

where the integral of an R”-valued function is defined by integrating each com-
ponent function separately. Conversely, if « satisfies (1), then « is differentiable,
hence continuous; thus @’ = f o & is continuous, so

14 1
a() - x =a) —a0) = [ ewdn= [ f@w)du

For the proof of the basic theorem, we need only one simple estimate. If a
continuous function [ [a,b] — R” satisfies | /| < K, then

/abf(u)du

To prove this, we note that it is true for constant functions, hence for step
functions, and thus for continuous functions, which are uniform lmits on [a, b]
of step functions.

< K(b - a).
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2. THEOREM. Let f: U — R”" be any function, where U c R”" is open.
Let xo € U and let a > 0 be a number such that the closed ball Ba,(xg), of
radius 2a and center X, is contained in U. Suppose that
() 1S = L on By (xo) B
@) 1/ (x) = fO)I = Klx ~ y| for x,y € Baa(xo).
Choose b > 0 so that
(3)b=<a/L
4 b<1/K.
Then for each x € Ba(xo) there is a unique ax: (—b, b) — U such that
ay'(1) = [f(ax(1))
ax(0) = x.
PROOF. Choose x € Ba(xo), which will be fixed for the remainder of the proof.
Let
M = {continuous &: (~b,b) — Baa(x0)}-
Then M is a complete metric space. For each @ € M, define a curve S on
(—b,b) by
Sa(t) =x + / S(a(u))du
o

(the integral exists since f is continuous on By, (xp)). The curve S is clearly
continuous. Moreover, for any ¢ € (b, b) we have

t
1Sa) =1 = | [ ftau) du
<bL by (1)
<a by (3) .
Since |x — xg| < a, it follows that |Sa(f) — Xo| < 2a, for all ¢ € (—b,b), so
(%) Sa(f) € Baa(xo) C Baa(xe) fort € (—b,b).

Thus S: M - M.
Now suppose &, 8 € M. Then

t
ISa — SB|| = sup f J(a)) = f(Bw))du
1 0
< bk sup () — B )l by (2)

= bK|la - Bl
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Since we chose bK < 1 (by (4)), this shows that S: M — M is a contraction.
Hence S has a unique fixed point:

There is a unique &: (—b,b) — Bag(xo) with

aft) =x +/; S(a(u))du.

This, alas, is not quite what the theorem states. Having used the elegant Con-
traction Lemma, we pay for it by finishing off with a finicky detail:

The map « is the unique f: (=b,b) — U satisfying
t
By =x+ [ 7160 du.

Reason: We claim that any such B actually lies in Bjq(x0), in fact, in Baa(Xo).
Consider first numbers ¢ > 0. We have already seen (statement (x)) that for
each? with0 <! < b,

t
(%) B(t) =x +/; Sf(B))du isin By,(xo) [the open ball]

provided that
B(u) € Baa(¥0)  forall uwith 0 <u <t,
so certainly if
B (u) € Baa(x0) for all u with0 < w <1.
We can now use a simple least upper bound argument. Let
A={t:0<t <band B(u) € By(xg) for0 <u <1t}.

Let @ = sup 4. Suppose @ < b. We clearly have B (u) € Bag(xo) for 0 <u < a.
So B(a) € Baa(xg), by (++). This clearly implies that f(a + s) € Baa(xo) for
sufficiently small s > 0, which contradicts the fact that @ = sup 4. So it must
be that sup A = b. A similar argument works for -4 <t < 0.

To sum up, the unique fixed point &, of the map S is the unique curve with
the desired properties. <
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Notice that solutions of the differential equation
o'(1) = J(a(D)
remain solutions under additive changes of parameter; that is, if
A1) =alto+1),

then
B(1)=a'lto+1) = flalto+ 1) = f(B)).

This remark allows us to extend the uniqueness part of Theorem 2.

3. THEOREM. Suppose f: U — R”" islocally Lipschitz, that is, around each
point there is a ball on which J satisfies condition (2) of Theorem 2 for some K
(and hence also condition (}) for some L). Let x € U and let @, &2 be two maps
on some open interval I with a;(7),a,(/) C U and

a;'(1) = f(ai(1) 12
i (0) = x
Thena; =a; on I.
PROOF. Suppose @ (to) = a3 (t0) for some fo € I. If we define
Bi(0) = a;(to +1),

then the functions B; satify the same differential equation, B:'(¢) = f(Bi(?)),
and have the same initial condition ;(0) = @) (t0) = @2(f0) € U. Hence B (1) =
B2(1) for sufficiently small ¢, by Theorem I Thus the set

{tel: o =ax())

is open. It is clearly also closed and non-empty, so it equals 1. 4

We now revert to the situation in Theorem 2. We will write ax () as a(7,x),
so that we have a map

a: (=b,b) x Ba(xo) = U
satisfying
«(0,x) =x
d — "
Et—a(l,x) = f(a@,x)

[ie, Dia(t,x) = f(a(,x)), but we will frequently use 3/d¢ or d/dt in this
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discussion]. This map « is called a local flow for [ in (=b,b) x Ba(x). To
picture this map «, the best we can do & 0 draw the images d the integral

Baa(x0)

N

curves ay. If y = ax(lo), then the integral curve a, with the initial condition
ax(0) = x differs from the integral curve ay with initial condition ay(0) = y
only by achange of parameter, so the two images overlap. For each fixed x, the
map ¢ > a(,x) for —b <t < b lies along part of the curve through x. On the
other hand, if we fix ¢, then the map

X = at,x)

gives the result of pushing each x along the integral curve through it, for a time
interval of ¢. To focus attention on this map, we denote it by ¢;:

p=a@x) [=axd]
This map ¢, is always continuous. In fact, the whole flow a is continuous (as a
function of both ¢ and x):
4. THEOREM. If f: U — R" is locally Lipschitz, then the flow
a: (=b,b) x Ba(xe) > U
given by Theorem 2 is continuous.

PROOF. Let us denote the map S defined in the proof of Theorem 2 by Sy,
to indicate explicitly the role of x. Then

lleex ~ Syax” = || Sxax ~ Syax” =|x -yl
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Recall that
IS — SB| < bKllee — B.

If S} denotes the n-fold iterate of S, then

2 —
lloe = S;'Ofx” < llax = Syaxll + | Syax — Syax" +o ”S;l Yo — S;lax”

< +b6K+-+ GK)" x—yl < ]—_]WIX =)l
Recall also that in Theorem 1 the fixed point ay of Sy is the limit of Sja for
any a. Hence ay = "Iingo S;,'ozx, so we obtain

”ax""ayllf X =yl

1
1—-bK

Since |loy —ayll = sup la(z, x)—a(l, y)|, this certainly proves continuity of . <
!

If additional conditions are placed upon the map f, then further smoothness
conditions can be proved for . In fact,

If [:U > R is C* then the flow o= (—b, b) x Ba(xo) — U is also C*.

Unfortunately, this is a very hard theorem. A clean exposition of the clas-
sical proof is given in Lang’s Introduction to Differentiable M anifolds (2nd ed.), and
a recently discovered proof can be found in Lang, Real and Functional Analysis
(3rd ed.), pp. 371-379. In order to read this high-powered proof, you must first
learn the elements of Banach spaces, including the Hahn-Banach theorem, and
then read about differential calculus in Banach spaces, including the inverse and
implicit function theorems (Real and Functional Analysis, pp. 360—365), but this is
probably easier than reading the classical proof (and, besides, when you're fin-
ished you’ll also know about Banach spaces, and differential calculus in Banach
spaces).

We will just accept this fact. Notice that the maps ¢, are consequently C*™
if fis C®.

Since the map

a: (—b,b) x Ba(Xe) > U

satisfies @ (0,x) = x, we have

@: {0} x Baja(xo) > Basa(¥0) C Ba(xa)-
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Continuity of @ and compactness of {0} x Ba2(xo) imply that there is some
& > 0 such that

a: (—&,&) X Baja(xa) = Ba(xo)-

Bza(xo) 4 Ba(xo)

[If x € Baj2(x0), then the integral curve with initial condition x stays in Bqa(xo)
for |7] <&.]
So if |s| < €& and x € Bgj2(x0), then the point a(s,x) € Ba(xo), so we can
also define
y() = alt, als, x)) [t <e.

This satisfies )

Y= f(r)

v(0) = a(s,x).
We have also noted that

B@) =als +1,x), defined for |s + 1| < ¢,

satisfies

B'() = f(B(1))

B(0) = a(s,x).
Consequently, B(t) = a(f,a(s,x)) for |t| < &. In other words,

i |sl,lel,|s +1] <&, then a(f,a(s,x))=als+1,x).
If we now let ¢;: Bajz(xg) = R” be @i(x) = a(f, x) for x € Bgj2(xq), we can
say:
if |s],|¢l,1s + 1| < & and x, ¢, (x) € Bas2(xo), then
D5(@: (x]) = Pse ().

Roughly speaking, ¢r4.s = ¢, o @s = ¢ o¢,. This shows, in particular, that for
Is] < & each @; is a diffeomorphism, with inverse ¢s~' = ¢;. Everything we

have said, since it is local, can be resaid, without requiring any more proof, on
a manifold.
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5. THEOREM. Let X be a C® vector field on M, and let p € M. Then there
is an open set V containing p and an & > 0, such that there is a unique col-
lection of diffeomorphisms ¢;: V — ¢,(V) C M for |t| < & with the following
properties:

(1) ¢: (—e,6) x V — M, defined by ¢ (1, p) = ¢((p), is C=.
(2) If Isl, lel,Is +1| < &, and ¢, ¢:(¢) € V, then

Ssrt(g) = Ps © ¢:(q)-
(3) If ¢ € V, then X is the tangent vector at ¢ = 0 of the curve { - ¢ (g).

The examples given previously show that we cannot expect ¢; to be defined
for all ¢, or on all of M. In one case however, this can be attained. The support
of a vector field X is just the closure of {p € M: X, #0}.

6. THEOREM. If X has compact support (in particular, if M is compact),
then there are diffeomorphisms ¢;: M — M for all t € R with properties (1),
2, 3)

PROOF. Cover support X by a finite number of open sets Vy,..., V, given by
Theorem 5 with corvesponding e, ..., &, and diffcomorphisms ¢}. Let & =
min(er, ..., &n). Notice that by uniqueness, ¢/ (¢) = ¢] (¢) forg € V; N V;. So
we can define _

bilg) HgeV

o) = {q if ¢ ¢ support X.

Clearly ¢: (—€,6) x M — M is C®, and @145 = ¢ o @5 if |t],[s], |t + 5] < g,
and each ¢; is a diffeomorphism.
To define ¢, for |t]| > &, write
t=k(e/D)+r with & an integer, and || < &/2.

Let

& = Gef20 020 Py [¢e/2 iterated k times) fork >0
‘= Pgj20- 0 Pg20P, [P-g/2 iterated —k times] for k <0.

It is easy to check that this is the desired {¢,}. %
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The unique collection {¢,} given by Theorem 6, or more precisely, the map
t — ¢ from R to the group of all diffeomorphisms of M, is called a 1-parameter
group of diffeomorphisms, and is said to be generated by X. In the local case of
Theorem 5, we obtain a “local 1-parameter group oflocal diffeomorphisms”.
The vector field X is sometimes called the “infinitesimal generator” of {¢,}
(vector fields used to be called “infinitesimal transformations™).

Condition (3) in Theorem 5 can be rephrased in terms of the action of X,
on a C* function f: M — R. Recall that

%=L _ (roo.

Thus, to say that X, is the tangent vector at ¢ = 0 of the curve 1 > ¢,(q)
amounts to saying that

W/)@) = Xy S = fim

This equation will be used very frequently. The first use is to derive a corollary
of Theorem 5 which allows us to simplify many calculations involving vector
fields, and which also has important theoretical uses.

S@rig) — /(@)
h .

7. THEOREM. Let X be a C* vector field on M with X(p) # 0. Then there
is a coordinate system (x, U) around p such that

a
=_— on U
ax!
PROOF. It is easy to see that we can assume M = R” (with the standard coor-
dinate system ¢',...,¢", say), and p = 0 € R". Moreover, we can assume that

X(0) = 9/d1"|,. The idea of the proof is that in a neighborhood of 0 there is a
unique integral curve through each point (0, a?, ...,a"); if g lies on the integral

[
\—_/
\_/

~— —\_//
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curve through this point, we will use a2,. .., a" as the last n — 1 coordinates of ¢
and the time interval it takes the curve to get to g as the first coordinate. To
cb this, let X generate ¢ and consider the map x defined on a neighborhood
of 0in R” by

x@',...,a") = ¢, 0,4%...,a".

We compute that for a = (d',...,a"),
a a
X*(ﬁa)(f)=ﬁa

=}L"%;7[f(x(a‘ +h,a?,...,a") = [(x(a)))

(fox)

= }L"},%lf (Gar44(0,0% ...,a") — [ (x(@))]

= Jim 2/ (x@) - /(@)

= (X/)(x(a)).
Moreover, for i > 1 we can at Jeast compute
d
2 (3], =g v o

= }'1_210 ;[f(x(o,...,/z,...,o)) - f(0)]
= lim L[/, .., h,...,0) = [(0)]
h—>0 h

=
TN

Since X(0) = 8/8t!|, by assumption, this shows that x,0 = / is non-singular.
Hence x = x~' may be used as a coordinate system in a neighborhood of 0.
This is the desired coordinate system, for it is easy to see that the equation
X+(/3t") = X o x, which we have just proved, is equivalent to X = 9/3x1. <

The second use of the equation
1
(XNp) = im ~[/(@(P)) = f(P)]

is more comprehensive. The fact that X / can be defined totally in terms of
the diffeomorphisms ¢, suggests that an action of X on other objects can be
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obtained in a similar way. To emphasize the fundamental similarity of these
notions, we first introduce the notation

L;(f for Xf.

We call Ly [ the (Lie) derivative of [/ with respect to X; it is another function,
whose value at p is denoted variously by (Lx /)(p) = Lx f(p) = (X[)(p) =
Xp (/). Now if w is a C* covariant vector field, we define a new covariant
vector field, the Lie derivative of w with respect to X, by

(L) (p) = fim 2 (@5 @)(P) - w(P)}

This is the limit of certain members of M,*. Recall that if X, € M), then

(D) (P)(Xp) = w(Pr(P)) (Phx Xp).

A fairly easy direct argument (Problem 8) shows that this limit always exists,
and that the newly defined covariant vector field Ly w is C*, but we wil} soon
compute this vector field explicitly in a coordinate system, and these facts will
then be obvious.

If Y isanother vector field, we can define the Lie derivative of ¥ with respect
to X,

1
(LxY)(p) = Jim 3 [¥p = @ha1)p).

The vector field ¢.Y appearing here is a special case of the vector field &, Y
defined at the beginning of the chapter, for @: M — N adiffeomorphism and ¥
a vector field on M. Thus (¢4Y)p = ¢ (Yo_,(p)) is obtained by evaluating ¥
at ¢,~'(p) = ¢..,(p), and then moving it back to p by ¢j..

(neY)p

”

S
integral curve

> ¢(p)
of X through p

Yo_uto)

The definition of LxY can be made to look more closely analogousto Ly f
and Ly w i the following way. If @: M — N is a diffecomorphism and Y is a
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vector field on the range N, then a vector field @*Y on M can be defined by
(@*Y)p = (a—])*(Yu(p))'

Of course, a*(Y) is just (@~'),Y. Now notice that

N I A% o T P
Jim [@4°Y ) = ¥y = lim 2P = lim 2(¥, = (64T )p]
]

= lim = [¥p ~ @k )pl = (LxY)(P).

Nevertheless, we will stick to the original (equivalent) definition.

We now wish to compute Ly w and LxY in a coordinate system. The cal-
culation is made a lot easier by first observing

8. PROPOSITION. If LyY; and Ly w; exist for i = 1,2, then
() Ly + Yo) = LxYi+ LxYa,
(2) Lx(en +w2) =Lxwi + Lyws.
If LxY and Lx o exist, then
B) LxfY=Xf-Y+ [ LxY,
4 Llyxfo=X] -0+ Lyo.

Finally, if @(Y') denotes the function p — w(p)(¥,) and Lxw and LxY exist,
then

() Ly (o(Y)) = (Lx o)(Y) + o(LxY).

PROOF. (1) and (2) are trivial. The remaining equations are all proved by the
same trick, the one used in finding (/g)(x). We will do number (3) here.

WxfY)p= llli_r:})]z[(fY)p ~ (@rSY))p]
= 11{,_),,}' ;7[ S(P)Yp = bn (ST p1(m)]
= Jim, 311y = S@-h(p)Brs Yoot
= Jim 7(); (2 = naYo ]

. [w] ST
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The first limit is élear}y J(P)-LxY(p). In the second limit, the term in brackets
approaches

=X/(p),

lim
k—0

1(p) ~ [ (p))
—k

while an easy argument shows that ¢y Yp_,(p) = Y. %

We are now ready to compute Ly in terms of a coordinate system (x, U)
on M. Suppose X = Y7_, a'9/3xi. We first compute Ly (dx’). Recall (Prob-
lem 4-}) that if /: M — N and y is a coordinate system on N, then

f»(dyl) Za(}; (:f)

We can apply this to ¢4*, where y is x. Then

. | . .
Ly (@x)(p) = Jim ~[(@5")dx"(p) — dx'(p)]

d(x' o i
= fim 5 [Z G 80 28 )t (p) - dx'(P)jl.

10k axJ
=l

Now the coefficient of dx/ (p) is

fim © [M _8".] = lim + I:B(x 2 () (XBI:;#O)(P)]

10 h axJ 4 0 h axJ

m 2 [(x o) - (¢ o ¢o)]

1:-»0 h
{thls step will be justified in a moment}

() =

BxJ

] X(e) = da’
= a7 |, ') = 75 (P).

To justify () we note that the map A(k,q) = x(¢n(g)) is C® from R x M
to R; thus 82A4/0hdx’ = 824 /3x/dh, which is what the interchange of limits
amounts to.

It now follows that
; da’
Lydx' = E —dx’
yax ax/ x

j=1

We could now use (2) and (4) of Proposition 8 to compute Ly w in general, but
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we are really interested in computing L xY. To compute Ly (3/3x') we could
imitate the calculations of Ly dx’; but there would be a complication, because
®h4 on vector fields involves one more composition than ¢4* on covariant vector
fields. The trick needed to deal with this complication has already been used to
prove (3), (4), and (5) of Proposition 8, and we can now use (5) to get the answer
immediately:

o=1_Xa}'i=1_X|:dx"(%j)] (Lxdx)( )+dx( 53—1)

s0 ;
@' (Leggy) = - 7

axJ axJ’

thus,
3 Z. 9 9
7= L S
im
Using (3) we obtain
a . 4a a )
L J____ = J.___
X(b ax-’) Lxb 3x + b7 LX (a 7
n
; da’ 9
-— I_—_
_.ga axi axJ gb axJ axi’

Summing over j and then interchanging i and j in the second double sum we
obtain

;067 ; 02’ ;
Ly¥ = Zl:( il )a,u’ X= Z"a" Y= Zbaxf

This somewhat complicated expressionimmediately leads to a much simpler
coordinate-firee expression for Ly Y. If f: M — N is a C* function, then Y f
is a function, so XY/ = X (Y /) makes sense. Clearly

9 ;of Bb K 3/
xYan = Z axi (Z Bxl) o7 T B +a't! axiaxt’

The second partial derivatives which arise here cancel those in the expression
for Y(X/), and we find that

LyY =XY - YX, also denoted by [X,Y].
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Often, [X,Y] (which is called the “bracket” of X and Y) is just defined as
XY — YX; note that this means

[X.Y1p(/) = X,V /) = Yo (X ).
A straightforward verification shows that
X, Y),(/8) = S(P)X,Y1p(8) + (DX, Y]p(S),
sothat [X, Y], isa derivationat p,andcan therefore be consideredasa member
of M.

We are now in a very strange situation. Two vector fields LxY and [X,Y]
have both been defined independently of any coordinate system, but they have
been proved equal using a coordinate system. This sort of thing irks some
people to no end. Fortunately, in this case the coordinate-free proof is short,
though hardly obvious.

In Chapter 3 we proved a lemma which for the special case of R says that a
C® function f: (—¢&,£) = R with f(0) = 0 can be written

J@) =18(1)

for a C* function g: (—¢,&) — R with g(0) = /(0), namely

1
gm=AIWM&

This has an immediate generalization.

9. LEMMA. If f: (~e,) x M - R is C*® and f(0,p) =0 forall p € M,
then there is a C™ function g: (—¢,¢) x M — R with

S, p) =18(t,p)
af B
5 0 7) =800, p).

PROOF. Define
1
]
g, p) =/ —a—f(xl, p)ds. %
0o 05
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10. THEOREM. If X and Y are C* vector fields, then
LyY =[X,Y].

PROOF. Let [: M — R be C®. Let X generate ¢,, |t| < &. By Lemma 9
there is a family of C* functions g; on M such that

Sope=f+1g
go=X/[.
Then
(@1sY)p(S) = Snu(Yo_u(p) () = Yo_, () (S © B1)
=Ys_u(n (S + han),
pe]

1 1
S P , — g ) _y
},1_% h[)p (D+Y)p1(S) Jim h[(Yf)(P) X )@-r(pP))]
= Jim (Y 1)(@-4(p))
= (LxY/)(p) - (Ygo)(p)
=Xp(Y)) =Y (X/)). %
The equality LxY = [X,Y] = XY — YX reveals certain facts about LyY
which are by 110 means obvious from the definition. Clearly
[X,Y1=~[Y,X], so [X,X]=0.

Consequently,
LyY =-LyX, so LyX=0.

Since we obviously have Ly (aY + bY2) = aLxY, + bLy Y, it follows imme-
diately that L is also linear with respect to X

Lax,+bx,Y =alx,Y +bLy,Y.
Finally, a straightforward calculation proves the “Jacobi identity”:
[X,[Y,Z))+ [Z,[X, Y]+ [Y,[Z,X])=0.
This equation is capable of two interpretations in terms of Lie derivatives:
@ LxlY,Z]1=[LxY,Z]+[Y,LxZ],

(b) as operators on C* functions, we have
Lix,y) = Lx o Ly — Ly o Ly (which might be written as [Lx, Ly]).
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Finally, note that Ly Y is linear over constants only, not over the C* functions F.
In fact, Proposition 8, or a simple calculation using the definition of [X,Y],
shows that

[/X.8Y]= fe[X,Y]+ f(Xg)Y —g(¥ /)X.

Thus, the bracket operation [ , ] is nof a tensor—that is, [X, Y], does not de-
pend only on X, and Y, (which is not surprising—what can one do to two
vectors in a vector space except take linear combinations of them?), but on the
vector fields X and Y. In particular, even if X, = 0, it does not necessarily
follow that [X, Y], = 0—in the formula

X, Y1p() = Xp (¥ ) = Yp (X [)

the first term X, (Y f) is zero, but the second may not be, for X'/ may have a
non-zero derivative in the Y, direction even though (X /)(p) = 0.

The bracket [X,Y], although not a tensor, pops up in the definition of prac-
tically all other tensors, for reasons that will become more and more apparent.
Before procecding to examine its geometric interpretation, we will endeavor
to become more at ease with the Lie derivative by taking time out to prove
directly from the definition of LxY two facts which are obvious from the defi-
nition of [X,Y].

() LxX =o.

If X generates ¢, it certainly suffices to show that (¢p.X), = X, for all A.
Recall that (g X)p = GrXp_,(p)- Now Xg_,(p) is just the tangent vector at

Koon(p)
[102)

time 7 = —/ 10 the curve 7 = @,(p), and thus the tangent vector, at time { =0,
to the curve

v(t) = ¢n(p).
Thus @y Xg_,(p) is the tangent vector, at time ¢ = 0, to the curve

buoy(t) = u(@r-n(P)) = ¢:(P)-

But this tangent vector is just Xj.
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(2) If Xp and Y} are both 0, then LxY (p) =0.

Since Xp = 0, the unique integral curve ¢ with ¢(0) = p and dc/dt = X (c())
issimply c(f) = p (anintegralcurvestartingat p can never get away; conversely,
of course, an integral curve starting at some other point can never get to p).
Then Y, =0 and

(¢h*Y)p = Phx de../. () = [ Yp = @0 =0,

so LyY(p)=0.

To develop an interpretation of [X, Y] we first prove two lemmas.

11. LEMMA. Leta: M — N he a diffeomorphism and X a vector field on M
which generates {¢;}. Then &, X generates {& o ¢, o ™).

PROOF. We have
(0 X)g (/) = [ Xam1()] ()
= an‘l(q)(foa)
= lim L/ e @)@l @) - ( )@ (@)

= 1{"_,“%7],'[f(a oproa” (@)= /(@) %

12. COROLLARY. If a: M — M, thena,X = X ifand only if ¢;0a = a0,
for all 1.

13. LEMMA. Let X generate {¢;} and ¥ generate {¢,}. Then [X,Y]=0if
and only if ¢; o s = Y5 0@y forall s,2.

PROOF. If ¢ o s = Yy 0@, for all s, then ¢;,Y =Y by Corollary 12. If this
is true for all 7, then clearly LyY = 0.
Conversely, suppose that [X, Y] =0, so that

. L1
(%) 0= ’31_210 E[Yq — (PrsY )q] for all g.

Given p € M, consider the curve c: (—¢,&) = M), given by

o) = (¢,*Y)p.
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For the derivative, ¢’(t), of this map into the vector space M, we have

¢ = fim 2le( + 1) = (1)
. 1
= }11270 E[@["H']*Y)p = (Pr+Y)p]
. 1
= hm B @m Y )oes(p) = PrxYo(p]

1
= ¢rs {}'mz[(‘ﬁhsy)w,(p) - Yw—,(l?)]}

= ¢1.(0) using (+) with g = ¢_(p)

=0.
Consequently c(t) = ¢(0), so ¢+Y =Y. By Corollary 12, ¢, o ¥; = Y5 o @, for
all 5,1,

We have already shown that if X'(p) # 0, then there is a coordinate system x
with X = 8/8x'. If Y is another vector field, everywhere linearly independent
of X, then we might expect to find a coordinate system with

il il
FrRR

However, a short calculation immediately gives the result

9 9
{a—w m] =0

so there is no hope of finding a coordinate system satisfying (*) unless [X, Y] = 0.
The remarkable fact is that the condition [X,Y] = 0 is sufficient, as well as
necessary, for the existence of the desired coordinate system.

() X =

14. THEOREM. If Xi,..., Xy are linearly independent C® vector fields in
a neighborhood of p, and [Xa,Xg] = 0 for 1 < a,f < k, then there is a
coordinate system (x, U) around p such that

/\Q,,=5f_—lx on U, a=1...,k.
PROOF. As in the proof of Theorem 7, we can assume that M = R”, that
p =0, and, by a linear change of coordinates, that

3
Xa(0) = 72 a=1,... k.
0
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If X, generates {¢;}, define x by
x@,...,a") = ¢} @%(. .. @%0,...,0,a*, . ,a™)..)).

As in the proof of Theorem 7, we can compute that
4
X\ 3

Thus x = x™! can be used as a coordinate system in a neighborhood of p = 0.
Moreover, just as before we see that

]
XalO)=gg| a=1...k
0

o)= 3

I

a=k+1,...,n

0

il
ax!’
Nothing said so far uses the hypothesis [X¢, Xg] = 0. To make use of it, we
appeal to Lemma 13; it shows that for each & between 1 and &, the map x can
also be written

X1 =

x(@,...,a") =% (@l (... (0,...,0,a5+ . a").. ),

and our previous argument then shows that

a3
« =g <

We thus see that the bracket [X,Y] measures, in some sense, the extent to
which the integral curves of X and Y can be used to form the “coordinate
lines” of a coordinate system. There is a more complicated, more difficult to
prove, and less important result, which makes this assertion much more precise.
If X and Y are two vector fields in a neighborhood of p, then for sufficiently
small /1 we can

(1) follow the integral curve of X’
through p for time /;

(2) starting from that point, follow the
integral curve of Y for time /;

(3) then follow the integral curve of X
backwards for time /;

(4) then follow the integral curve of Y
backwards for time £.
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If there happens to be a coordinate system x with x(p) = 0 and

a . 8
=% =52

then these steps take us to points with coordinates

M (h,0,0,...,0)

(2) (h,h,0,...,0)

3) ©,4,0,...,0)

4) (0,0,0,...,0),
so that this “parallelogiram” is always closed. Even when X and Y are (linearly
independent) vector fields with [X,Y] # 0, the parallelogram is “closed up
to first order”. The meaning of this phrase [an extension of the terminology

“c = y up to first order at 0”, which means that ¢’(0) = y’(0)] is the following.
Let c(/1) be the point which step (4) ends up at,

c(h) = Yo (P (¥h(r(0)).

Then the curve ¢ is the constant curve p up to first order, that is,

15. PROPOSITION. ¢/(0) = 0.
PROOF. If we define
ay (1) = Y (P (P))

(8, h) = ¢ (¥4 (Pn(P)))
as(t, h) = Yo (- (Yuldn(P))),

then

c(t) = as(t,1).
Moreover,
(a) a2(0,1) = a;(4,7)

(b @3(0,1) = e(1,1)
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and for any C* function f: M — R,

(©) —a(faj a) _ Yfoa
(d) W = -Xf0 a2
© o) oy ows
while
oS o
0 AL 0,1y = xf (e 0.0).

Consequently, repeated use of the chain rule gives

(f0c)(0) = Di(f oa3)(0,0) + D2 (S o @3)(0,0)
= Di(f oa3)(0,0)
+ [D1(f 0 @2)(0,0) + D2(f o @2)(0,0)] using (b)
= Di(J 03)(0,0) + Di (S oa2)(0,0)
+ [D1(f 0@1)(0,0) + D2(f 01)(0,0)] using (a).

Thus, (c), (d), (), and (f) give
(J &) () = =Yf(p) = X/(p) + Y () + X[(p) = 0. %

Whenever we have a curve c: (—¢,6) > M with ¢(0) = p and ¢'(0) =0 ¢
Mp, we can define a new vector ¢”(0) or d%c/d?|, by

c"(0)(S) = (S ©€)"(0).

A simple calculation shows, using the assumption ¢'(0) = 0, that this operator c¢” (0)
is a derivation, ¢”(0) € M,. (A more general construction is presented in Prob-
lem 17.) It turns out that for the curve ¢ defined previously, the bracket [X,Y],
is related to this “second order” derivation. Until we get to Lie groups it will
not be clear how anyone ever thought of the next theorem. The proof, which
ends the chapter, but can easily be skipped, is an horrendous, but clever, cal-
culation. It is followed by an addendum containing some additional important
points about differential equations which are used later, and a second addendum
concerning linearly independent vector fields in dimension 2.
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16. THEOREM. ¢"(0) = 2[X,Y],.

PROOF. Using the notation of the previous proof; since (foc)(t) = (foas)(s,?)
we have

() (f20)"(0) = D11 (f 2 @3)(0,0) + 2D2,1 (f °@3)(0,0) + D2,.2(S © @3)(0,0).

Now
0} D11 (f 0@3)(0,0) = Dy(—YSf 0@3)(0,0)  by(e)
=YYf(p) by (e).
\Ve also have
(2) 2D2,1 (f © @3)(0,0)
=2D1(~Y foas) by (e)
=2[Dy(Y/f o @2)(0,0)
+ Do(Y f 0 2)(0,0)] by (b) and the chain rule
=2XYf(p) = 2D2(Y [ 2 22)(0,0) by (d)
=2XYf(p) —2[D1(Y f oa1)(0,0)
+ Dy (Y f 0 1)(0,0)] by (a) and the chain rule

2XY[f(p)—2YYS(p) - 2XY [f(p) by (c) and (f).

Since (b) gives
Da(f o as)(0,5) = Di(f 0 @2)(s,5) + Da(f o @2)(s, ),

we have

(3) D2,2(J ©@3)(0,0) = D1,1(f 0 @2)(0,0) + 2D2,1 (f © @) (0,0)

+ D2,2(f ©02)(0,0)

= Di(—~ X/ 0 2)(0,0) + 2Dz (— X/ 0 2)(0,0)
+ D2,2(/ ©@2)(0,0) by (d)

= XX[(p) = 2[D1(X f o a1)(0,0) + D2(Xf o1)(0,0)]
+ Ds,2(f o @2)(0,0) by (d) and the chain rule

= XXf(p)—2XYXf(p) - 2XX/(p)
+ D2,2(f 0@2)(0,0) by (c)and (f).
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Finally, from
Da(f 002)(0,5) = Di(f 0 @1)(s,5) + Da(f 0 22)(s,5) [from (a)]
we have

(4)  D22(f 0a2)(0,0) = D1,1(f o @1)(0,0)
+2D2,1(f ©@1)(0,0) + D2,2(f © @1)(0,0)
=YY[f(p)+2XYS(p)+ XX/ (p)
by (c} and (f).

Substituting (1)-(4) in () yields the theorem. o
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ADDENDUM 1
DIFFERENTIAL EQUATIONS
Although we have always solved differential equations
i
o x) = fle@,x)
with the initia} condition
«(0,x) = x,
we could just as well have required, for some ¢, that
a(to,x) = x.
To prove this, one can replace 0 by fo everywhere in the proof of Theorem 2,
or else just replace a by > a (1 —19,x).

Another omission in our treatment of differential equations is more glaring:
the differential equations a’(1) = f(a(r)) do not even include simple equations
of the form a'(r) = g(¢), let alone equations fike a’(r) = ta(t). In general, we
would like to solve equations

il

5720x) = J(Le(s,x))

a(0,x) =x,

where f: (—c,¢) x U > R". One way todo this is to replace f((t,x)) by
J(t,a(t,x)) wherever it occurs in the proof. There is also a clever trick. Define

I (—c,0) x U = R*™
by ~

JGs,x) = (1, f(s,x)).
Then there is a flow (&',&%) = @: (~b,b) x W — R x R” with

a v  — v -
& 5,x) = J(@(t,5,x))
@(0,s,x) = (s, x).

For the first component function &' this means that

d =1
e s,x)=1

a@'(0,s,x) =s;
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thus
&', s,x) =s+1.

For the second component &2 we have

%zizu,s,x) = f(@(t,s,x))
= J@ (t5,x),@ (1, 5,x))
= [(s+1,@%(t,5,X)).

Then
B, x) = &,0,x)

is the desired flow with
il
58®X) = /1.8, )
B(0,x) =x.

Of course, we could also have arranged for §(t0,x) = x (by first finding &
with &(to,s, x) = (5,x), not by considering the curve 1 +> B(t —10,X))-
Finally, consider the special case of a linear differential equation

o'(t) = g()-a(r),
where g is an 17 x 7 matrix-valued function on (a, b). In this case
J,x)=g() - x.
If ¢ is any n x n (constant) matrix, then
(c-a)(t)=c-a'(t) =g(t) c-a()

soc-aisalso asolution of the same differential equation. This remark allows us
to prove an important property of linear differential equations, distinguishing
them from general differential equations a’(1) = f(7,«(t)), which may have
solutions defined only on a small time interval, even if f: (a,b) x R" — R"
is C*°.

17. PROPOSITION. If g is a continuous n x n matrix-valued function on
(a,b), then the solutions of the equation

a'(l) =g(t) a)
can all be defined on (a, b).
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PROOF. Notice that continuity of g implies that f(z,x) = g(f) - x is locally
Lipschitz. So for any to € (a, b) we cansolve the equation, with any given initial
condition, in a neighborhood of to. Extend it as far as possible. If the extended
solution « is not defined for all r with 7o <t < b, let 1; be the least upper bound
of the set of ¢’s for which it is defined. Pick g with

B'(t1)=g()-B(t) fort near
B(n) #0.

Then B(t*) # 0 for t* < 1) close enough to ;. Hence there is ¢ with
(c-B)*) = a(t*).

By uniqueness, ¢ - B coincides with a on the interval where they are defined.
i lus @ may be extended past #; as ¢ - §, a contradiction. Similarly, @ must be
defined for all f witha <1 <19. %%
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ADDENDUM 2
PARAMETER CURVES IN TWO DIMENSIONS

If /: U — M is an immersion from an open set U C R” into an »-dimen-
sional manifold M, the curve ¢ — f(ai,...,8;-1,,Q141,...,a,) is called a
parameter curve in the /™ direction. Given n vector fields X1,..., X, defincd
in a neighborhood of p € M and linearly independent at p, we know that there
is usually no immersion f: U — M with p € f(U), whose parameter curves
in the i™ direction are the integral curves of the X;—for we might not have
[Xi, X;] = 0. However, we might hope to find an immersion /f for which the
parameter curves in the i direction lie along the integral curves of the X;, but
have different parameterizations. A simple example (Problem 20) shows that
even this modest hope cannot be fulfilled in dimension 3.

On the other hand, in the special case of dimension 2, such an imbedding
can be found:

18. PROPOSITION. Let X}, X, be linearly independent vector fields in a
neighborhood of a point p in a 2-dimensional manifold M. Then there s
an imbedding /: U — M, where U C R? is open and p € f(U), whose it
parameter lines Jie along the integral curves of Xj.

PROOF. We can assume that p = 0 € R? and that X;(0) = (e;)o. Every
point ¢ in a sufficiently small neighborhood of 0 is on a unique integral curve
of X; through a point (0,x?(g))—we proved precisely this fact in Theorem 7.
Similarly, ¢ is on a unique integral curve of X> through a point (x'(g),0).

A
x*(g)
)

The map ¢ — (x"(¢),x2(g)) is C, with Jacobian equal to I at 0 (these facts
also follow from the proof of Theorem 7). Its inverse, in a sufficiently small
neighborhood of 0, is the required diffeomorphism. <
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We can always compose / with a map of the form (x,y) — (a(x), B(»))
for diffeomorphisms @ and B of R, which gives us considerable flexibility. If,
for example, C C R? is the graph of a monotone function g, then the map

>
e

(x,y) = (x, 8())) takes the diagonal {(x, x)} to C. Moreover, for any particular
parameterization ¢ = (c1,¢3): R — R? of C, we can further arrange that ¢(?)
maps to (c(t),¢(t)), by composing with (x,y) — (¢;”'(x), ). Consequently,
we can state

19. PROPOSITION. Let X, X2 be linearly independent vector fields in a
neighborhood of a point p in a 2-dimensional manifold M, and let ¢ be a
curve in M with ¢(0) = p and ¢’(¢) never a muluple of X; or X3. Then there
is an imbedding /: U — M, where U C R? is open and p € f(U), whose ijth
parameter lines lie along the integral curves of Xj, and for which f(s,7) = ¢().
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PROBLEMS

L (@Ifa:M— NisC™ thena,: TM — TN is C*.

(b) If @: M — N is a diffeomorphism, and X is a C* vector field on M, then
axX is a C™ vector field on N.

(© Ifa:R—>Risa(t)= 13, then there is a C® vector field X on R such that
a, X is not a C™ vector field.

2. Find anowhere 0 vector field on R such that all integral curves can be defined
only on some interval around 0.

3. Find an example of'a complete metric space (M, p) and a function /: M —
M such that p(f(x), f(¥)) < p(x,y) forall x, y € M, but f has no fixed point.

4. Let f: (=c,c) x U x V — R" be C*, where U,V C R" are open, and let
(X0, Yo) € U x V. Prove that there is a neighborhood W of (xo, yo) and a num-
ber b > 0such that for each (x, y) € W there is a unique & = a(x,y): (—b,b) -
U with ¢’(1) € V for t € (—b,b) and

a"(t) = f(t,a(r),a'(1)
«(0) = x
o'(0) = y.

Moreover, if we write a(y,,) (1) = a(t, X, y), then a: (~b,b) x W — U is C*.
Hinl: Consider the system of equations

a'(0) = B()
B'(1) = f(t,a(1), B(1)).

5. We sometimes have to solve equations “depending on parameters”,
i
(x) 5oLy, X) =Sy, 0l y,x))
(0, y,x) = x,

where f: (—c,¢) x V x U — R", foropen U C R" and V C R™, and we are
solving for a(y x): (=b,b) = U for each initial condition x and “parameter” y.
For example, the equation

o'(1) = ya(r)
«(0) = x,
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with solution
a(t) = xe”’,

is such a case.

(a) Define )
fi(=c,o)xV xU—>R"xR"

by

Sy, x) = (0,1, y,x)).
If (@',a%) = &: (=b,b) x W —» R™ x R" is a flow for fina neighborhood of
(Y0, X0), so that
9 -
5,8(6yx) = Sa(, y,x)
(0, y,x) = (y,x),

show that we can write

a(t, y,x) = (y,a(t, y,x))
for some a, and conclude that « satisfies (*).
(b) Show that equations of the form
() ;;a(t,x) = f(t,x,a(t,x))
a(0,x) =x

can be reduced to equations of the form () (and thus to equations
]
g7 x) = f(a(t,x),

ultimately). [When one proves that a C* function f: U — R" has a C¥ flow
a: (—b,b) x W — U, the hard part is to prove that if [ is C!, then a is
differentiable with respect to the arguments in W, and that if the derivative with
respect to these arguments is denoted by Daa, then

() Dy Dya(t,x) = Daf(a(t, x)) - Dac(t, x)
{a result which follows directly from the original equation
Dya(t,x) = fla(t,x))

if [ is C?,since Dy D> = D2 Dy). Since (#+#) is an equation for Dya of the
form (##), it follows that Daa is differentiable if D,/ is CY, ie., if [ is C%
Differentiability of class C¥ is then proved similarly, by induction.]
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6. (a) Consider a linear differential equation
(1) = g()e(r),

where g: R -» R, so that we are solving for a real-valued function @. Show
that all solutions are multiples of

a(t) = efg(l)dl

where [ g(1) dr denotes some function G with G'(1) = g (one can obtain all
positive multiples simply by changing G). The remainder of this problem inves-
tigates the extent to which similar results hold for a system of linear differential
equations.
(b) Let A = (ai;) be an n x n matrix, and let 4] denote the maximum of all
|aij|. Show that

14 + Bl =141 + 18l

14B| < nl4l-1Bl.
(c) Conclude that the infinite series of 7 x n matrices
A=el=T+4 LN
expA=e" =1+ +2—!+j+—4!—+"'

converges absolutely [in the sense that the (i, /)¥ entry of the partial sums
converge absolutely for each (i, j)] and uniformly in any bounded set.
(d) Show that

exp(TAT"') = T (exp AT

(e) If AB = BA, then
exp(4 + B) = (exp A)(exp B).

Hint: Write

2N N N

(4 +B)? A° B?
Z o =(Zp!)(zp|)+R’V
p=0 p=0 p=0

and show that [Ry|-»> 0as N -» co.
(f) (exp A)(exp—A) = I, so exp A is always invertible.
() The map exp, considered as a map exp: R™ > R is clearly differentiable
(it is even analytic). Show that
exp'(0)(B) = B (= exp(0) - B).

(Notice that for | A[, the usual norm of A € R"Z, we have |A4| < 14l < n|A|.)
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(h) Use the limit established in part (g) to show that exp’(4)(B) = exp(4) - B
if AB= BA.
(i) Let A: R > R™ be differentiable, and let

B(r) = exp(A(r))-

If B’(t) denotes the matrix whose entries are the derivatives of the entries of B,
show that

B'(1) = A'(1) - exp(A(1)),
provided that A(1)A'(1) = A'(1)A(r). (This is clearly true if A(s)A(r) = A(1) A(s)

for all 5,7.)
(j) Show that the linear differential equation

a'(t) =g)-a)

a(r) = exp (/01 g(s) ds)

provided that g(s)g(1) = g(1)g(s) for all 5,¢. (This certainly happens when g(r)
is a constant matrix A, so every system of linear equations with constant co-
efficients can be solved explicitly—the exponential of fot g(s)ds = t A can be
found by putting 4 in Jordan canonical form.)

has the solution

7. Check that if the coordinate system x is x = x~', for x: R" — M, then
X = 8/3x" is equivalent to x,(9/0:") = X o x.

8. (a) Let M and N be C* manifolds. For a C*® function f/: M x N - R
and g € N, let f(-,q) denote the function from M to R defined by

P f(p.g)
If (x,U) is a coordinate system on M, show that the function d//3x, defined
by
af A/ (-5q9)
W(P,fl) = T(P),

is a C* functionon M x N.
(b) If ¢: (—&,6) x M — M is a l-parameter group of diffecomorphisms, show
that for every C* function f: M — R, the limit

m 2761 = /(p)]

li
h—0
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exists, and defines a C* function on M.
(©) If ¢u: (—&,6) x TM — TM is defined by

:(1,9) = ¢ri(v),

show that ¢, is C, and conclude that for every C* vector field X" and covari-
ant vector field @ on M, the limit

R P
- - w(X,
lim ~[(6470)(Xp) - 0(X,)]
exists and defines a C* function on M.
(d) Treat LxY similarly.
9. Give the argument to show that ¢4.Ys_,(p) = ¥p in the proof of Proposi-
tion 8.

10. (a) Prove that

Ly(f-o)=Xf w+ [ Lyw
Lylo¥)] = (Lyo)(Y)+w(LxY).

(b) How would Proposition 8 have to be changed if we had defined (LxY )(P)
as

1
1 —_— — ?
Jim - [(@neY)p — Yp)?

11. (a) Show that
$*(df )Y) = Y(f o¢).

(b) Using (a), show directly from the definition of Ly that for ¥ € M),
[Lx df(P))(Yp) = Yp(Lx f),

and conclude that
Lydf =d(Lxf).

The formula for Ly dx?, derived in the text, is just a special case derived in an
unnecessarily clumsy way. In the next part we get a much simpler proof that
LyY = [X,Y], using the technique which appeared in the proof of Proposi-
tion 15.
(©) Let X and Y be vector fields on M, and f: M — R a C* function. If X
generates {¢,}, define

a(t,h) = Yy_p)(f o Pn)-
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Show that

Dya(0,0) = —X,(YS)
Daa(0,0) = Yp(X ).

Conclude that for c(h) = a(h, h) we have
='0) = LxY(P)(f) = [X,Y1p(/).

12. Check the Jacobi identity.
13. On R? let X, Y, Z be the vector fields

9 ]
X =z— — y—
ay ’vaz
9 9
Y=—Za—x+«\5
] ]
z ya—/‘—,\g;

(a) Show that the map
aX +bY +¢Z > {(a,b,c) € R?

is an isomorphism (from a certain set of vector fields to R?) and that [U, V] >
the cross-product of the images of U and V.

() Show that the flow of aX +bY +cZ is a rotation of R® about some axis
through 0.

14. If A is a tensor field of type (II‘) on Nand ¢: M — N is a difleomorphism,
we define ¢*A4 on M as follows. If vy,..., v € Mp, and Ay,...,A; € Mp*, then

[p* A(P) (1, -, vk, Aty e ey Ay)
= A(B(P)(Davts- -, Bak, (@) As e, (7N,

(a) Check that under the identification of a vector field [or covariant vector
field] with a tensor field of type (§) [or type (3)] this agrees with our old ¢*Y.
(b) If the vector field X on M generates {¢,}, and 4 & a tensor field of type (’,‘)
on M, we define

(LxA)(P) = Jim 210" A)P) — AP
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Show that
Lx(A+ B)= LxA+ LxB
Lx(A®@B)=(LxA)@ B+ AQLxyB
(so that
Lx(fA)=X{()A+ [LxA),
in particular).

(¢) Show that
Lx,.).sz =Ly A+ L){zA

Hint: We already know that it is true for 4 of type (g), (?), ((', .

@ Let
C: YY) = T W)

be any contraction

(CT)(vt, s V=13 A 150 himy)

= contraction of

W A) > T(01, 0 Va1, U Vet dy s Vh— 5 A A A Agagyene,

Show that
Lx(CA) = C(Ly A).

175

Ar-1).

(e) Noting that A(X, ..., Xk, w1,...,@;) can be obtained by applying contrac-
tions repeatedly 0 A @ X @+ - @ Xk Q1 @ -+ - @ wy, use (d) to show that

Ly(A(X1,...., Xk, 01,..., @)
= (LxA)(X1,..., X, 01,...,07)

A LK K

i
+ZA(X.,...,Xk,w.,...,wa,-,...

(f) 1f A has components A7*" “J1in a coordinate system x and X = Z a'd/ax’,

g
show that the coordinates of Ly A4 are ngen by
n vt

Jie JI_ i 'l 'k Jreedo— Jlat J!
Ly =2 a S e

i=l o=l j=I|

i
Juedi
+ ZZAH To— ) Tig41 el aY’ﬂ"

a=l i=|
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15. Let D be an operator taking the C* functions F to F, and the C* vector
fields V to V, such that D: # — F and D: 'V — 'V are linear over R and

DUY)=/-DY +Df-Y.

(a) Show that D has a unique extension to an operator taking tensor fields of
type (’,‘) to themselves, such that

(1) D is linear over R
(2) D(A®B)=DA®B+ AQ® DB
(3) for any contraction C, DC = CD.

If we take Df = X[ and DY = LxY, then this unique extension is Lx.
(b) Let A be a tensor field of type (:), so that we can consider A(p) € End(Mp);
then A(X) is a vector ficld for each vector field X. Show that if we define
Daf =0, D4X = A(X), then D4 has a unique extension satisfying (1), (2),
and (3).
(c) Show that

(Daw)(p) = =A(p)* (@(p))-

(d) Show that
Lrx = fLx — Dxgdy.

Hint: Check this for functions and vector fields first.

() If T is of type (3), show that

n n n
DaT)f =3 T AL+ > T al -y TH A2
o=l =l o
Generalize to tensors of type (’l‘)
16. (a) Let /: R — Rsatisfy //(0) = 0. Define g(¢) = f(«/t_) for 1 > 0. Show
that the right-hand derivative

/ . h) —g0)  J"(0)
0) =1 ig(— =
g+( ) Il—l)n(;l+ h 2

(Use Taylor’s Theorem.)

(b) Given ¢: R — M with ¢/(0) = 0 € M,, define y(1) = ¢(+/7) for ¢ > 0.
Show that the tangent vector ¢”(0) defined by ¢”(0)(J/) = (/f o¢)"(0) can also
be described by ¢”(0) = 2y’(0).
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17. (a) Let f: M — R have p as a critical point, so that f,p = 0. Given
vectors Xp, Y, € Mp, choose vector fields X, ¥ with X, = X, and ?p =Y,
Define

FoulXp, V) = X (¥,
Using the fact that [X,Y1,(f) = 0, show that fu(Xp,Y)) is symmetric, and

conclude that it is well-defined.
(b) Show that

i
f“(ga ax?

(c) The rank of (32f/dx'3x/(p)) is independent of the coordinate system.
(d) Let /: M — N have p as a critical point. For X,,Y, e Mandg: N - R
define

]

n
, b —
» ; axJ

I 9
—_ § 1h)
p) =2 b axiox/ (p):
ij=I

SalX,Y)(g) = Xp(Y(g o 1))

Show that
Jaxt Mp x Mp — Ny(py

is a well-defined bilinear map.
(e) If ¢: R — M has 0 as a critical point, show that

Cu(o)f Ro x Ro — Mc(o)

takes (lg, lp) to the tangent vector ¢”(0) defined by c”(0)(/) = (/ o ¢)"(0).

18. Let ¢ be the curve of Theorems 15 and 16. If x is a coordinate system
around p with x(p) =0, and

>

X, Y], = Za ax‘
show that ) )
xe(n) = d'1* +o(r?),
where 0(72) denotes a function such that
lim o(z2)/1% = 0.
=0

19. (a) If M is compact and 0 is a regular value of /: M — R, then there is
a neighborhood U of 0 € R such that /~!(U) is diffeomorphic to /~'(0) x U,
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by a diffeomorphism ¢: f~1(0) x U — f~1(U) with f(¢(p,1)) = t. Hint:
Use Theorem 7 and a partition of unity to construct a vector field X on a
neighborhood of f~1(0) such that f,X = d/dt.

(b) More generally, if M is compact and g € N is a regular value of f: M —
N, then there is a neighborhood U of g and a diffeomorphism¢: f~!(q)x U —
S7HU) with f($(p.9") =1q"-

() It follows from (b) that if all points of N are regular values, then /~!(g;)
and [ ~'(g,) are diffeomorphic for g1,g2 sufficiently close. If 1 is onto N, does
it follow that M is diffeomorphic to f~!(g) x N?

20. InR3,let Y and Z be unit vector fields always pointing along the y- and
c-axes, respectively, and let X will be a vector field one of whose integral curves
is the x-axis, while certain other integral curves are parabolas in the planes
y = constant, as shown in the first part of the figure below. Using the second
part of the figure, show that Proposition 18 does not hold in dimension 3.




CHAPTER 6
INTEGRAL MANIFOLDS

PROLOGUE
A mathemaltician’s reputation rests on Beauty is the first test: there is no
the number of bad proofs he has given. permanent place in the world for
[Pioneer work is clumsy] ugly mathematics.
A.S. Besicovitch,
quoted in]J. E. Littlewood, G. H. Hardy,
A Mathemaician’s Miscellany A Maihematician’s Apology

In the previous chapter, we have seen that the integral curves of a vector field
on a manifold M may be definable only for some small time interval, even
though the vector field is C* on all of M. We will now vary our question
a little, so that global results can be obtained. Instead of a vector field, sup-
pose that for each p € M we have a I-dimensional subspace A, C M,. The
function A is called a 1-dimensional distribution (this kind of distribution has
nothing whatsoever to do with the distributions of analysis, which include such
things as the “6-function”). Then A is spanned by a vector field locally; that 1s,
we can choose (in many possible ways) a vector field X such that 0# X, € A,
for all ¢ in some open set around p. We call A a C* distribution if such a
vector field X can be chosen to be C* in a ncighborhood of each point.

For a I-dimensional distribution the notion of an integral curve makes no
sense, but we define a (1-dimensional) submanifold N of M to be an integral
manifold of A if for every p € N we have

is(Np) = Ap where i: N — M is the inclusion map.

For a given p € M, we can always find an integral manifold N of a C*®
distribution A with p € N; we just choose a vector field X with 0 # X, € A,
for ¢ in a neighborhood of p, find an integral curve ¢ of X with initial condition
¢(0) = p, and then forget about the parameterization of ¢, by defining N to be
{c(1)}. This argument actually shows that for cvery p € M there is a coordinate
system (X, U) such that for each fixed set of numbers a?,...,a", the set

{g e U:x%g)=a?...,x"(q) =d"}
179



180 Chapter 6

is an integral manifold of A on U, and that these are the only integral manifolds
inU.

This is still a local result, but because we are dcaling with submanifolds,
rather than curves with a particular parameterization, we can join overlapping
integral submanifolds together. The entire manifold M can be written as a
disjoint union of connected integral submanifolds of A, which locally look like

(rather than like

N
Il

or something even more complicated). For example, there is a distribution
on the torus whose integral manifolds all look like the densc 1-dimensional

6».'
submanifold pictured in Chapter 2. On the other hand, there is a distribution
on thie torus which has one compact connected integral manifold, and all other

Gl
6««&

integral manifolds non-compact. It happensthat the integral manifolds of thesc
two distributions are also the integral cunves for certain vector fields, but on the
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Mabius strip there is a distribution which is spanned by a vector field only
locally.

We are leaving out the details involved in fitting together these local integral
manifolds because we will eventually do this over again in the higher dimen-
sional case. For the moment we will investigate higher dimensional cases only
locally.

A k-dimensional distribution on M is a function p +— Ap, where A, C M,
is a k-dimensional subspace of M. For any p € M there is a neighborhood U
and & vector fields X, ..., Xg such that Xi(g),..., Xk(g) are a basis for Ag,
for each g € U. We call A a C* distribution if it is possible to choose C*
vector felds X7, ..., X4 with this property, in a ncighborhood of each point p.
A (k-dimensional) submanifold N of M is called an integral manifold of A if
for every p € N we have

i«(Np) = B, where i: N — M is the inclusion map.

Although the definitions given so far all look the same as the 1-dimensional
case, the results will look very different. In general, integral manifolds do not
exast, even locally.

As the simplest cxample, consider the 2-dimensional distribution A in R? for
which Ap = Ag,b,c) is spanned by

i +bi and i
ax|, 9z, arl,
Thus
a a a
Bp=r —| +s— e
’ { ox |, Sa):‘p.‘-b’a:p"’SER}'

If we identify TR? with R* x R3, then A, consists of all (r,5,br),. Thus A,
may be pictured as the plane with the equation

z—~c=bx -a).
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The figure below shows A, for points p = (a, b,0). The plane Ag,p,c) through
(a, b, ¢) isjust parallel to the one through (a, b,0).

=ty =
g

%/%&&&&

If vou can picturc this distribution, you can probably see that it has no integral
manifolds; a proof can be given as follows. Suppose there were an integral
manifold N of A with 0 € N. The intersection of N and {(0,,z)} would be a
curve y in the (y, 2)-plane through 0 whose tangent vectors would have to lie
in the intersection of A, ;. ;) and the (¥, z)-plane. The only such vectors have
third component 0, so y must be the y-axis. Now consider, for each fixed o,
the intersection N N {(x, »,z)}. This will be a curve in the plane {(x, yo,2)}
through (0, yo,0), with all tangent vectors having slope Yo, so it must be the
linc {(x, yo, yox)}. Our intcgral manifold would have to look like the following
picture. But this submanifold cloes not work. For example, its tangent space at
(1,0,0) contains vectors with third component non-zero.

N
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To see in greater detail what is happening here, consider the somewhat more
general case where A(g,b,c) = Ap is
a
:rseRy;
»

d
Bp = {" ™ + [rfla,b) + sg(a,b)] %

geometrically, A, is the plane with the equation

c—c= fla,b)(x — a) +g(a,b)(y - b).

+Sa
ay

P P

Asin the first example, the plane A(gs,¢) through (a,b,¢) will be parallel to
the one through (a, b, 0), since f and g depend only on @ and b.

We now ask when the distribution A has an integral mantfold N through each
point. Since A, is never perpendicular to the (x, y)-plane, the submanifold is
given locally as the graph of a function:

N ={(x,y,2) 1 z = a(x, )}

/

Now the tangent space at p = (a, b, a(a, b)) is spanned by

il da il
e +§({I’b)6—:p’
il da ]
— +—a,b)—‘ .
ayL ay( dz »

These tangent vectors are in A, if and only if
d
J(a,b) = 3 (@b),
9
8(a,b) = 5 @,0)-

Sowe need to find a function @: R? = R with

(*)

dor da
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It is well-known that this is not always possible. By using the equality of mixed
partial derivatives, we find a necessary condition on / and g:

A _ %
0ex) ay T ax
In our previous example,
il
f(a,b):b, ——f—-=l,
dy
dg
b)) = = =
gla,b) =0, 3 0,

so this necessary condition is not satistied. It is also well-known that the neces-
sary condition (xx) is syfficient for the existence of the function « satisfying (x) in
a neighborhood of any point.

0. PROPOSITION. If f,g: R? — R satisfy

) of _og
(e y  dx

in a neighborhood of 0, and zo € R, then there is a function «, defined in a
ncighborhood of 0 € R?, such that

«(0,0) =z
dor
) =
do
ay &

PROOF. We first define a(x,0) so that «(0,0) = = and

’ a(x,0)

~0

da
0} a—E(X’O) = f(x.0);

namely, we define

a(x,0) =Io+/ f,0)dt.
0



Integral Manifolds 185

Then, for each x, we define (X, }) s that

da
() 57 (x, ) =g(x,»);

namely, we define
y
a(x,y) = a(x, 0) +/ 8(x, 1) dr
0

x ¥y
=zo+/ f(t,O)d1+/ g(x,t)dt
0 0

This construction does not use (x#), and always provide us with an «a satisfy-
ing (2), da/dy = g. We claim that if (x+) holds, then also da/dx = f. To prove
this, consider, for each fixed X, the function

do
y e 5;(,\,};) = f(x,p)

This is 0 for 3 = 0 by (I). To prove that it equals 0 for all y, we just have to
show that its derivative is 0. But its derivative at y is

%« FE 3
ayax (x,y)— f (x, y)——~(a—z)(x,y)—l(x,y)
f

(%, y)——yz\ ,y) by (2)

3g
T ax
=0 by (#%). %

Wcare now ready to look at essentially the most general case of a 2-dimen-
sional distribution in R3:
d
% rnseRy,
“lp

)
b= {a“
N ={(x,y,2) : 2 = a(x, )}

3
+ sa—);‘p + [rf(p) + sg(p)]

where f,g: R — R. Suppose that
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is an integral manifold of A. The tangent space of N at p = (a,b,a(a,b)) is
spanned, once again, by

9
ax|,

dor ]
P apy Z
+ Bx(a’ )82L’

(a,b)

A L _‘9_‘
ayl, dy dz|,"

These tangent vectors are in A, if and only if

F(abrata,b) = (a,b),
ax

) do
gla,b,a(a,b)) = a—);(a, b).

In order to obtain neccssary conditions for the existence of such a function a,
we again use the equality of mixed partial derivatives. Thus () and the chain
rule imply that

2o af af da

F T (a,b) = y(a,b,rx(ﬂ,b))+ E(a,b,a(a,b)) : a(ﬂ,b)
1

0% ag do

3y —(a,b) = —(a b,a(a,b)) + E(a,b,a(a,b)) . 5; (a,b).

This condition is not very useful, since it still involves the unknown function «,
but we can substitute from (*) to obtain

gé(a,b,o((a,b)) + g—{(a,b,cx(a,b)) - gla,b,a(a,b))
= %(a,b,a(a,b)) + %‘E—'(a,b,a(a,b)) - fla,b,a(a,b)).

Now we are looking for conditions which will be satisfied by / and g when
there is an integral manifold of A through every point, which means that for each
pair (a, b) these equations must hold no matter what (4, b) is. Thus we obtain
finally the necessary condition

VLY s

() 3y 3/..g—3x 9z
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In this more general case, the necessary condition again turns out to be suf-
ficient. In fact, there is no need to restrict ourselves to equations for a single
function defined on R?; we can treat a system of partial differential equations
for » functions on R™ (i.e., a partial differential equation for a function from R”
to R"). In the following theorem, we will use ¢ to denote points in R™ and x
for points in R"; so for a function f: R™ x R" — R* we use

af

T for D;f,
a
Kf.i for Dpyif.

1. THEOREM. Let U x V € R™ x R" be open, where U is a neighborhood
of 0 € R™, and let fi: U x V — R" he C* functions, fori = |,...,m. Then
for every x € V, there is at most one function

a: WV,
defined in a neighborhood W of 0 in R™, satisfying

a(O) =X
(+)
611 (1) = fi(t,a(1)) forallze W.
(More precisely, any two such functions @1 and a3, defined on Wy and Ws, agree
on the component of Wy N W, which contains 0.) Moreover, such a function
exists (and is automatically C*) in some neighborhood W if and only if there
is a neighborhood of (0,x) € U x V on which

o _ 3f; ik -
2L — — = =1...,m.
I T Zaak P k=0 b "

PROOF. Uniqueness will be obvious from the proof of existence. Necessity of
the conditions (##) is left to the reader as a simple exercise, and we will concern
oursclves with proving existence if these conditions do hold. The proofwill be
like that of Proposition 0, with a different twist at the end.

We first want to define «(7,0,...,0) so that

«(0,0,...,0) =x

1
0 :%(1,0,...,0)=f1(1,0,..,O,a(r,o,...,o)).
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To do this, we consider the ordinary differential equation
B1(0) = x
Bi'(1) = £1(1,0,...,0, Bi(1)).
This equation has a unique solution, defined for |t < &;. Define
a1, 0,...,0) = Bi(7) 1] < &;.

Then (1) holds for |} < &;.
Now for each fixed 7' with |¢!] < &1, consider the equation

£2(0) =a(e',0,...,0)

B2'(1) = /a(t',1.0,...,0, Ba(0)).
This has a unique solution for sufficiently small . At this point the reader must
refer back to Theorem 5-2, and verify the following assertion: If we choose &,
sufficiently small, then for {#!] < g the solutions of the equations for B, with

the initial condlitions B(0) = (71,0, ...,0) will each be defined for 7] < & for
somie &3 > 0. We then define

a(t!,1,0,...,0) = Ba(1) it < ey, 1] < e
Then
«(0,0,0,...,0) = x
da 1 1
] F0060,....0) = fa(1",1,0,...,0,a(:",1,0,...,0))

11" < e, 11l < €2

We claim that for each fixcd ! with |t!] < g we also have, for all 7 with |¢] < &5,
a
@ 0=80)= Z1(".0,....0 = A(T'.1.0,....0,a(",10,...,0)).

Note first that
“) g(0)=0 by ().

We now derive an equation for g’(#). In the following, all expressions involv-
ing « are to be evaluated at (¢!, 4,0,...,0) and all expressions involving f; are
to be evaluated at (¢1,4,0,...,0,a(s!,40,...,0)). We have

a3y & 9, dak

=220 T 92 T L oxk a2’
k=1

g'w)
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and thus
a a a
6 80 = (3) - -3 Lo g by 2
k=)

k n
g,flz z 8fs b of; Z % zk by (2) again
=1

S B ]
k=1

axk
3/i Z": ofi sk -
- N2 g by definition, (3)
ok
ar2 e ax
il
Z fo ok 8 k(1) by (#%).

Now equation (5) is a differential equation with a unique solution for each
initial condition. The solution with initial condition g(0) = 0, given by (4), is
clearly g(7) = 0 for all 7. So (3) is true.

It is a simple exercise to continue the definition of @ until it is eventually
defined on (—¢),&)) X +«+ X {(—&n, &,) and satisfies (x).

Theorem 1 essentially solves for us the problem of deciding which distributions
have integral manifolds. Our investigation of the problem so far illustrates one
basic fact about theorems in differential geometry:

Many of the fundamental theorems of diflerential geometry fall into
one of two classes. The first kind of theorem says that if one has a
certain nice situation (e.g., a distribution with integral submanifolds
through every point) then certain other conditions hold; these con-
ditions are obtained by setting mixed partials equal, and are called
“integrability conditions”. The second kind of theorem justifies this
terminology, by showing that the “integrability conditions” are suffi-
cient for recovering the nice situation.

The remaining parts of our investigation, in which we will essentially begin
anew, illustrates an even more important fact about the theorems of differential
geometry:

There are always incredibly concise and elegant ways to state the in-
tegrability conditions, and prove their sufficiency, without ever even
mentioning partial derivatives.
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LOCAL THEORY

If f: M — N isa C® function, and X and Y are C® vector fields on M
and N, respectively, we say that X and Y are f-related if f,p{(Xp) = Yy(p) for
each pe M. If g: N - R is a C* function, then

Yripy(e) = fupXple)

= Xp(go f),
s Fg)o f=X(fog).
Conversely, if this is true for all C* functions g: N — R, then X and Y are

f-related.

Of course, a given vector field X may not be f-related to any vector field Y,
nor must a given vector field ¥ be f-related to any vector field on M. In one
case, the latter condition is fulfilled:

2. PROPOSITION. Let f: M — N be a C*™ function such that f is an
immersion. If Y is a C* vector field on N with

Yrip) € Jox(Mp),
then there is a unique C* vector field X on M which is f-related to Y.

PROOF. Clearly we must define X, to be the unique element of M, with
Yrp) = JpxXp. To prove that X is C*°, we use Theorem 2-10(2): there are
coordinate systems (x, U) around p € M and (y, V) around f(p) € N such
that

yo fox'(d',...,a") =(a',...,a",0,...,0).

This is easily seen to imply that

] ]
S (_, ) _al
x|, Wl
Thus if L
Y =%o-L
where o are C* functions, then .

; @
X = f—
2 ﬂ ax’ '
where &/ o f = B7. This implics that the functions B’ are C® (Problem 3). «

The most important property of f-relatedness for us is the following:

3. PROPOSITION. If X; and Y; are f-related, for i = 1,2, then [X}, X>] and
[Y1,Y,] are f-related.
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PROOF. 1f g: N = Ris C®, then

U] (Yig)e f=Xi(go f) i=12

So

{.Yalglo [ ={h(Yag)lo f —{Va(Yig)}o f
= Xi([Y2glo /) — Xa([Y1gl o f)
by (I), with g replaced by Y,g and Y;g, respectively

=Xi(X2(go f)) — Xa(Xi(go /) by(l)
=[X,Xlge f). %

Now consider a k-dimensional distribution A. We will say that a vector
field X belongs to A iff X, € A, for all p. Suppose that N is an integral
manifold of A, and/: N — M is the inclusion map. If X and Y are two vector
fields which belong to A, then for all p € N there are unique X, Y, € N, such
that _ _

X, =in K, Yp =0,
In other words, X and X are i-related, and Y and ¥ are i-related. Proposition 2
shows that X and ¥ are C® vector fields on N, and Proposition 3 then shows
that [X,¥] and [X,Y] are i-related. Thus
ix[“—/’ 7]17 =[X, Y]
Here [X, Y], € Np; this therefore shows that [X,Y], € A,. Consequently, if
there is an integral manifold of A through every point p, then [X,Y] also belongs

o A
For 2 moment look back at the distribution A in R? given by

a ad d
Ay = {r — 2 . L .
, {: HIREE [rf(p)+sg(p)]azL-',seR}.
The vector fields 3
X = ™ +fa_
a a
Y= 8) +g52

belong to A. Using the formula on page 156, we see that
dg 4 f dg B af\ 3
X Y]=—=-=— - .
[ J ( ax 9 y 9z 34 e
Thisbelongs to A only when the expression in parentheses is 0, which is precisely
the condition for A to have an integral manifold through every point.
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In general, A is called integrable if [X, Y] belongs to A whenever X and Y
belong to A. This condition can be checked fairly easily:

4. PROPOSITION. If Xy,..., Xk span A in a neighborhood U of p, then A
is integrable on U if and only if each [X,-, Xj] is a linear combination

X, X = Z

for C* functions C,.‘;A

PROOF. Such functions clearly exist if A is integrable, since [X;, Xj], € Ag,
-ltich is spanned by the Xx(g). Conversely, suppose such functions exist. If X
and Y belong to A we can clearly write

k
X=3 jiXi

i=1

P
Y= ZgiXi.
i=1

To prove [X, Y] belongs to A, it obviously suffices to treat each [ /i X, g Xj]
separately. Since we have

[[X.gY]= felX, Y]+ [(Xg)Y —g(Y/)X,
clearly [/ X,gY] belongs to A if X,Y and [X,Y] do. &

We are now ready for the main theorem. It is equivalent to Theorem ; in
fact, Theorem | can be derived from it (Problem 7). But the proof is quite
different.

5. THEOREM (THE FROBENIUS INTEGRABILITY THEOREM;
FIRST VERSION). Let A be a C* integrable k-dimensional distribution
on M. For every p € M there is a coordinate system (x, U) with

x(p) =0
x(U) = (—¢,€) X +-- X (~¢,6),
such that for each ak1!,. .. a” with all [a'| < &, the set
lgeU: Ak+](q) =ak+l, L x"(q) = an}

is an integral manifold of A.
Any connected integral manifold of A restricted to U is contained in one of
these sets.
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PROOF. We can clearly assume that we are in R”, with p = 0. Moreover, we
can assume that Ao C R"p is spanned by

2
ar!

]

seees T
o ot

0
Let 7: R" > R be projection onto the first k factors. Then 7.: Ag — Rk is
an isomorphism. By continuity, 7+ is one-one on A, for g near 0. So near 0,

we can choose unique
Xi(g),..., Xilg) € A

so that

7!Jﬁ(¢1)=i i=1...,k.

art

n(g)

Then the vector fields X; (on a neighborhood of 0 € R") and 3/3¢' (on R) are
st-related. By Proposition 3,

3 9
X Xjlg = [a_zf’ Wl{m
0

It

But, [X;, X;]; € g by assumption, and 54 is one-one on A4 So [X, X;]1=0.
By Theorem 5-14, there is a coordinate system x such that

Xi=— i=1...,k.
P g

The sets {g € U: xk*1(g) = a*P,...,x"(¢) = a"} are clearly integral man-
ifolds of A, since their tangent spaces are spanned by the 3/dx" = X; for
i=1,...,k.

If N is a connected integral manifold of A restricted to U, with inclusion map
i: N = U, consider d(x™ o) for k +1 < m < n. For any tangent vector X,
o N, we have

d(x™ 0 i)(X,) = X,(x™ 0 i) = i, X ,(x™)
=0,

since ixX; € A, which is spanned by the 8/dx/|, for j = 1,...,k. Thus
d(x" o i) = 0, which implies that x™ o/ is constant on the connected mani-
fold N.
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GLOBAL THEORY

In order to express the global results succinctly, we introduce the following
terminology.

If M is a C® manifold, a (usually disconnected) k-dimensional submani-
fold N of M is called a foliation of M if every point of M is in (some com-
ponent of) N, and if around every point p € M there is a coordinate system
(x,U), with

x(U) = (~&6) x -+ x (—&,6),

such that the components of N NU are the sets of the form
{geU: x*t(g) =d*™,...,x"(q) =a"} la’] < e.

Each component of N is called a foljum or leaf of the foliation N. Notice that
two distinct components of N NU might belong to the same leaf of the fdliation,

6. THEOREM. Let A be a C* k-dimensional integrable distribution on M.
Then M is foliated by an integral manifold of A (each component is called a
maximal integral manifold of A).

PROOF. Using Theorem 1-2, we sce that we can cover M by a sequence of
coordinate systems (x;, U;) satisfying the conditions of Theorem 5. For such a
coordinate system (x, U), let us call each set

{geU: k(@) =d¥, ... x"(g) = a"}

a slice of U.
It is possible for a single slice S of U; (o intersect U; in more than one slice
of Uj, as shown below. But S N U; has at most countably many components,
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and each component is contained in a single slice of U; by Theorem 5,s0 SNU;
is contained in at most countably many slices of U;.

Given p € M, choose a coordinate system (xo,Uo) with p € Ug, and let Sp
be the slice of Up containing p. A slice § of some U; will be called joined to p
if there is a sequence

0=ig,iy,...,.051 =1

and corresponding slices

So = Sip> Siys- .S =8

with
S,‘aﬂS,'a+|9éﬂ a=0,...,/-1.

Since there are at most countably many such sequences of slices for each se-
quence iy, ..., i, and only countably many such sequences, there are at most
countably many slices joined to p. Using Problem 3-1, we see that the union
of all such slices is a submanifold of M. For g # p, the corresponding union
is either equal to, or totally disjoint from, the first union. Consequently, M
is foliated by the disjoint union of all such submanifolds; this disjoint union is
clearly an integral manifold of A. ¢

[If we are allowing non-metrizable manifolds, the proof is even easier, since
we do not have to find a countable number of coordinate systems for each leaf]
and can merely describe the topology of the foliation as the smallest one which
makes each slice an open set. In this case, however, the discussion to follow
will not be valid—in fact, Appendix A describes a non-paracompact manifold
which is foliated by a lower-dimensional connecled submanifold.]
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Notice that if (x,U) is a coordinate system of the sort considered in the proof
of the theorem, then infinitely many slices of U may belong to the same folium.

this folium would contain an uncountable disjoint family of open sets. This
allows us to apply a proposition from Chapter 2.

7. THEOREM. Let M be a C* manifold, and M; a folium of the folia-
tion determined by some distribution A. Let P be another C* manifold and
f: P — M a C® function with f(P) C M. Then f is C* considered as a
map into M;.

PROOF. According to Proposition 2-11, it suffices to show that f is continuous
as a map into M,. Given p € P, choose a coordinate system (x,U) around
f(p) such that the slices

{geU: xkP () =a*H, ..., x"(q) = a"}

are integral manifolds of A. Now f is continuous as a map into M, so f takes

M
f(l’): M

M,
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some neighborhood W of p into U; we can choose W to be connected. For
k+1<i<nif wehad x'(f(p’)) # a' for any p' € W, then x' o f would take
on all values between a' and x' (1 (p’)), by continuity. This would mean that
J (W) contained points of uncountably many slices, contradicting the fact that
swycm. '

Consequently, x*(f(p’)) = a’ for all p’ € W. In other words, f(W) is
contained in the single slice of U which contains p. This makes it clear that f
is continuous as a map into M. <
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PROBLEMS

1. (@) Let £ = n: E — B be an n-plane bundle, and ¢’ = n': E' - B a
k-plane bundle such that E’ C E. If i: E' - E is the inclusion map, and
Ig: B — B the identity map, we say that & is a subbundle of & if (i, 18) is a
bundle map. Show that a k-dimensional distribution on M is just a subbundle
of TM.

(b) For the case of C* bundles £ and &' over a C* manifold M, define a C*
subbundle, and show that a k-dimensional distribution is C* if and only ifit is
a C subbundle.

2. (a) In the proof of Theorem 1, check the assertion about choosing ¢&; suffi-
ciently small.
(b) Supply the proof of the uniqueness part of the theorem.

3. (a) In the proof of Proposition 2, show that

i} i}
#l )

(h) Complete the proof of Proposition 2 by showing that if

z [}
Y= ZC\'"—,,
f=l ay'

/(p)

so that
n 9
X = '_.
P
=1
with ' o f = B, then the functions g are C*.
4. In the proof of Proposition 4, show that the functions Cj} actually are C*°.

5. Let Ay, ..., A be integrable distributions on M, of dimensions dj, ..., d).
Suppose that for each p € M,

My = (D1)p @ D (LDp)p.

Show that there is a coordinate system (x, U) around each point, such that 4,
isspanned by 8/dx",...,3/3x%, etc.
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6. Prove Theorem | from Theorem 5, by considering the distribution A in
R™ x R (with coordinates ¢, x), defined by
tre IR"'} .
p

g LR 9

k=1 Ni=1
Notice that even when the f; do not depend on x, so that the equations are of
the form

do
Em 0= fi@,
with the integrability conditions

o _af

FIE 1T
we nevertheless work in R” x R”, rather than R™. This is connected with the
classical technique of “introducing new independent variables”.

7. This problem outlines another method of proving Theorem 1, by reducing
the partial differential equations to ordinary equations along lines through the
origin. A similar technique will be veryimportantin Chapter I1.7.

(@) If we want a(ur) = B(u, 1) for some function B: [0,€) x W — V, show
that B must satisfy the equation

%é(u,t) = th fiut, Blu, 1)
Jj=1
B(0,1) = x.

We know that we can solve such equations (we need Problem 5-5, since the
equation depends on the “parameter” t € R™). One has to check that one ¢
can be picked which works for all € W.
(b) Show that

B(u,vt) = B(uv,1).

(Show that both functions satisfy the same differential equation as functions
of u, with the same initial condition.) By shrinking W, we can consequently
assume that £ = 1.
(c) Conclude that

9B 9B

m(l},l) =v-m(1,vt).
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(d) Use the integrability condition on f to show that

%(u,t) and v fj(vt,B(v,1))

satisfy the same differential equation, as functions of v. Use (c) to conclude that
the two functions are equal.

(e) Define a(r) = B(1,1). Noting that a(vr) = B(v,1), show that « satisfies the
desired equation.

8. This problem is for those who know something about complex analysis. Let
/: € x C — C be complex analytic. If we denote the coordinate functions in
C x C by z),23 = x1, Y1, X2, ¥, then [ = u+ iv satisfies the Cauchy-Riemann
equations

du
ax: 9y
i 0 i=1.2
Bu_ _ B
ay;  ox;

Use Theorem 1 (o prove that we can solve the equations

da! , , o?
ax u(x, y o (x,y), e (x,3)) = E

—aaz 1 2 aa!
Ix =v(x,y,a (x,y),a (,\,y))___ay

in a neighborhood of 0 € C (or of any point zo € C), and conclude that the
differential equation

¢'(2) = [(z,6(2))
(in which ’ denotes the complex derivative) has a solution in a neighborhood
of zo, with any given initial condition ¢(zo) = wo.



CHAPTER 7
DIFFERENTIAL FORMS

e turn our attention once more to tensor fields, but we will be concerned
with a special kind of tensor field, the discussion of which requires some
more algebraic preliminaries.
Let V be an n-dimensional vector space over R. An element T € TX(V) is
called alternating if

T(U1,e.y Uiy ey Ujyee s Ug) =0 it vi=v (i #J)
If T is alternating, then for any v, ..., Uk, we have

0=T(V1,...,Vi +Vj,..., Vi +Vj,..., Uk)
=TV, s Uiy Uiy Ug) F (00, o, Vs e Ve, V)
F T, Ve Uiy s W)+ T (V1o Ve, Uy, V)
=0+T (Vo s Vi s Uiy oo s V) F T(01, 05 Ve Uiy, Uk) + 0.

Therefore, T is skew-symmetric:
T, o Vi Uy Ug) = =T (Vn, o, Ujy ey Uy o, Uk )

Of course, if T is skew-symmetric, then T is also alternating. [This is not true
in the special case of a vector space over a field where 1+ 1 = 0; in this case,
skew-symmetry is the same as symmetry, and the condition of being alternating
is the stronger one.]

We will denote by Q¥ (V) the set of all alternating T € T¥(V). It is clear
that QK(V) c T*(V) is a subspace of T*(V). Moreover, if f: V — Wisa
linear transformation, then f*: THW) = TKV) preserves these subspaces—
7 kW) - Qk(V). Notice that Q1(V) = T'(V) = V*, so Q'(V) has
dimension . It is also convenient to set Q°(V) = T%V) = R. At the moment
it is not clear what the dimension of Q"(V) equals for k > 1, but one case is
well-known. The most familiar example of an alternating T is the determinant
function det € T"(R"), considered as a function of the n rows of a matrix—
wc shall soon see that this function is, in a certain sense, the most general
alternating function. Most discussions of the determinant begin by showing
that of any two alternating n-linear functions on R”, one is a multiple of the

201
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other; in other words, dim Q"(R") < 1. Then one proves dim Q"(R") = 1
by actually constructing the non-zero function det (it follows, of course, that
dim Q"(V) = 1 if V is any n-dimensional vector space). The construction of
det is usually by a messy, explicit formula, which is aspecial case of the definition
to follow.

Let Sy denote the set of all permutations of {1,...,k}; an element 6 € S; is
a function i > o(i). If (v1,...,v;) is a k-tuple (of any objects) we set

o (U, 0) = (Ve)s -5 Votk))-

This definition has a built-in confusion. On the right side, the first element,
for example, is the o(1)® of the ¥’s on the left side; if these v’s have indices
running in some order other than 1, ..., k, then the first element on the right is nor
necessarily that v whose index is o (1). The simplest way to figure out something
like o -(v3, V2. vy, ... ) is to rename things: v3 = wy, vy = w2,V = ws,.... Thus
warned, we compute

(P (Vs U)) =0 - (UpQ)s - - -5 Up(hy)

by setting
Vp(1) = Wi, .5 Up(k) = Wy,
so that
(P (V... U)) =0 (wi,..., W)
= (Wo1): - -+ » Wolk))

= (Vp(om)> - - > Vp(ath))  SiNCE War = Up(a)-

Thus

() g (P (Vs..5vk)) = (00) - (1,5 Vi)

Now forany T € T*(V) we definc the “alternation of T*

1
ART = > sgno-Too,

oeSy

1
At T(u, ..., ) = 7 z sgno - T(Voq)s- - - Votk)):

ges,

where sgno is +1 if o is an even permutation and -1 if o is odd.
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1. PROPOSITION.
(1) If T € T*(V), then AI(T) € S2%(V).
) If @ € $%(V), then Altw = w.
(3) If T € TX(V), then Al(AR(T)) = Al(T).

PROOF. Left to the reader (or see pp. 78—79 of Calculus on Manifolds). «»

We now define, for w € Q%(V) and 5 € 2/(V), an element wAy € 25+ (V),
the wedge product of ® and #, by

k+1)!
WA= SW Alt(w @ 7).

The funny coefficient is not essential, but it makes some things work out more
nicely, as we shall soon see. It is clear that

(1) A is bilinear:
(t+e)An=or An+w Ay

oA(Mm+m)=orAm+onn
awAn=wAam=awAn)
@ [*@An) = ol
Moreover, it is easy to see that
(3) A is “anti-commutative™ @ A 9 = (—=D¥p A w.
In particular, if k is odd then
wAw=0.

Finally, associativity of A is proved in the following way.

2. THEOREM.
(1) If S e T*(V) and T € T!(V) and Al(S) =0, then

AlS @T)=A(T ® S) =0.

(2) Al(Alt(w @ 1) @ F) = Alt(w @ n® 0) = Alt(w @ Alt(n ®@86)).
(3) If w € S%(V), n € A(V), 8 € ™ (V), then

(k+1+m)!

(WANAO=wAnAb)= Tt

Al(w @ n©0).
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FPROOF. (1) We have
(k +)1AIS @ T)(v1s-- -5 Ukt 1)
= D sgno-(S@T)-(0- (..., vkst))

&Skt

I

Z sgno - S(Vo1)s - -1 Vo)) * T (Voths1)s - - s Votka1))
Ly
Now let G C Sgys consist of all o which leave k + 1,...,k +{ fixed. Then

> sgno - S(oqys-- > Yok} - TWotk+1)s - - - » Votks)
oeG

= [ Z sgno’ - S(va:(l),...,var(k))jl T (Ve o Vi)
a’eSy
=0.
Suppose now that o ¢ G. Let 00G = {og0’: ¢’ € G}. Then
Z seno - (SQT)o - (V15 -+, Ukrt))

oeonG

=sgnoo- y_ sgna’ - (S@T)o" - (0o (v, vkw1))) by (+).

o’eG

We have just shown that this is 0 (since oo - (V1,. .., Uk4s) is just some other
(k + 1)-tuple of vectors). Notice that G NooG = B, for if 0 € G N 0oG, then
0 =000’ for some o’ € G, s0 00 =0(0’)"! € G, a contradiction. We can then
continue in this way, breaking S/ up into disjoint subsets, the sum over each

being 0. The relation Al(T @ S) = 0 is proved similarly.

(2) Clearly

AlAR(1 @ 0) —n@0) =Al(n®@ ) ~Al(n®@6) =0,
so (1) implies that

0= Altlw @ [Al(n ®0) —n@0])
= Alt(w ®@ Ali(n @6)) — Altlw @ 1 ®0);
the other equality is proved similarly.
(3) We have
(k + 1+ m)!
e
k+1{4+m)l k4!
= ((k +1)!m!) i Al eneo)

The other equality is proved similarly. <

(wAn) Al = Alt((w A1) @ 6)
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Notice that (2) just states that A is associative even if we had omitted the
factor (k +1)!/ k! ! in the definition. On the other hand, the factor 1/ k! in the
definition of Alt is essential—without it, we would not have Alt(Alt T) = Alt 7,
and the first equation i the proof o (2) would fail. [If we had defined Al just
like Alt, but without the factor 1/ k!, then A could be defined by

WA= A]t(w@n)

k'l !
This makes sense, even over a feeld of finite characteristic, because each term in the
sum Alt(w @ 7)(V1, ..., Vk4s) occurs k1! times (since w and 7 are alternating),
and 1/ k! /! can be interpreted as meaning that these k!/! terms are replaced by
just one.] The factor (k +{)!/k!{! has been inserted into the definition of A
for the following rcason. If vy, ..., v, is a basis of ¥, and ¢, ..., @, is the dual
basis, then

(1+-- +1>
1.
= ngng.(¢,®...®¢")oa

oeSy

A APy = Al @ --- @ ¢n)

In particular,

(Dr A A@a)vrs.. . vn) =1

(Soif vy,..., v, isthe standard basis for R”, then ¢ A - -+ A ¢y = det.) A basis
for 2%(V) can now be described.

3. THEOREM. The set of all
Giy A A iy l<ij<: . <ip<n

is a basis for 2 (V), which therefore has dimension

n) _ n!
(k =Kok

(In particular, (V) = {0} for k > 1.)
PROOF. If w € QK(V) € T*(V), we can write

Z Qiy..iy. biy @ - B Piy.

ilyealf
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So
w=Alw) = Y aj i Altigy @ ® ).
ek
Each Alt(¢;, ® --- @ ¢,) is either 0 or = £(1/k!)pj, A --- A ¢y, for some
J1 < -+ < jk 50 the elements ¢, A -+ A@jy for ji < --- < jk span S2%(V). If

0= > i ix®in Ao Ay,

f1<-<ip

then applying both sides to (vs,. .., s, ) gives a;. 4, = 0. %

4. COROLLARY. If @),...,0k € 2'(V), then @), ..., are linearly inde-
pendent if and only if
o)A AwgF# 0.

PROOF. If @, ...,y are linearly independent, thereis a basis v1,.. ., Uks ., Un
of V such that the dual basis vectors ¢y,..., 0k ..., ¢n satisfy ¢ = w; for
1<i<k. Thenw A .. A wy is a basis element of $2K(V), so it is not 0.

On the other hand, if

w) =dywy + o+ Apwg,
then
AW A Awp = (ot tagop) Aoy A Aayp =0,

Toabbreviate formulas, it is convenient to let / denote a typical “multi-index”
(i1,...,ik), and let ¢; denote @j; A -+ A ¢i,. Then cvery element of SZI‘(V) is

uniquely expressible as
Sarer.
1

Notice that Theorem 3 implies that every w € QK(R") is a linear combination
of the functions
U
(v1,..., V) > determinant of a k x k minor of
Uk

One more simple theorem is in order, before we proceed to apply our con-
struction to manifolds.
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5. THEOREM. Let vy,..., v, be a basis for V, let @ € Q"(V), and let

n
w,=Za,~,~v,~ i=1,...,n
Jj=1

Then
(..., wp) = det(y) - @(v, .., Un).

PROOF. Define n € 7"(R") by

n((@ns...oam), ..oy @ty nn)) = w(Zajlvj,.“,Za/,,v/).
j=

j=1
Then clearly n € Q"(R"), so n = c -det for some ¢ € R, and

c=n(er,...,n) =0(V1,...,0Un). &

6. COROLLARY. If V is n-dimensional and 0 # @ € Q7"(V), then thereis a
unique orientation p for V such that

[vt,...,u] = ifand only if w(vi,...,vs) > 0.

With our new algebraic construction at hand, we are ready to apply it to
vector bundles. If § =n: E — B is a vector bundle, we obtain a new bundle
Qk(E) by replacing each fibre 177! (p) with SZI‘(JI"'([))). A section w of Q"(E)
is a function with w(p) € SZ"(H"'([))) for each p € B. If 5 is a section of Q’(&'),
then we can define a section A 7 of QK+ (&) by (w A 9)(p) = w(p) An(p) €
QkH (=1 (p)).

In particular, sections of §%(7TM), which are just alternating covariant tensor
fields of order k, are called k-forms on M. A 1-form is just a covariant vector
field. Since Q¥(TM) can obviously be made into a C* vector bundle, we can
speak of C* forms; all forms will be understood to be C* forms unless the
contrary is explicitly stated. Remember that covariant tensors actually map
contravariantly: If /@ M — N is C*®, and w is a k-form on N, then f*wisa
k-form on M. We can also define w; + w; and w A 7. The following properties
of k-forms are obvious from the corresponding properties for % (V):

(1 +wm)An=wrAn+wrAn

oAMm+m)=wAintoin
Jorn=wnrfn=f(wAn)
w/\r;—(—])"’r]/\w

@A) =Ton [y
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If (x,U) is a coordinate system, then the dx'(p) are a basis for M,*, so the
dxiV(p) A --- Adx'®(p) (h < --- < iy) are a basis for Q"(p). Thus every
k-form w can be written uniquely as

Z Wiy g dxi‘ At A dxik

ip<ee<i

or, if we denote dx! A+ - A dx™ by dx! for the multi-index I = (i1,. .., ik),
= Zw; dx’.
1
The problem of finding the relationship between the w; and the functions w’;
when
W= Zwl dx! = Zw’, ay!
1 1

is left to the reader (Problem 16), but we will do one special case here.

7. THEOREM. If f: M — N isa C* function between r-manifolds, (x, U)
is a coordinate system around p € M, and (y,V) a coordinate system around
g = f(p) € N, then

f*(gzly'/\.A.Ad)z")=(gOf)-det(aUacf))d AeeeAdx™
PROOF. 1t suffices to show that
Y A AdY") = det( e f)) dx' A A dx",

ax/
P)

] ]
=dy'(g) A+ A dY'(q) (ﬁﬁ‘ f*-‘h_"

Now, by Problem 4-1,

a a
Ay A i — -
SXdy' N dy )(p)(axl‘p,.“,a

xn

)

a o
=d}‘](ll)/\.,-/\d)’"(l])(z V' f)( )W )

Z ay °f)( )i
”",»=1 “axn P Ay

= del( )‘; Jf) 1))) s by Theorem 5. ¢

i=1

J
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8. COROLLARY. If (x,U) and (y, V) are two coordinate systems on M and

gdy' A AdY = hdx" Ao A dx",

ayi)
h=g.det|—~|.
h=g e(ax/

PROOF. Apply the theorem with f = identity map. <

then

[This corollary shows that n-forms are the geometric objects corresponding to
the “even scalar densities” defined in Problem 4-10.]

Ifé =n: E — Bisan n-plane bundle, then a nowhere zero section w of K" (§)
has a special significance: For each p € B, the non-zero w(p) € Q" (1t~ (p))
determines an orientation p, of 777! (p) by Corollary 6. It is easy to see that
the collection of orientations {i,} satisfy the “compatability condition™ set forth
in Chapter 3, so that s = {1} is an orientation of £. In particular, if there is
a nowhere zero n-form w on an n-manifold M, then M is orientable (i.e., the
bundle T} is orientable). The converse also holds:

9. THEOREM. Ifa C® manifold M is orientable, then there is an n-form o
on M which is nowhere 0.

PROOF. By Theorem 2-13 and 2-15, we can choose a cover @ of M by a col-
lection of coordinate systems {(x, )}, and a partition of unity {¢y} subordinate
to O. Let p be an orientation of M. For each (x, U) choose an n-form wy
on U such that for vi,...,un € My, p € U we have

oy(v,...,up) >0 ifand only if [vi,...,un] = pp.
Now let

w = Z Puwy.

Ue®

Then w is a C* n-form. Moreover, for every p, if v1,-..,vp € M, satisfy
[v1,...,un] = pp, then each

(pvwy)(p)(v1,-..,vn) 20,

and strict inequality holds for at least one U. Thus w(p) # 0. &
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Notice that the bundle Q7(TM) is I-dimensional. We have shown that if M
is orientable, then Q"(TM) has a nowhere 0 section, which implies that it is
trivial. Conversely, of course, if the bundle R"(TM) is trivial, then it certainly
has a nowhere 0 section, so M is orientable. [Generally, if £ is a k-plane bundle,
then Q"(E) is trivial if and only if £ is orientable, provided that the base space B
is “paracompact” (every open cover has a locally-finite refinement).]

Just as Q°(V) has been introduced as another name for R, a 0-form on M
will just mean a function f/ on M (and f A @ will just mean [ - ). For
every 0-form f we have the I-form df (recall that df (X) = X(f)), which in a
coordinate system (x, U) is given by

n af .
df =3 3o dx).
j=1

If w is a k-form
0= Zw; dx!,
1

then each dw; is a I-form, and we can define a (k +1)-form dew, the differential
of w, by

dw=") " dodx'
1

" dw;
=3 —dx* ndx!.
ax®
1 a=l
It turns out that this definition does not depend on the coordinate system. This
can be proved in several ways. The first way is to use a brute-force computation,
comparing the coefficients @'y in the expression

w= Zw’; dx!
1

with the w;.
The second method is a lot sneakier. We begin by finding some properties of
de (still defined with respect to this particular coordinate system).

10. PROPOSITION.
(1) d(w1 + w3) = den + dws.
(2) If w, is a k-form, then
d(w) A w3) = dwy A w3 + (—I)kw, A dw;.
(3) d(dw) =0. Briefly, d* = 0.
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PROOF. (1) is clear. To prove (2) we first note that because of (1) it suffices to
consider only

w) = fde
wr =gdx”’.
Then w, Awy = fgdx! Adx’ and
d(w) A w2) =d(fg)Andx! ndx?!
=gdf ndx' Adx! + fdgndx! Andx?
=dw; A +(—l)l‘fdx1 Adgndx!
=dw), A wy +(-—1)kw1 A dw,.

(3) It clearly suflices to consider only k-forms of the form

W= deI.
Then u
dw = Z%dx“Adx’
a=1
50

d(d (3 2L uB ndxe nax!
(dw) =" Zmdx Adx®Adx!).
1

a=] f=|

In this sum, the terms
2

xBax
2

ax9xh

dxP A dx® A dx!
and
dx® A dxP A dx!

cancel in pairs. 4

We next note that these properties characterize d on U.

11. PROPOSITION. Suppose d takes k-forms on U to (k + 1)-forms on U,
for all k, and satisfies

(1) d'(01 + ) =d'w) + d'w,.

(2) d'(w) A w3) =d'wy A wy + (-DFwy A d'w,.

(3) d’'(d'f)=0.

(4) d' [ = (theold) df.
Thend' =d on U.
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PROOF. 1t is clearly enough to show that d'w = dw when w = fdx!. Now
by (2),
d'(fdx')=d'f ndx! + f Ad'(dx")
=df ndx! + f nd'(dx") by(@4).

So it suffices to show that d’(dx’) = 0, where

dx! = dx"" Ao A dxik

=d'x" A And'X* by (4).
We will use induction on k. Assuming it for k — 1 we have

d'(dxT) = d'(@'x" A ... A d'xix)
=d'(d'xX")Ad'X2A A d X
—d'x"Ad'(d XA Ad'X) by (2)
=0~—0, by (3) and the inductive hypothesis. <

12. COROLLARY. There is a unique operator d from the k-forms on M to
the (k + 1)-forms on M, for all k, satisfying

d(w; 4+ @2) = dwy + dw;
d(w) A ©3) = dey A w2+ (—l)kau A dw
d* =0,
and agreeing with the old d on functions.

PROOF. For each coordinate system (x,U) we have a unique dy defined.
Given the form o, and p € M, pick any U with p € U and dcfine

dw(p) = du(@lU)(p). %

The third way of proving that the definition of d does not depend on the
coordinate system is to give an invariant definition.
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13. THEOREM. If @ isa k-form on M, then there isa unique (k + 1)-form
dw on M such that for every set of vector fields X, ..., Xk we have

() doX,..., Xep)
k41 . .
=Y P XX, LK X))

=1
+ Y e X XKL X Kie)
1si<js<k4l

(= ) + Tz, say)

where  over X; indicates that it is omitted. This (k +1)-form agrees with dw
as defined previously.

PROOF. The operator which takes (Xi,..., Xp4)) to L) + I3 is clearly linear
over R. Moreover, it is actually linear over the C* functions ¥. In fact, if X, is
replaced by fX;,, then I; becomes

SE 4 YD e, Ty Xen)s
i#in

and using the formulas

UX.Yl=fIX.Y]-Yf X
X /Y= fIX. Y]+ X[ 7,

it is easily seen that I becomes

TE2+ 3 (=X o Xios X, Ko, Ky Xie)
i<in
= ST =X N0 K X K Ko Xie);

io<j

a brief inspection then shows that Z; + I becomes /L, + f Z».
Theorem 4-2 shows that there is a unique covariant tensor field de satisfy-
ing (x). It is easy to check that dw is alternating, so that it is a (k + 1)-form.
To compute dw in a coordinate system (x, U) it clearly suflices to compute
d(f dx!). Moreoves, by renumbering, we might as well assume

w=fdx' n---ndxk,
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For dw, as for any form, we have

do= 3 dw(d/dx™,...,0/0x ™+ dx" Ao A dxTiH,

<<
It is clear from (%) that dw(d/dx®',...,8/dx%+1) =0
unless some (@, ..., @j,...,%.4) is a permutation of (1I,...,k).
Since the o’s are increasing, this happens only if
(on,...;opn)=(,....k, j) J >k,

in which case

af

de(@/3x,....,3/0x%, 8/dxT) = (=1 =,

dw—Z(—l)" of dx' Ao ndx® Adxd
Jj>k

—Z—dx//\dx Ao ndxk
]>k

-—Z dx’/\dx Ao ndxk,

which is just the old definition. <

This is our first real example of an invariant definition of an important tensor,
and our first use of Theorem 4-2. We do not find dw(p)(vy, ..., Vg41) directly,
but first find dw(X1,..., Xk41), where X; are vector fields extending v;, and
then evaluate this function at p. By some sort of magic, this turns out to be
independent of the extensions X),..., Xx41. This may not seem to be much of
an improvement over using a coordinate system and checking that the definition
is independent of the coordinate system. But we can hardly hope for anything
better. After all, although dw(X, ..., Xi41)(p) does not depend on the values
of X; except at p, it does depend on the values of w at points other than p—
this must enter into our formula somehow. One other feature of our definition
is common to most invariant definitions of tensors—the presence of a term
involving brackets of various vector fields. This term is what makes the operator
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linear over the C* functions, but it disappears in computations in a coordinate
system.

In the particular case where w is a 1-form, Theorem 13 gives the following
formula.

dw(X,Y) = X(w(Y)) = Y(0(X)) - o([X,Y])

This enables us to state a second version of Theorem 6-5 (The Frobenius Inte-
grability Theorem) in terms of differential forms. Define the ring Q (M) to be
the direct sum of the rings of /-forms on M, for alt /. If A is a k-dimensional
distribution on M, then 4(A) C (M) will denote the subring generated by
the set of all forms w with the property that (if @ has degree /)

o(X,...,X;))=0 whenever X,..., X; belong 10 A.

It is clear that wy + w2 € 4(A) if w),w2 € 4(A), and that n A w € J(A) if
w € 4(A) [thus, 4(A) is an ideal in the ring ()], Locally, the ideal £(A)

is generated by n — k independent I-forms wk*t, . w". In fact, around any
point p € M we can choose a coordinate system (x, U) so that
i} i}
| .. span A,
x|, k|, PR
Then

dx' (p) A---ndxk(p) isnon-zeroon &p.

By continuity, the same is true for g sufficiently close to p, which by Corol-
lary 4 implies that dx!(g), .. ., dx¥(g) are linearly independent in A,. There-
fore, there are C® functions f; such that

k
dx*g) = Zf;(q)dxﬂ(q) restricted to Dg a=k+1,...,n.
p=1

We can therefore let k
w® = dx®* — Zf;dxﬁ.
f=

14. PROPOSITION (THE FROBENIUS INTEGRABILITY THEOREM;
SECOND VERSION). A distribution A on M is integrable if and only if
d(d(8)) c 4(8).
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PROOF. Locally we can choose 1-forms @', ..., " which span Mg* for each ¢
such that w*+! " generate 4(A). Let X, ..., X, be the vector fields with
Wi (X)) =3,

Then X, ..., Xj span A. So A is integrable if and only if there are functions C,-g
with

k
(X, X)=3CiXp  ij=1...k
B=1

Now

dow® (Xi, Xj) = Xi(w®(X})) = Xj(@*(X:)) — o (X1, X;]).
For I <i,j < k and @ > k, the first two terms on the right vanish. So
dw®(X;, X;) = 0 if and only if @*([X;, X;]) = 0. But each 0*([X}, X;]) =0
it and only if each [X;, Xj] belongs to A (ie., if’ A is integrable), while each
dw®(X;, Xj) =0 if and only if dw® € 4(A). 4

Notice that since the @i Aw/ § < j) span (M) for each g, we can always
write
do® = Zc,‘»’jwi A’
i<i
= ZGJ" A’ for certain forms 6.
J

If @ > k, and io, jo < k are distinct, we have

0 = dw® (Xig, Xjp) = D_OF A’ )Xy, Xio)

i
=65 (Xiu),
so we can write the condition d(4(A)) C 4(A) as
do® = ZB; N
B>k
Once we have introduced a coordinate system (x, U) such that the slices
{g e U x*¥(g) = a1, . x"(g) = a")

are integral submanifolds of A, the forms dx*+1, .., dx" are a basis for 4(A),
so wk*1 . " must be linear combinations of them. We therefore have the
following.
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15. COROLLARY. If wk+! . @" are linearly independent I-forms in a
neighborhood of p € M, then there are I-forms 9; (o, B > k) with

dw® = Z g A whf
8
if and only if there are functions f;‘,gﬂ (a, B > k) with
W= f5dgP.
8

Although Theorem 13 warms the heart of many an invariant lover, the cases
k > 1 will hardly ever be used (a very significant exception occurs in the last
chapter of Volume V). Problem 18 gives another invariant definition of dw,
using induction on the degree of w, which is much simpler. The reader may
reflect on the difficulties which would be involved in using the definition of
Theorem 13 to prove the following important property of d:

16. PROPOSITION. If f/: M — N is C*® and w is a k-form on N, then
[Hdw) = d(/*w).
PROOF. For p € M,let (x,U) be a coordinate system around f(p). We can

assume ) )
w=gdx" A Adxk,
We will use induction on k. For k = 0 we have, tracing through some defini-
tions,
I (dg)X) = dg(fiX) = [fu X)(&) = X(g o f)
=d(go [)X)
(and, of course, f*g is to be interpreted as g o /). Assuming the formula for
k — 1, we have

d(*w)=d(([*gdx"' A A dxik=1) A f*dxik)

=d(f*(gdx" A ndx'*=1)) A frdxi 10
since df*dx’ = dd(x'* o f) =0

= f*dgdx" A-.- A dxfk—l)) A frdxik
by the inductive hyposthesis

= f*dg Adx" AL ndxE-1) A raxik

= /*(dg Adx" Ao A dxik-1 o dxiky

= f*(dw). %
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One property of d qualifies, by the criterion of the previous chapter, as a
basic theorem of differential geometry. The relation d? = 0 is just an elegant
way of stating that mixed partial derivatives are equal. There is another set of
terminology for stating the same thing. A form w is called closed if dw =0
and exact if @ = dn for some form #. (The terminology “exact” is classical—
differential forms used to be called simply “difTerentials”; a differential was then
called “exact” i it actually was the differential of something. The term “closed”
is based on an analogy with chains, which will be discussed in the next chapter.)
Since d? = 0, every exact form is closed. In other words, dw = 0 is a necessary

Chapter 7

condition for solving w = dn. If w is a I-form

then the condition dw =0, i.e.,

n
w= E w; dx',

i=1

dwi _ dwj
axi — oxi

is necessary for solving w = df, i.e.,

Now we know from Theorem 6-1 that these conditions are also sufficient. For
2-forms the situation is more complicated, however. If @ is a 2form on R3,

then

if and only if

o

o O

w=Adyndz - Bdx ndz+ Cdx ndy,

w=d(Pdx+ Qdy+ Rdz)

The necessary condition, dw =0, is

dR 0Q
Ry
ay dz
aP OdR
it B
aQ aIP
3y =C.
dA 9B aC

E+a_y+¥=
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In general, we are dealing with a rather strange collection of partial differential
equations (carefully selected so that we can get integrability conditions). It turns
out that these necessary conditions are also sufficient: if’ @ is closed, then it is
exact. Like our results about solutions to differential equations, this result is
true only locally. The reasons for restricting ourselves to local results are now
somewhat different, however. Consider the case ofa closed 1-form @ on R%:
af _og

o= fdx+gdy, with 3y " x

We know how to find a function & on all of R? with w = da, namely

X ¥
a(x,y) = / S, yo)dt +f glx,1)dt.
Xxo K

0

On the other hand, the situation is very different if @ is defined only on R? —{0}.
Recall thatif L c R? is [0,00) x {0}, then

6:R* - L > R, L

defined in Chapter 2, is C*; in fact,
(,0): R* =L — {r:r >0} x (0,21)
is the inverse of the map
(a,b) — (acosb,asinb),

whose derivative at (g, b) has determinant equal to a # 0. By deleting a different
ray L, we can define a different function 6,. Then 6; = 6 in the region 4; and
6, = 0+2x in the region A;. Consequently df and d6, agree on their common

&
o X
o
A o
Az

40
| 1=
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domain, so that together they define a 1-form @ on R? — {0}. A computation
(Problem 20) shows that

-y

w = ;2‘—+—y2 d}’.

dx + o] I

The 1-form o is usually denoted by d6, but this is an abuse of notation, since
w = d6 only onR?~ L. In fact, w is not df for my C' function f: R2—{0} — R.
Indeed, if @ = df, then

df =df on R*-1L,

sod(f —6) =0 on R? — L, which implies that 3 f/dx = 80/3x and 3 f/3y =
i0/dy and hence f = 6+ constant on R? — L, which is impossible. Nevertheless,
dw =0 [the two relations

d(df)=0 on R’-L

d(d6)=0 on R’-L;
clearly imply that this is so]. So w is closed, but not exact. (It is still exactin a
neighborhood of any point of R2 - {0}.)

Clearly o is also not exact in any small region containing 0. This example

shows that it is the shape of the region, rather than its size, that determines
whether or not a closed form is necessarily exact.

A manifold M is calicd (smoothly) contractible to a point po € M if there is
a C* function

H: Mx[0,1]]-> M

such that

ﬁxz::}; : io forpe M.
For example, R" is smoothly contractible to 0 € R”; we can define
H:R"x[0,1] > R"
by
H(p,1)=1p.

More generally, U C R” is contractible to po € U if U hasthe property that
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p € U implies po +1(p — po) € U for 0 <t < 1 (such a region U is called
star-shaped with respect to po).

Of course, many other regions are also contractible to a point. If we think

-_—
Q

of [0, 1] as representing time, then for each time ¢ we have amap p — H(p,1)
of M into itself; at time 1 this is just the identity map, and at time 0 it is the
constant map.

We will show that if M is smoothly contractible to a point, then every closed
form on M is exact. (By the way, this result and our investigation of the form d6
prove the intuitively obvious fact that R? ~ {0} is zof contractible to a point; the
same result holds for R” — {0}, but we will not be in a position to prove this
until the next chapter.) The trick in proving our result is to analyze M x [0,1]
(for any manifold M), and pay hardly any attention at all to H.

For 7 € [0, 1] we define

T NS

i M — Mx[0,1]

by
i/(p) = (p,1).

We claim that if @ is a form on M x [0, 1] with dw =0, then

i*w - ig*w is exact;
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we will see later (and you may try to convince yourself right now) that the
theorem follows trivially from this.

Consider first a 1-form w on M x [0, 1]. We will beginby working in a coordi-
nate system on M x [0, 1]. There is an obvious function  on M x [0, 1] (namely,
the projection 7 on the second coordinate), and if (x, U) is a coordinate system
on M, while 7, is the projection on M, then

(x" omag,..., X" 0 mpp,1)

is a coordinate system on U x [0,1]. We will denote x/ o wps by X, for conve-
nience. It is easy to check (or should be) that

n n
la‘(zwi dx’ +fdl) = Zm;(-,a)dxi,
i=1 i=1

where
w;(-,a) denotes the function p > w;(p,a).

Now for w = Yi_, w; d%’ + f dt we have
2w

dw = [terms not involving dt] — E 2w A de + E d,\ Adt.
[ ving 41 il

So dw = 0 implies that

doi _ O]
3 axt
Consequently,
! duw;
wilp, 1 - aitp,0) = [ p0ar
/ o,
SO

O Yep i - Y ep0ax = (f Shnndr) .

i=] i=]

Ifwe define g: M — R by

1
g(p) = /0 F(par,
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then

g
axi

1
d
@ = [ Lo

Equations (1) and (2) show that
i*w — id'w = dg.
Now although we seem to be using a coordinate system, the function f, and
hence g also, is really independent of the coordinate system. Notice that for

the tangent space of M x [0, 1] we have

(%) (M x [0,1])(p,0) = kerm, @ kermas s

ker 7 ps M x[0,1]

0,1
(0.1 —E ker iy

lmu

If a vector space V is a direct sum V = V; @ V> of two subspaces, then any
w € Q' (V) can be written

M

@ =w +w;

where

w; (V) + v2) = w(v))
w(v) +V2) = w(v2).

Applying this to the decomposition (%), we write the I-form w on M x [0,1] as
) + w3; there is then a unique f withw; = f d1.
In general, for a k-form w, it is easy to see (Problem 22) that we can write @
uniquely as
w =w)+ (dl A7)

where wy (vy,...,vk) = 0 if some v; € ker ma., and pisa (k — 1)-form with the
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analogous property. Define a (k — 1)-form fw on M as follows:

1
Iw(p)(vl,...,vk_1)=f NP, 1)(ixV1s .5 ik—1) dl.
o

We claim that dw = 0 implies that i1*@ — io*w = d({w). Actually, it is easier
to find a formula for i1*@ — io*® that holds even when dw # 0.

17. THEOREM. For any k-form @ on M x [0, 1] we have
iY*w —ig*w = d({w) + I(dw).
(Consequently, i17*w —io*w = d({w) if dw =0.)
PROOF. Since Iw is already invariantly defined, we can just as well work in
a coordinate system (¥%,...,%",1). The operator I is clearly linear, so we just

havc to consider two cases.
() w=fdFt A---AdFk = fdx!. Then
a
dw = _+—fdz/\d,<-’;
at
it is easy to see that

L]
Hawxp = ( | a—{(li,t)dr) ' ()

=1/(p:1) = f(p,0)]dx"(p)
=i1*w(p) - io"w(p).
Since /w = 0, this proves the result in this case.
Q) = fdi ANdF" A Adii-1 = fdt AdF!. Then ij*o = ig*w = 0.
Now

1(dw)(p) = 1(— > 5‘%’% dt AdFA d,{»l)(,,)
a=]

n

1
= _Z(A %(ll,l)dl) dax® A dx!

a=]

and

1
dlw) =d (L f(p,t)dt) dx!

n ]
=y 9 (/ /'(p,z)dt) dx® ndx?,
~ ax® \ Jo

Clearly I(dw) + d(Iw) = 0. <
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18. COROLLARY. If M is smoothly contractible to a point po € M, then
every closed form w on M is exact.

PROOF. Wearegiven H: M x [0,1] &> M with

Hp,)=p
for all p € M.
H(p,0) = po P
Thus
Hoiy: M — M is the identity
Hoio: M — M is the constant map po.
So
w = (H oi1)*(w) = i)" (H*w)
0= (H oip)¥(w) = io*(H*w).
But
d(H*w) = H*(dw) =0,
50

w—-0= i]‘(H‘w) - l’o’(H*w)
d(I(H*w)) by the Theorem. *

i

Corollary 18 is called the Poincaré Lemma by most geometers, while d2 =0
is called the Poincaré Lemma by some (I don’t even know whether Poincaré had
anything to do with it) In the case of a star-shaped open subset U of R”, where
we have an explicit formula for H, we can find (Problem 23) an explicit formula
for I(H*w), for every form @ on U. Since the new form is given by an integral,
we can solve the system of partial differential equations @ = dn explicitly in
terms of integrals. There are classical theorems about vector fields in R* which
can be derived from the Poincaré Lemma and its converse (Problem 27), and
originally d was introduced in order to obtain a uniform generalization of all
these results. Even though the Poincaré Lemma and its converse fit very nicely
into our pattern for basic theorems about diflferential geometry, it has always
been something of a mystery to me just why d turns out to be so important.
An answer (o this question is provided by a theorem of Palais, Natural QOperations
on Differential Forms, Trans. Amer. Math. Soc. 92 (1959), 125~141. Suppose we
have any operator D from k-forms to /-forms, such that the following diagram
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commutes for every C® map f: M — N [it actually suffices to assume that
the diagram commutes only for diffeomorphisms f7].

*
k-forms on M «~*— k-forms on N

Dl D
*
I-formson M «~— [-forms on M

Palais’ theorem says that, with few exceptions, D = 0. Roughly, these excep-
tional cases are the following. If k =/, then D can be a multiple of the identity
map, but nothing else. If 7 = k + 1, then D can only be some multiple of 4.
(As a corollary, d = 0, since d? makes the above diagram commute!) There is
only one other case where a non-zero D exists—when k is the dimension of M
and / = 0. In this case, D can be a multiple of “integration”, which we discuss
in the next chapter.
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PROBLEMS
1. Show that if we define

G e (V1,.. ., 0) = (Vgm1q1)s o5 Vo=1gi))s
then

cepe(vl,..., V) =00 (V1,...,Vk).

2. Let Alt be Alt without the factor 1/k!, and define @ 7wy = Alt(w @ ). Show
that 7 is not associative. (Try @, n € (V) and 6 € 2%3(V))

3. Let 8’ C Sk4s be the subgroup of all ¢ which leave both sets {1,..., k} and
{k+1,...,k+1}invariant. A cross section of S’ is a subset K C Sk containing
exactly one element from each left coset of S’.

(a) Show that for any cross section K we have
O AL, Vept) = D SgNO @ @ N(Vo(r)s - > Vothkh)-
oek

This definition may be used even in a field of finite characteristic.

(b) Show from this definition that @ Ay is alternating, and w Ap = (= 1)/ Aw.
(Proving associativity is quite messy.)

(c) A permutation ¢ € Sg; is called a shuffle permutation if 6(1) < 0(2) <--- <
o(k)and o(k+1) <o(k+2) <-.. < o(k+1). Show that the set of all shuffie
permutations is a cross section of S’.

4. ForveVandwe SZl‘(V), we define the contraction v.lw € 2%~1 (V) by
(vJ@)(Vy,. ., 0k-1) = ©(V, 01, ..., VE2).
This is sometime also called the inner product and the notation iy is also used.

(a) Show that
vl(w.dw)=—w.l(v.lw).

(b) Show thatif vy,...,v,is a basis of ¥ with dual basis ¢y,. .., ¢n then
0 j#anyiq
Py A AP ) = —
e 0= g nng T
(c) Show that for w; € QK (V) and w2 € 2 (V) we have
vl Awy) = (v.dw1) Awg 4+ (—Dwr A (V.1 ew2).

(Use (b) and linearity of everything.)
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(d) Formula (c) can be used to give a definition of @; Aw, by induction on k +/
(which works for vector spaces over any field): If A is defined for forms of degree
adding up to < k +/, we define
o1 A 0V1, -, Viegt) = [(V1 dn) Aw2)(va, . vkgd)
+ (=¥ A (v w2)](2, ... 23 Vkyl)-
Show that with this definition @, A @, is skew-symmetric (it is only necessary to
check that interchanging v; and vz changes the sign of the right side).
(€) Prove by induction that A is bilinear and that w; A w2 = (= 1)Mwy A w;.
(f) If X is a vector field on M and w a k-form on M we define a (k ~ I)-form
X.lwby
(X dw)(p) = X(p)-do(p).
Show that if @, is a k-form, then
XA Awg) = (X dwn) Awr+ (=Dfor A (X dws).

5. Show that n functions fj,..., fu: M — R form a coordinate system in a
neighborhood of p € M ifand only if dfi A-+- A dfu(p) # 0.

6. An element @ € $2%(V) is called decomposable if @ = ¢ A--- APk for some
gie Vv =Qi(V).

(@) If dim V < 3, then every w € $22(V) is decomposable.

(b) If @i, i =1,...,4 are independent, then w = (¢1 A ¢2) + (@3 A @4) is not
decomposable. Hint: Look at w A @.

7. For any w € $2%(V), we define the annihilator of @ to be
Ann(w)={p € V*: dp Aw =0}.

(a) Show that
dim Ann(w) < k,

and that equality holds if and only if @ is decomposable.
(b) Every subspace of V* is Anr(w) for some decomposable @, which is unique
up to a multiplicative constant.
() If @) and w; are decomposable, then Ann(w;) C Ann(ws) if and only if
w; = w; A 7 for some 5.
(d) If w; are decomposable, then Ann(w;) N Ann(wz) = {0} if and only if
wy A wy # 0. In this case,

Ann(w1) + Ann(w3) = Ann(w; A w3).

() If V has dimension n, then any w € 2"~! (V) is decomposable.
(f) Since v; € V can be regarded as elements of V**, we can consider v; A---A
v, € Q¥(V*). Reformulate parts (a)~(d) in terms of this A product.
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8. (a) Let w € 23(V). Show that there is a basis ¢, ..., ¢n of V* such that

w = (g1 A )+ -+ (Gar—1 A d2r).

Hint: If
w= aybi A
i<)
choose ¢y involving ¥, ¥r3,..., ¥, and ¢2 involving ¥a, ..., ¥, so that

o =g A+,

where w’ does not involve 1/ or ¥2.

(b) Show that the r-fold wedge product @ A - - - Aw is non-zero and decompos-
able, and that the (» + 1)-fold wedge product is 0. Thus r is well-determined;
it is called the rank of .

(€ If @ = 3 ;aij¥i A ¥y, show that the rank of @ is the rank of the ma-
rix (a;j).

9. If vy,..., v, is a basis for V and w; = Z};, ajivj, show that
det{fai)w* i A AW = v A AV,

10. Let A = (a;;) be an n xn matrix. Let I < p <n be fixed, and letg = n—p.
For H=hi < ... <hyand K = ki < -+ < kg, let

ALy eer Ak, Upiiky  --o Upilhg
BY¥ =det : s CK = det :

Aphy  --- Gphp [ T

(@) If vy,...,vp is abasisof V and
n
W; = Zaji”j,
j=1

show that

UJ]/\---/\!LJI,:ZBHUH
H

wp+|/\~-/\w,,=ZCKvK.
X
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(b) Let A’ ={l,...,n} — H (arranged in increasing order). Show that
_ {0 K#H
VB VK= ey H' VA AV K=H,

where ey, g is the sign of the permutation

(] ....... n)
hysha, . hp k.. k)
(c) Prove “Laplace’s expansion”
detd = ZeH,H/BHCHI.
H
11. (Cartan’s Lemma) Let ¢1,...,¢x € V* be independent and suppose that
Yi,..., Yk € V* saisly
(1 A1)+ + (¢ A ) =0.
Then
k
Wi = Zajid)j, where aj; = aj;.
=1
12. In addition to forms, we can consider sections of bundles constructed from
TM using R and other operations. For example, if £ =n: E — B is a vector

bundle, we can consider 2% (£*), the bundle whose fibre at pis QK ([2="(p)]*).
Since we can regard

3
Iy asan element of  (M,)*,
any section of "(T*M) can be written locally as
/1i Ao 9
ax! axn
(a) Show that if
A 3 =h A 9
gay' am ax! axn’

then
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This shows that sections of 2"(7*M) are the geometric objects corresponding
to the (even) relative scalars of weight —I in Problem 4-10.

(b) Let T,k['"](V) denote the vector space of all multilinear functions

Vx-o.xVxV*x...xV* = Q"V).
AR SN S Rl

k times I times

Show that sections of ’T,k["](T]W) correspond to (even) relative tensors of type
(I;) and weight 1. (Notice that if vy,...,vn is a basis for V, then elements of
Q7(V) can be represented by real numbers [times the element v* A - - Av*,].)
) If 'T,’[‘m](V) is defined similarly, except that (V) is replaced by Q™(V*),
show that sections of 'T,f"](TM) correspond to (even) relative tensors of type (’;)
and weight —1.

(d) Show that the covariant relative tensor of type (2) and weight I defined in
Problem 4-10, with components &1/, corresponds to the map

V* x - x VE S QU(V)
Yx--xV

n times

given by (¢1,...,@a) = @1 A --+ A @y Interpret the relative tensor with com-
ponents g, ., similarly.
(e) Suppose "*(V) denotes all functions n: V x --- x ¥ — R which are of
the form

N1, ..., U) = [@(V1,. .., 0] w an integer
for some w € Q"(V). Let 'T,k[";w](V) bedefined like T,k["], except that Q7(V)is
replaced by Q7% (V). Show that sections of ’T,k["""](TM) correspond to (even)
relative tensors of type (’,‘) and weight w. Similarly for Tlf‘":w].
(f) For those who know about tensor products ¥ @ W and exterior algebras
Ak(V), these results can all be restated. We can identify 'J’,/‘(V) with

®kv*®®'V=v*®...®v*®V®...®v.

k times 1 times

Since Q™(V) = A™(V*) = [A™(V)]*, we can identify

k U
7wy wih & Ve Veam(y)

k I
Tha(V) with Q) V@@ VeAm (V).
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Consider, more generally,

,J_Ik[m:w](v) - ®k Ve ®’ Ve ®‘” ATV
T =Q Ve @ ve@” amw.

Noting that A"(V) ® --@A"(V) is always 1-dimensional, show that sections of
’—k["’wl(Tﬂl) and 7, ,[n w1 (TM) correspond to (even) relative tensors of type (’,‘)
and weight w and —w, respectively.

13. (a) If V has dimension n and A: V — V is a linear transformation, then
the map A*: Q"(V) — Q7(V) must be multiplication by some constant c.
Show that ¢ = det A. (This may be used as a definition of det 4.)

(b) Conclude thatdet AB = (det A)(det B).

14. Recall that the characteristic polynomial of A: V — V is

X(A) = det(AI — A4)
=A" — (trace A)A"" ... 4 (=1)"det 4
=A" — A" A (=)

(2) Show that ¢k = trace of 4*: QK(V) — QK(V).
(b) Conclude that cx (A B) = cx(BA).
(c) Let 6‘” " be as defined in Problem 4-5(xiii). If A: ¥V — V has a ma-

trix (ai ) (wlth respect to some basis), show that

1
— Jl .Iz . Jk 1ig
ald) = > | 8
e d
Jaees i

Thus, if 8 is as defined on page 130, and 4 is a tensor of type (}), then the
function p > ck(A(p)) can be defined as a (2k)-fold contraction of

AQ---®A®S.
—_—

k times

15. Let P(X;;) be a polynomialin n? variables. For every i xn matrix 4 = (aij)
we then have a number P(a;;). Call P invariant if P(A) = P(BAB™) for
all 4 and all invertible B. This problem outlines a proof that any invariant P
is a polynomial in the polynomials ¢y, ..., ¢s defined in Problem 4. We will
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need the algebraic result that any symmetric polynomial Q(yy, ..., y) inthe n
variables yy,..., yp can be written as a polynomial in oy,...,0,, where g; is
the i elementary symmetric polynomial of yi, ..., y,. Recall that the oy can
be defined by the equation

n
[To=yy=y" o™+ 4 (~1)on.

i=1

Thus, they are the coefficients, up to sign, of the polynomial with roots yi,.. .,
yn. Since the eigenvalues Ay,..., A, of a matrix A are, by definition, the roots
of the polynomial x(1), it follows that

ci(A) = 0i(hi; .5 An).

Wewillfirst consider matrices A over the complex numbers C (the coefficients
of P may also be complex).

(a) Define Q(yi,...,¥n) to be P(A) where A is the diagonal matrix

(00

Then there is a polynomial R such that
QWise s ¥u) = RO1D15 e )y oy OulDts s Vi)

The polynomial R has real coefficients if P does.
(b) P(A) = R(c1(A),... ca(A)) for all diagonalizable A.
(c) The discriminant D(A) is defined as [],.;(A: — ;)% where 4; are the
eigenvalues of A. Show that D(A) can be written as a polynomial in the entries
of A.
(d) Show that P(A4) = R(ci(A),...,ca(A)) whenever D(A) # 0. Conclude, by
continuity, that the equation holds for all matrices A4 over C. (This last conclu-
sion follows even if C is replaced by some other field, since the set where D # 0
is Zariski-dense; this is “the principal of irrelevance of algebraic inequalities”,
compare pg. V.375.)

Now suppose that the coefficients of P are real and that P(4) = P(BAB™')
for all real A and real invertible B.
(e) The same equation holds for complex 4 and complex invertible B. (Regard
the equation as n? polynomial equations in the a;; and b;;.)
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16. (a) Let vy,..., v, be a basis for V, and let w1,...,wx € V be given by
n
w; = Z&j,'vj.
je=

For @ € Q% (V) show that

o(Wi,..., W) = Z aro(Vs ..., ),
I=iy<eo<iy
where a; is the determinant of the k x k submatrix of (¢;;) obtained by selecting
TOWS iqy. .., ik.
(b) Generalize Theorem 7 and Corollary 8 to k-forms.
(c) Check directly from (b) that the definition of d does not depend on the
coordinate system.

17. Show that d(zi<j a;j dx' A dx?) =0 ifand only if

% _%_}_3:7]?:0 foralli < j <k.
18. In Problem 5-14 we defined Ly 4 for any tensor field 4.
(a) Show thatif @ isa k-form, thensois Lxw.
(b) Show that

Ly(iAw)=Lyw Aw, + w1 A Lyw,.
(c) Using 5-14(e), show that

X((X1,..., X)) = Lx(w(Xy, ..., Xk))
= Lxo(X1,..., Xx)
k
+ DX, X X, X Xe).

i=1
(d) Deduce the following two expressions:

do(Xi,..., Xes1)
k41
=Y (D Lyw,.... X,..., Xep)
i=1

3 (X, X0, XL KL K X)

i<j
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do(X1, ., Xes1)
Ik+1 .
=5 Y (=D XX, X, Xep))

i=1

+ Ly, o(X1,..., Xy X))}

(€) Show that
X.ldo=Lyw — d(X.lw),

ie.,
do(X1,..., Xer1) = (Lxy 0)( Xz, ... Xer) —d(X1d@)(Xa, ..o, Xpgy).

(This may be used to give an inductive definition of d.)
(f) Using (e), show that d(Lxw) = Lx(dw).

19. Let aij be n? functions on R” with ajj = aj;. Show that in order for there
to be functions uy, ..., u, in a neighborhood of any point in R” with

,_] ou; du;
4 =3\5x Toxi

it is necessary and sufficient that
8%y ai _ ayy 92ay
axkoxl  9xidx! — axkaxi  AxJaxi
Hint: First set up partial differential equations for the functions fj; = du /3x* —
dug /dx”’, and use Theorem 6-1.

for alli, j,k,I.

20. Compute that

xdy —ydx

T

(At most places 6 = arctan y/x [+ a constant].)

2l. (a) If @ is a I-form fdx on [0, 1] with f(0) = f(1), show that there is a
unique number A such that w —A dx = dg for some function g with g(0) = g(1).
Hint: Integrate the equation @ — A dx = dg on [0,1] to find A.

(b) Leti: 8! — R2—{0} be the inclusion, and let ¢’ = i*(d6). If ¢: [0,1] = S’
is

“q9” =

¢(x) = (cos2mx, sin 27 x),
show that
c*(o’) =2 dx.

(€) If w is a closed I-form on S' show that there is a unique number A such
that w — Ag’ is exact.
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22. (a) Show that every w € Q¥(V, @ V) can be written as a sum of forms
) A wy where w; has degree @ and w; has degree 8 = k — a and
w1 (v1,...,Ve) =0 ifsome v; € V2
wy(v,...,vg) =0 if some vy; € V1.
(b) IfdmVa=1and0#A € V2*, then w can be written uniquely as w; +
(w2 A A), where w) is a k-form and w; is a (k — 1)-form such that
wi(vy,...,%)=0 ifsomev; €V,
wa(vy,...,%-1) =0 ifsome y; € Va.
23. Let U C R” be an open set star-shaped with respect to 0, and define H: U x
[0,1]-+ U by H(p,t) = 1p. If
w= Z @y iy dx' A AdxE
i < <ig
on U, show that
I(H*w)

K . . )
= Z Z(—l)“"'(/ lk“'wi,,,_,k(tx)dl)xi“ dx A Adxie A A dxE,
o

i< <ip a=1

24. (a) Let U c R? be abounded open set such that R2—U is connected. Show
that U is diffecomorphic to R2, and hence smoothly contractible to a point. (The
converse is proved in Problem 8-9.) Hint: Obtain U as an increasing union of
sets, the kP set being a finite union of squares containing the set of points in U
whose distance from boundary U is < 1/k.

(b) Find a bounded open set U C R? such that R* — U is connected, but U is
not contractible to a point.
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25. Let U C R" be an open set star-shaped with respect to 0. Is U homeo-
morphic to R"? (It would certainly appear so, but the “obvious” proof does
not work, since the length of rays from 0 to the boundary of the set could vary
discontinuously.)

26. Let ( , ) be the usual inner product on R”,

(a,b) = iaibi.
i=1

(@) If vi,...,vn~1 € R”, show that there is a unique vector vy X - -+ X U € R”
with
w
e u
(Ug X -+ X Upy, W) =det . for all w e R".
Un—1

(b) Show that x ---x € Q""!(R"), and express it in terms of the e*;, using the
expansion of a matrix by minors.
(c) For R3? show that

UX W= (uzw3 — v w?, v — v, vlw? — vPul).

(First find all &; x e;.)
27. (a) If /: R" —> R, define a vector field grad f, the gradient of f, on R”
by
af 9 z 9
gradf:Zw-w=ZDif-a—xi.
i=1 is=l

Introducing the formal symbolism

- i}
V= ZD'.W’
i=]
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we can write grad / =V /. If (grad f)(p) = wp, show that
Dyf(p) = (v, w),

where D, f(p) denotes the directional derivative in the direction v at p (or
simply v,(f), if we regard v, € R”). Conclude that V/(p) is the direction in
which f is changing fastest at p.

(b) If X = 37 1a'd/3x' is a vector field on R”, we define the divergence

of X as
. ba’
divX =) —.
v X Z o
i=1
(Symbolically, we can write div X = (V, X).) We also define, for n = 3,
curl X =V x X)
_ (8 _da’\ 8, (%al 9\ 3  (da® da') 3
T \8xZ ax3) ax! ax3  ax1/) ox? ax! ~ ax? ) ax3¥
Define forms

wy =a' dx+aldy+a’dz
nw=a'dyndz+a’dz ndx +a’dx ndy.

Show that

A/ = Wgrad s
d(wx) = Neurl ¥
dinx) = (divX)dx ndynd:z.

(c) Conclude that

curlgrad /=0
divcurl X = 0.

(d) If X is a vector field on a star-shaped openset U C R” and curl X =0,
then X = grad f for some function f: U — R. Similarly, if div X = 0, then
X = curlY for some vector field Y on U.



CHAPTER 8
INTEGRATION

he basic concept of this chapter generalizes line and surface integrals,

which first arose from very physical considerations. Suppose, for example,
that ¢: [0,1] - R?isacurveand w = fdx+gdyisa 1-form on R? (where
/,g: R2 = R, and x and y denote the coordinate functions on R?). If we
choose a partition 0 =t < - -+ < t, = 1 of [0, 1], then we can divide the curve ¢
into n pieces, the i*" piece going from ¢(ti—1) to c(ti). When the differences
t; ~ ti-) are small, each such piece is approximately a straight segment, with

c(1)

c(ti)

c(&),

\C' () = ¢ (ti1)

T— 2t = eH(ti)
c(ti-1) !

horizontal projection ¢'(z;) ~ ¢! (ti—1) and vertical projection ¢?(t;) — ¢2(ti-1).
We can choosc points ¢(&;) on each piece by choosing points &; € [ti—y, 4]. For
each partition P and each such choice & = (&, ...,&,), consider the sum

S(PE)= " fleEMle @) = ¢ (o] + g(eENEXW) ~ (1)),

i=1

If these sums approach a limit as the “mesh” || Pj| of P approaches 0, that is,
as the maximum of ¢; — t;_; approaches 0, then the limit is denoted by

/fdx+gdy.
c

(This is a complicated limit. To be precise, if ||P|| = max{t; ~ t;_;}, then the
equation !

lim S(P,& =/ dx+gdy
]]Plﬁzo ) cf g4

239
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means: forall £ > 0, thereis a § > 0 such that for all partitions P with || P|| < 8.
we have

<&

‘S(P,S)—/fdx-kgdy

for all choices & for P.)
The limit which we have just defined is called a “line integral”; it has a natural
physical interpretation. If we consider a “force field” on R?, described by the

vector field
=83y /

then S(P, ) is the “work” involved in moving a unit mass along the curve ¢ in
the case where ¢ is actually a straight line between ti—) and t; and f and g are
constant along these straight line segments; the limit is the natural definition
of the work done in the general case. (In classical terminology, the differential
[ dx + gdy would be described as the work done by the force field on an “in-
finitely small” displacement with components dx, dy; the integral is the “sum”
of these infinitely small displacements.)

Before worrying about how to compute this limit, consider the special case
where

e(t) = (1, Jo).

In this case, ¢! (1) — ¢ (i1} = i — tiy, while ¢2(t;) — ¢2(tiey) =0, s0

S(P.EY= Y [yl — liy)-

i=1
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These sums approach

/;fdx+gd)’=folf(x,yo)dx.

On the other hand, if

c(t) = (tb+ (1 ~1)a, yo),

then ¢'(ti) ~ ¢! (tim1) = (b ~ a)(li — ti-1), 50
S(PE)=(b—a)- Y fEb+ (1~ &da, Yo)ti ~ tiz1):
i=1

These sums approach

1 b
(b—-a)f0 S(xb+( —x)a,yo)dx:/ J(x, y0)dx.

In general, for any curve ¢, we have, by the mean value theorem,
'y = tim) =M@t —ti-) @ € [tiny, 0]
El) ~ i) = Bt = tic1)  Bi € [tir,ti).
So

n
S(P&) =Y { fcEe" (@) + geE)c B} (i = ti-p).
i=1
A somewhat messy argument (Problem ) shows that these sums approach what
it looks like they should approach, namely

1
/0 [/ (@)e() + g(e)e* (] dr.

Physicists’ notation (or abuse thereof) makes it easy to remember this result.
The components ¢',c? of ¢ are denoted simply by x and y [ie, x denotes
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x oc and y denotes y o c; this is indicated classically by saying “let x = x(¢),
y = y(1)”]. The above integral is then written

! d d
/fdx+gdy=ﬁ [f(x,y)d—f +g(x,y);)[-'] d.

In preference to this physical interpretation of “line integrals”, we can in-
troduce a more geometrical interpretation. Recall that dc/d(§;) denotes the

clii—1}

tangent vector of ¢ at time &. Then the sums
“ de

@ Leeen (56 @ =nm
i1

=[S (cEN" E) + geENHEN] - (i = ti-1)

i=]

clearly also approach
1
ﬁ [ (c@)e"(t) + gle()c? (1)) dt.

Consider the special case where ¢ goes with constant velocity on each (41, 4).
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If we choose any &; € (ti-1,¢), then

d.
length of ;f—(é,‘) = the constant speed on (fi~1, )

_length of the segment from c(#j1) to c(t:)

ti =i
S0

[length of —Z—j(E,-)j| - (ti = ti—1) =length of segment from c(ti-1) to c(#;).

In this case,
n

dc
length of — (&) | - (ti — ti~
g [engt of - (E,)] (ti — ti=1)
is the length of ¢, and the limit of such sums, for a general ¢, can be used as a
definition of the length of ¢. The line integral

]w = limit of the sums (¥)

c

can be thought of as the “length” of ¢, when our ruler is changing contin-
uously in a way specified by @: Notice that the restriction of w(c(t)) to the
1-dimensional subspace of R?(,y spanned by dc/d! is a constant times “signed
length”. The natural way to specify a continuously changing length along ¢
is to specify a length on its tangent vectors; this is the modern counterpart of
the classical conception, whereby the curve ¢ is divided into infinitely small
parts, the infinitely small piece at ¢(¢), with components dx, dy, having length
JS(e(r)) dx + g(e(t))dy.

Before pushing this geometrical interpretation too far, we should note that
there is no 1-form @ on R? such that

]w = length of ¢ for all curves c.
c

Itis true thatfor a given one-one curve ¢ we can produce a form @ which works
for ¢; we choose w(c(1)) € Q' (R%(,)) so that

d
w(c(t) (d—f) =1,

2 kernel w(c(r))

£l
(choosing the kernel of @ arbitrarily), and then extend ® to R%. But if ¢ is
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not one-one this may be impossible; for example, in the situation shown below;

there is no element of '(R%,)) which has the value 1 on all three vectors.
In general, given any w on R? which is everywhere non-zero, the subspaces
O, = kerw(p) form a 1-dimensional distribution on RZ%; any curve contained
in an integral submanifold of A will have “length” 0. Later we will see a way
of circumventing this difficulty, if’ we are interested in obtaining the ordinary
length of a curve. For the present, we note that the sums (%), used to define this
generalized “length”, make sense even if ¢ is a curve in a manifold M (where
there is no notion of “length”), and w is a 1-form on M, so we can define [, w
as the limit of these sums.

One property of line integrals should be mentioned now, because it is ob-
vious with our original definition and mercly true for our new definition. If
p: [0,1] = [0, 1] is a one-one increasing function from [0, 1] onto [0, 1], then the
curve co p: [0,1] = M is called a reparameterization of c—it has exactly the
same image as ¢, but transverses it at a different rate. Every sum S(P,¢) for ¢
is clearly equal to a sum S(P’,¢’) for ¢ o p, and conversely, so it is clear from
our first definition that for a curve ¢: [0, 1] = R? we have

/w:/ @
< cop

(“the integral of @ over ¢ is independent of the parameterization”). This is no
longer so clear when we consider the sums (%) for a curve ¢: [0,1] = M, nor is
it clear even for a curve ¢: [0,1] = RZ, but in this case we can proceed right to
the integral these sums approach, namely

1
/o [/ (c@)e" () + gle()e¥ ()] dt.
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The result then follows from a calculation: the substitution ¢ = p(u) gives
1
/ [/ (e)e" (1) + gle@)c¥ (] dt
0

=)
) [/ (e(p)e” (p(w)) + g(e(pu))e® (p(u))]p'(v) du

_ P

B [ﬁ—'(o
1

= A [f(c o p(u))(c o p)"(u) + g(c o p(u))(c o p)*'(u)] du.

For a curve in R”, and a I-form @ = Y ;_, w; dx', there is a similar calcula-
tion; for a general manifold M, we can introduce a coordinate system for our
calculations if ¢([0, 1]) lies in one coordinate system, or break ¢ up into several
pieces otherwise. We are being a bit sloppy about all this because we are about
to introduce yet a third definition, which will eventually become our formal
choice. Consider once again the case of a 1-form on R?, where

1
]w=/ [/ (@) (1) + gle(r))c()] dt.
4 0

Notice that if ¢ is the standard coordinate system on R, then for the map
¢: [0, 1] = R? we have

e*(fdx+gdy) = (foc)*(dx)+ (goc)c*(dy)
=(foc)dlxoc)+(goc)d(ycc)
= (foc)c"dt + (goc)c?ds,

so that formally we just integrate ¢*(f/ dx + g dy); to be precise, we write
*(fdx + gdy) = hdt (in the unique possible way), and take the integral
of hon [0,1].

Everything we have said for curves ¢: [0,1] = R” could be generalized to
functions c: [0,1]2 — R”. If x and y are the coordinate functions on R?, let

_3_5_ o
E L (2) 5 &
ax  "\ox
ac (a ) =
—=ca|=—
ady ay

For a pair of partitions 5o < --+ < s, and fp < --+ < 15 of [0, 1], if we choose
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&ij € [si—158i] x [tj—1,1;] and w is a 2-form on R”, then

. 11 -‘

w(c(ij)) (g—; Gij)s g—;(&j)) (s; = $i—1)(tj ~ 1j—1)

is a “generalized area” of the parallelogram spanned by
dc
gﬁ(éij), a_y(Eij)-
The limit of sums of these terms can be thought of as a “generalized area” of ¢.
To make a long story short, we now proceed with the formal definitions.

A C®™ function ¢: [0, ¥ — M is called a singular k-cube in M (the word
“singular” indicates that ¢ is not necessarily one-one). We will let [0,1]° = R? =
0 € R, so that a singular 0-cube ¢ is determined by the one point ¢(0) € M.
The inclusion map of [0,1]% in R¥ will be denoted by 7%: [0,1]* — R¥; it is
called the standard k-cube.

If wisa k-formon [0, 1%, and x', .. ., x* are the coordinate functions, then @
can be written uniquely as

w=fdx'n-- ndxk.

We define
= [ J(. L xkydx! L dxk
[o,1*
/ ® t0be / I in classical notation, which modern
.17 O notation attempts to mimic as far

as logic permits
If w is a k-form on M, and ¢ is a singular k-cube in M, we define
w= / o,
c
[o.17%
where the right hand side has just been defined. For k = 0, we have a special
definition: a 0-form is a function f, and for a singular 0-cube ¢ we define

[ 7= reecon.
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1. PROPOSITION. Let ¢: [0,1]" — R” be a one-one singular n-cube with
detc’ > 0on [0,1)". Let w be the n-form
w=fdx' A ndx".

Then

= ] 7.
c
(0,1}

PROOF. By definition,

w= c*w)
c
0.

(f oc)(detc’)dx' A--- Adx" by Theorem 7-7

fo,11”

(foc)ldete’ldx' A--- Adx" by assumption

fo, 1"

= f by the change of variable formula.

e((o.11”)

2. COROLLARY. Let p: [0,1]¥ — [0,1]¥ be one-one onto with det p’ > 0,
let ¢ be a singular k-cube in M and let @ be a k-form on M. Then

/w =/ w.
c cop
PROOF. We have

w= f (copfo= j P(w)
cop
[0,11% [0,17%
= ¢*(w) by the Proposition, since p is onto

[o,11%

=/w_ o
¢
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Themapcop: [0,11¥ — M is called areparameterization of ¢if p: [0,1]% —
[0,1]% is a C™ one-one onto map with det p’ # 0 everywhere (so that p~' is
also C®); it is called orientation preserving or orientation reversing depending
on whether det p’ > 0 or det p’ < 0 everywhere. The corollary thus shows
independence of parameterization, provided it is orientation preserving; an ori-
entation reversing reparameterization clearly changes the sign of the integral.
Notice that there would be no such result if we tried to define the integral over ¢
of a C* function f: M — R by the formula

]foc.

[o11%

For example, if ¢: [0,1] > M then

1 1
/ fle@e)ydt is generally  # / Sle(p@))) dtr.
0 o

From a formal point of view, differential forms are the things we integrate be-
cause they transform correctly (i.e., in accordance with Theorem 7-7, so that
the change of variable formula will pop up); functions on a manifold cannot be
integrated (we can integrate a function f on the manifold R* only because it
gives us a form fdx' A --- Adxk).

Our definition of the integral of a k-form @ over a singular k-cube ¢ can
immediately be generalized. A k-chain is simply a formal (finite) sum of singular
k-cubes multiplied by integers, e.g.

1) —2¢2 + 3¢3.

The k-chain 1e; = 1-¢; will also be denoted simply by ¢1. We add k-chains,
and multiply them by integers, purely formally, e.g.,

2(er + 3ca) + (=2)(er + €3+ c2) = ~2¢2 — 2¢3 + 6ca.

Morcovcr, we define the integral of @ overa k-chain ¢ = ) ; a;¢; in the obvious

way:
@ = a; .
/Z aer Z ' fc,-

i
The reason for introducing k-chains is that to every k-chain ¢ (which may be

just a singular k-cube) we wish to associate a (k — 1)-chain dc¢, which is called
the boundary of ¢, and which is supposed to be the sum of the various singular
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(k — 1)-cubes around the boundary of each singular k -cube in ¢. In practice, it

is convenient to modify this idea. The boundary of 72, forexample, will not be
the sum of the four singular 1-cubes indicated below on the left, but tbe sum,

-1

with the indicated coefficients, of the four singular 1-cubes shown on the right.
(Notice that this will not change the integral of a 1-form over 372.) For each
with 1 < i < n we first define two singular (7 — 1)-cubes I(; ;, and [(; .y (the
(i,0)-face and (i, 1)-face of 1”) as follows: If x € [0,1]""!, then

Ii o) = 1", x 70 x, L xm )
=(x',.,xTho XL X",
IG ) = 1", XL X xmY)

=0T L L ).

2
16y

2 2
16,0 T
1 Il
1,0 a0
IS UL

2
1(2.0)
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The (i,a)-face of a singular n-cube ¢ is defined by
Ciay =Co0 (1(",.’11))‘

€(1,0)
e @

€Q,0)

¢(0) can

Now we define

=3 3 (e

i=1 a=0,1

Finally, the boundary of an n-chain Y_; a;c; is defined by
8(2 a;c,-) = Zaia(c,-).
i i

These definitions all make sense only for n 2 1. For the case of a 0-cube
¢:[0,1]° = M, which we will usually simply identify with the point P = ¢(0),
we define dc to be the number 1 € R, and for a 0-chain )_; ajc; we define

a(z a,-c;) = Za,'a(c,') = Zui.
i i i
Notice that for a 1-cube c¢: [0,1] = M we have

de = ¢q,1y — 0,0y

R{e]
ddcy=1-1=0.

Wealso have, for a singular 2-cube ¢: [0,1]2 — M,

8¢ = cqy — e,y — €00 + 0% €0

3(dcy=(R=Q)=(R=5) P
-(S§-P+@-P)
=0.

Q €,y
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From a picture it can be checked that this also happens for a singular 3-cube,
a good exercise because this involves figuring out just what the boundary of a
3-cube looks like. In general, we have:

3. PROPOSITION. If ¢ is any n-chain in M, then d(dc) = 0. Briefly, 3> = 0.

PROOF. Leti < j < n— 1, and consider (](’:',a))(j g Forx e [0,1)772, we
have, from the definition
UG,y ¥) = Ty U773y ()
=08t X B T XY

=7"x", L x T a,xt X T Bxd L xR,
Similarly,
—1
Ul p)iaw = 1G+1,6UGa )
=G s 0 X e x L Y
=7 e xt T Bx T XY,

Thus (](I:,u))(j,ﬁ) = (]("j+l,B))(i,a) fori < j < n -1 It follows easily for any
singular n-cube ¢ that (¢(i.a))(;,8) = (€(j+1,8) 0 for i < j <n—1. Now

3(c) = a(}: > (—1)"+ﬂc(,-,,,))

i=1 a=0,

n n~1
=33 3 = e

i=1 =0, j=1 f=0,1

In this sum, (c(j,e))(;,8y and (¢(j+1,8)) i,y OCCur with opposite signs. Therefore
all terms cancel in pairs, and d(dc) = 0. Since the theorem is true for singular
n-cubes, it is clearly also true for singular n-chains. %

Notice that for some n-chains ¢ we have not only d(dc) = 0, but even dc = 0.
For example, this is the case if ¢ = ¢) — ¢3, where ¢; and ¢, are two 1-cubes
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with ¢;(0) = ¢2(0) and ¢;(1) = c2(1). If ¢ is just a singular I-cube itself, then

[

=

dc = 0 precisely when ¢(0) = c(1), i.e, when c is a “closed” curve. In general,

&

any k-chain ¢ is called closed if d¢ = 0.

Recall that a differential form @ with dw = 0 is also called “closed”; this
terminology has been purposely chosen to parallel the terminology for chains
(on the other hand, a chain of tlie form dc is not described, reciprocally, by
the classical term of “exact”, but is simply called “a boundary”). This paralle
terminology was not chosen mcrely because of the formal similarities between d
and 9, expressed by the relations d? = 0 and 8 = 0. The connection between
forms and chains goes much deeper than that. For example, we have seen that
on R? — {0} there is a 1-form “d@” which is closed but not exact. There is also a
1-chain ¢ which is closed but not a boundary, namely, a closed curve encircling

P
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the point 0 once. Although it is intuitively clear that ¢ is not the boundary of a
2-chain in R? — {0}, the simplest proof uses the theorem which establishes the
connection between forms, chains, d, and 4.

4. THEOREM (STOKES' THEOREM). If wisa (k—1)-formon M and c is

a k-chain in M, then
/dw = / .
c dc

PROOF. Most of the proof involves the special case where w is a (k — 1)-form
on R¥ and ¢ = 7%, In this case, w is a sum of (k — 1)-forms of the type

Fax' Ao ndxt A A dk,

and it suffices to prove the theorem for each of these. We now compute. First,
a little notation translation shows that

/[ouk—l ]("j’a)*(fdx'/\---/\3;:\"/\~--/\dx")
0 i

= jf(x',...,a,...,x")dx‘...dx" =i

fo,17¢

Therefore

=Z (—l)j+"/ ]("Aa)*(fdx'/\.../\E;:\"/\---/\dx")
; 1 10,1341 Sy

= (-piH FO xRy dx L dxk

[UD

-1y f FO 0, XKy dx) L ax.

fo.p%
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On the other hand,
/ d(fdx' n---n E;An-/\dx")
%

= ] Dif dx' Adx' Ao ndxi A ndx
[0.11%
= [ o,
{o,1)%

By Fubini’s theorem and the fundamental theorem of calculus we have

/ d(fdx' A~ AdXT A A dx)
13

—(—1)""/ (/ Di f(x! ,...,Ak)dxi) dx'...dxi...dx*
= (=)'~ lf ] S, )

-1, ,...,xk)] dx'... dxt... dx*

= (=1)"" ] St xR dx! L dxk
[0.11%

+(=1)" f FO 0, xRy dxt L axk.

fo,1)%
/ dw:/ 3}
1k atk

For an arbitrary singular k-cube, chasing through the definitions shows that

/w:/ c’w

ac ark

fdw=/ c‘(dm):/ d(c*w) =/ c*w=/ .
c th 15 ark ac

The theorem clearly follows for k-chains also.

Thus

Therefore
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Notice that Stokes’ Theorem not only uses the fundamental theorem of cal-
culus, but actually becomes that theorem when ¢ = /' and & = f-

As an application of Stokes’ Theorem, we show that the curve ¢: [0,1] —
R? — {0} defined by

c(t) = (cos 27mtt,sin 27t),

although closed, is not dc? for any 2-chain c2. Ifwe did have ¢ = dc?, then we

would have
/de:/ d9=/d(d9)=/0=0.
c ac2 c? 2

But a straightforward computation (which will be good for the soul) shows that

—y x _
ﬁdﬂ:[cmdx-kmdy—br.

[There is also a non-computational argument, using the fact that “d6” really
is d6 for 6: R? — ([0, 00) x {0}) — R: We have

df =6(1 —¢&) —06(g),
c|le,1-¢]
and 6(1 — ) — 6(g) — 211 as ¢ > 0.]
Although we used this calculation to show that ¢ is not a boundary, we could

just as well have used it to show that @ = “df” is not exact. For, if we had
= df for some C® function f: R? — {0} — R, then we would have

2n=/pw=£df= racf=/0f=0.

We were previously able to give a simpler argument to show that “d6” is not
exact, but Stokes’ Theorem is the tool which will enable us to deal with forms
on R” — {0}. For example, we will eventually obtain a 2-form @ on R® —{0},

_xdyndz—ydxadz+zdxndy
o= I+ 2 + 2232
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which is closed but not exact. For the moment we are keeping the origin of w a
secret, but a straightforward calculation shows that dw = 0. Toprove that w is
not exact we will want to integrate it over a 2-chain which “fills up” the 2-sphere
5% ¢ R~ {0}. There are lots of ways of doing this, but they all turn out to give
the same result. In fact, we first want to describe a way of integrating n-forms
over n-maiifolds. This is possible only when M is orientable; the reason will
be clear from the next result, which is basic for our definition.

5. THEOREM. Let M be an n-manifold with an orientation u, and let ¢y, ¢; :
[0,1]" = M be two singular n-cubes which can be extended to be diffeomor-
phisms in a neighborhood of [0, 1]". Assume that ¢; and ¢; are botly orientation
preserving (with respect to the orientation . on M, and the usual orientation
on R"). If  is an n-form on M such that

support » C ¢ ([0, 1]") Ne2([0,1]7).

Jo=1>

PROOF. We want to use Corollary 2, and write

/w:/ w:/ .
[ c20(c2~ocy) ¢l

The only problem is that ¢;! o ¢ is not defined on all of [0, 1]” (it does satisly
det{c2™" o¢y)' > 0, since ¢; and ¢, are both orientation preserving). However, a
glance at the proof of Corollary 2 will show that the result still follows, because

2,

of the fact that support @ C ¢1([0,1]") N ¢2([0, 1]%).

then

The common number jw, for singular n-cubes c¢: [0,1]" — M with sup-

c
port @ C ¢([0,1]") and ¢ orientation preserving, will be denoted by

/o

If @ is an arbitrary n-form on M, then there is a cover @ of M by open sets U.
each contained in some ¢([0, 1]"), where ¢ is a singular #-cube of this sort; if ¢
is a partition of unity subordinate to this cover, then

s
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is defined for each ¢ € ®. We wish to define
0= Z/ ¢ .
/M pan M

We will adopt this definition only when @ has compact support, in which case
the sum is actually finite, since support @ can intersect only finitely many of the
sets {p : ¢(p) # 0}, which form a locally finite collection. Ifwe have another
partition of unity ¥ (subordinate to a cover ('), then

Z/ ¢-w=Z/ Z‘/"¢'w=ZZ/ Ved-w;
per M ped M yew pedyew M
these sums are all finite, and the last sum can clearly also be written as
> Z/ 6V 0= Z/ ¥ o,
ve¥ ged M ve¥ M

so that our definition does not depend on the partition. (We really should denote

this sum by
f w:
(M,u)

for the orientation —u of M we clearly have

f w=—f w.
(M,—p) (M,1)

However, we usually omit explicit mention of u.)

With minor modifications we can define [;, @ even ift M is an n-manifold-
with-boundary. If M C R” is an n-dimensional manifold-with-boundary and
f+ M — R has compact support, then

1Mfdx'/\---/\dx"=1!jl

wherc the right hand side denotes the ordinary integral. This is a simple conse-
quence of Proposition L. Likewise, if f: M" — N" is a diffeomorphism onto,
and o is an n-form with compact support on N, then

/ ® if f is orientation preserving

if f is orientation reversing.

fre-
M _/Nw
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Although n-forms can be integrated only over orientable manifolds, there is
a way of discussing integration on non-orientable manifolds. Suppose that w is
a function on M such that for each p € M we have

w(p) = |npl for some 7p € Q7(M)),
i.e., for any n vectors vi,...,U, € M, we have
o(p)V1, ..., Un) = [1p(v1,.. 0, vn)] 2 0.

Such a function o is called a volume element—on each vector space it deter-
mines a way of measuring n-dimensional volume (not signed volume). If (x, U)
is a coordinate system, then on U we can write

o= fldx" A Adx" for f=0;

we call @ a C* volume element if f is C®. One way of obtaining a volume
element is to begin with an n-form 5 and then define w{p) = |n(p)|. However,
not every volume element arises in this way—the form 5, may not vary con-
tinuously with p. For example, consider the Mabius strip M, imbedded in R3.
Sitice M,, can be considered as a subspace of R?, we can define

w{p){vp, wp) = area of parallelogram spanned by v and w.

1t is not hard to see that  is a volume element; locally, w is of the form o = ||
foran n-form 7. Butthis cannot be true on all of M, since there isno n-form 5
on M which is everywhere non-zero.

Theorem 7-7 has an obvious modification for volume elements:

7-7. THEOREM. If f: M — N is a C* function hetween n-manifolds,
(x, U) is a coordinate system around p € M, and (y, V) a coordinate system
around g = f(p) € N, then for non-negative g: V — R we have

iy Ao ndy™) = (go f) - |det (%N JdxY A A dXT).

PROOF. Go through the proof of Theorem 7-7, putting in absolute value signs
in the right place. o
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7-8'. COROLLARY. If (x,U) and (», V) are two coordinate systems on M
and
gldy' Ao Ady"| = hldx' A Adx") g.h>0

ayt
det (W)

[This corollary shows that volume elements are the geometric objects corre-
sponding to the “odd scalar densities” defined in Problem 4-10.]

then

h=g-

It is now an easy matter to integrate a volume element w over any manifold.
First we define

/ ©= [ forw=fldx'n---ndx"], f20.
fo,1p
fo,1]"

Then for an n-chain c: [0,1]" - M we define

/m =/ ctw.
< fo,11"

Theorem 7-7' shows that Proposition I holds for a volume element w = [ |dx' A
---Adx"| evenif detc’ isnot > 0. Thus Corollary 2 holds for volume elements
even if det p’ is not > 0. From this we conclude that Theorem 5 holds for
volume elements @ on any manifold M, without assuming ci, c2 orientation
preserving (or even that M is orientable). Consequently we can define [,
for any volume element w with compact support.

Of course, when M is orientable these considerations are unnecessary. For,
there is a nowhere zero n-form 7 on M, and consequently any volume element @
can be written

w=fln, f=0.

If we choose an orientation g for M such that w(vi,...,vn) > 0 for vi,...,u,
positively oriented, then we can define

Ju#= Juns "

Volume clements will be important later, but for the remainder of this chapter
we are concerned only with integrating forms over oriented manifolds. In fact,
our main result about integrals of forms over manifolds, an analogue of Stokes’
Theorem about the integral of forms over chains, does not work for volume
elements.
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Recall from Problem 3-16 that if M is a manifold-with-boundary, and p €
dM, then certain vectors v € M can be distinguished by tbe fact that for any
coordinate system x: U — H” around p, the vector x4(v) € H"s(, points
“outwards”. We call such vectors v € M, “outward pointing”. If M has an

orientation p, we define the induced orientation du for dM by the condition that
[Ui,...,Un1] € (Bu)p if and only if [w,v1,...,Us-1] € pp for every outward
pointing w € Mp. If u is the usual orientation of H”, then for p = (2,0) € H"
we have

o =[€)p, .., (en)p) = (=1)"'[(€n)p, (€1)p - -, (€n=1)p]
= (~1)"[(~en)p, (€1)p, - - (€n=1)p].

Since (~es)p is an outward pointing vector, this shows that the induced orien-
tation on R"™! x {0} = 9" is (—1)" times the usual one. The reason for this
choice is the following. Let ¢ be an orientation preserving singular n-cube in
(M, ) such that aM N ¢([0,1]") = ¢(,05([0,11"™"). Then c(u0p: [0,11"~" —

C0r.0)

(0M, du) is orientation preserving for even n, and orientation reversing for
odd n. If w is an (n — 1)-form on M whose support is contained in the interior
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of the image of ¢ (this interior contains points in the image of ¢(a,0y), it follows

that
/ ©= (—I)"/ .
Cirr 0} aM
But ¢(u,0y appears with coefficient (~1)" in dc. So

) /w:/ m:(—l)"/ m:/ .
ac ~1Y'emm Cn.) aM

Ifit were not for this choice of du we would have some unpleasant minus signs
in the following theorem.

\ support @

6. THEOREM (STOKES’ THEOREM). If M is an oriented n-dimensional
manifold-with-boundary, and dM is given the induced orientation, and w is an
(n — 1)-form on M with compact support, then

/ dw:/ .
M M

PROOF. Suppose first that there is an orientation preserving singular n-cube ¢
in M — M such that support @ C interior of image ¢. Then

/ dw =/ dow =/ (3] by Theorem 4
M c e
=0

since support @ C interior of image c,

/ w =0.
M

Suppose next that there is an orientation preserving singular n-cube ¢ in M
such that 3MN¢([0, 1]7) = ¢(n,0)([0, 11"~'), and support @ C interior of image c.
Then once again

fy= = o o e

while we clearly have
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In general, there is an open cover @ of M and a partition of unity & sub-
ordinate to @ such that for each ¢ € ® the form ¢ - @ is one of the two sorts
already considered. We have

0=d(1)=d(2¢) =Y do,

¢ped ¢ped

so

Zd(j)/\w:O.

ped

Since @ has compact support, this is really a finite sum, and we conclude that

Z/M dp Ao =0.

ped
Therefore
(lw:Z/ qb-dw:Z/ dp Aw+¢-dow
fM peoIM pe0IM
=y d(¢~w>=2/ ¢~w=/ . &
¢E¢/M ped M M

One of the simplest applications of Stokes’ Theorem occurs when the oriented
n-manifold (M,u) is compact (so that every form has compact support) and
M = 0. In this case, if 5 is any (7 — 1)-form, then

/ (Iﬂ:/ n=0.
M aM

Therefore we can find an n-form @ on M which is no/ exact (even though it
must be closed, because all (n + 1)-forms on M are 0), simply by finding an &

with
/ o #0.
M

Such a form @ always exists. Indecd we have seen that therc is a form o such
that for vy, ..., v, € Mp we have

(*) o, ..., 0) >0 if (v, 0] = pp

Ir ¢: [0,1]" = (M, u) is orientation preserving, then the form ¢*w on [0, 1]" is
clearly
gdx' A Adx" for some g > 0 on [0, 17",
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so [.w > 0. It follows that fM ® > 0. There is, moreover, no need to choose
a form w with (%) holding everywhere—we can allow the > sign to be replaced
by >. Thus we can even obtain a non-exact n-form on M which has support
contained in a coordinate neighborhood.

This seemingly minor result already proves a theorem: a compact oriented
manifold is not smoothly contractible to a point. As we have already empha-
sized, it is the “shape” of M, rather than its “size”, which determines whether
or not every closed form on M is exact. Roughly speaking, we can obtain
more information about the shape of M by analyzing more closely the extent
to which closed forms are not necessarily exact. In particular, we would now
like to ask just how many non-exact n-forms there are on a compact oriented
n-manifold M. Naturally, if’ @ is not exact, then the same is true for @ + dn for
any (n — 1)-form 7, so we really want to consider w and ® + dn as equivalent.
There s, of course, a standard way of doing this, by considering quotient spaces.
We will apply this construction not only to n-forms, but to forms of any degree.

For each k, the collection Z¥(M) of all closed k-forms on M is a vector
space. The space B¥(M) of all exact k-forms is a subspace (since d2 = 0), so
we can form the quotient vector space

H¥(M) = Z*¥(M)/B* (M),

this vector space H* (M) is called the k-dimensional de Rham cohomology vector
space of M. [de Rham’s Theorem states that this vector space is isomorphic to
a ccrtain vector space defined purely in terms of the topology of M (for any
space M), called the “k-dimensional cohomology group of M with real coef-
ficients”; the notation Z*, B¥ is chosen to correspond to the notation used in
algebraic topology, where these groups are defined.]

An element of H*(M) is an equivalence class [] of a closed k-form w, two
closed k-forms w; and w; being equivalent if and only if their difference is exact.
In terms of these vector spaces, the Poincaré Lemma says that H¥R") =0 (the
vector space containing only 0) if k > 0, or more generally, (M) = 0if M
is contractible and &k > 0.

To computc H%(M) we note first that BY(M) = 0 (there are no non-zero
exact 0-forms, since there are no non-zero (—1)-forms for them to be the dif-
ferential of). So H%(M) is the same as the vector space of all C* functions
f: M — R with df =0. If M is connected, the condition df = 0 implies
that f is constant, so H(M) ~ R. (In general, the dimension of HO(M) is the
number of components of M.)

Aside from these trivial remarks, we presently know only one other fact about
HK(M)—if M is compact and oriented, then H”"(M) has dimension > 1. The
further study of H*(M) requires a careful look at spheres and Euclidean space.
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On S”"~' Cc R" — {0} there is a natural choice of an (1 — 1)-form ¢’ with
Jsu—t @’ > 0: for (V1)p, ..., (Unm1)p € S"1,, we define

P
U’(p)((vl)ps e s(vn—l)p) = det
Upi

Clearly this is > 0if (V1)p,...,(Un-1)p is a positively oriented basis. In fact,
we defined the orientation of S”~! in precisely this way—this orientation is just
the induced orientation when S”~! is considered as the boundary of the unit
ball {p € R" : |p| < 1} with the usual orientation. Using the expansion of a
dcterminant by minors along the top row we see that ¢’ is the restriction to
S§7=1 of the form o on R” defined by

n
o= Z(—I)f"x’dx‘ Ao ndXTA A dX
im

The form ¢’ on S"~1 will now be used to find an (n — I)-form on R* — {0}
which is closed but not exact (thus showing that H"~' (R —{0}) # 0). Consider
the map r: R" — {0} — 5"~ defined by

P _ P

" =10 ey

Clearly r(p) = pif p € S"7'; otherwise said, if i: "' — R* — {0} is the
inclusion, then
roi= identity of S""1.

(In general, if A C X and r: X — A satisfies r(a) = a for a € A, then r is
called a retraction of X onto A.)
Clearly, r*o’ is closed:
d(r*c’) =r*do’ = 0.
Howevecr, it is not exact, for if r*o’ = dn, then

o' =i*r*a’ =di*n;

but we know that ¢’ is not exact.
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It is a worthwhile exercise to compute by brute force that

forn=2, r*c’' = xdy - ydx :Xdy—ydxde
! 2+ )2 )

xdyndz—ydxandz+zdx Ady
2+ y2 1222

farn =3, r*’ =

%[xdy/\dz—yd,\-/\dzﬁ-zd,\'/\dy].

Since we will actually need to know r*¢’ in general, we evaluate it in another
way:

7. LEMMA. If o is the form on R" defined by

n
o= (-D"'x'dx! Ao AdXT A AdX",
i=
and o' is the restriction i*a of ¢ to S"~), then
a(p)
Iplm”

) ra'(p) =
So

vor = LSyt o
re’=— Z;(—])’ IWidx' A ndxT A A dxT,
i=

PROOF. At any point p € R" — {0}, the tangent space R”, is spanned by p,
and the vectors v, I the tangent space of the sphere S"~!(| p|) of radius | p|.
So it suffices to check that both sides of (*) give the same result when applied
to n — 1 vectors each of which is one of these two sorts. Now pj, is the tangent
vector of a curve y lying along the straight line through 0 and p; this curve is
taken to the single point r(p) by r, so 4(p,) = 0. On the other hand,

P

P

o (P)(Po,(V1)pse s (Vu2)p) =det| U | =0.

Up—2
So it suffices to apply both sides of () to vectors in the tangent space of
S"™1(Ipl). Thus (Problem 15), it suffices to show that for such vectors v, we
have

72 (Vp) = —Vr(p)-

I
iyl
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But this is almost obvious, since the vector v, is the tangent vector of a circle y
lying in S"='(1pl), and the curve r o y liesin S"~! and goes 1/ pl as far in the
same time. <

8. COROLLARY (INTEGRATION IN “POLAR COORDINATES”). Let
/1 B> R, where
B={peR":|pl<1,

and define g: S"~! - R by

1
g(p) = fo W 7 p) du.

/f:/fdx'/\---/\dx":/ go'.
B B Sr=t

PROOF. Consider S"~! x [0, 1] and the two projections

Then

RiP]
m: 8™ % [0,1] » S
. gon=1
my: 8" x [0,1] = [0, 1]. [0.1]
Let us use the abbreviation T
Sn—l

¢’ Adt = m*e Am*dr.
If (y,U) is a coordinate system on S"~!, with a corresponding coordinate sys-
tem (,) = (y o m,73) on S"~! x [0,1], and 0/ = ady' A--- Ady"™", then
clearly
o' Adt =kom di' Ao AdP") Adr.
From this it is easy to see that if we define #: S"~! x [0,1] - R by

h(p,u) = u""" f(u - p),

then
/ go’ = (=1)"! / ho' Adt.
St S1=1x[0,1]

Now we can define a diffeomorphism ¢: B — {0} —» S x (0, 1] by

#(p) = (r(p),v(p)) = (p/I pl,1pl).
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Then
¢* (0’ Adt) = ¢*(m*o’ Ama*de)
= (p*ll’]*(l' A Q*my*dt
= (11 09)*0" A (13 0 9)*dt

=r*a’ Av*dt

n . n i A
=in(Z(—I)i_'xidx'/\--~/\dx"/\-~~/\dx")/\ X dxl
vV

_])n-l n 2
o Z(x ydx' Aee Adx"
1y
= —])_l—dx‘ Ao Adx™
v
Hence
¢*(ha’ Adt) = (ho ¢)p*(0" Adt)
pn=1 _])" !
7 dx' A Adx"
=(—I)""fd,\ Ao Adx",
So,

/fdx'/\--~/\dx"=(—])""/ ¢*(ho' A d1)
B B~{0}

= (—I)""/ ho' A dt
S7=1x(0,1]

= / go'.
sn—l

(This last step requires some justification, whicli should be supplied by the
reader, since tle forms involved do not have compact support on the mani-
folds B — {0} and S~ x (0, 1] where they are defined.) 4

We are about ready o comnpute H*(M) in a few more cases. We are going to
reduce our calculations to calculations within coordinate neighborhoods, which
are submanifolds of M, but not compact. It is therefore necessary to introduce
another collection of vector spaces, which are interesting in their own right.
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The de Rham cohomology vector spaces with compact supports H,/‘(M) are

defined as
HE(M) = ZE(M)/BEOM),
where Zf (M) is the vector space of closed k-forms with compact support, and
Bf(M) is the vector space of all k-forms dn where 7 is a (k — 1)-form with
compact support. OF course, if M is compact, then HX(M) = H*(M). Notice
thiat BX (M) is not the same as the set of all exact k-forms with compact support.
For example, on R”, if f > 0 is a function with compact support, and f > 0
at some point, then
w=fdx' A Adx"

is exact (every closed form on R” is) and has compact support, but @ is not dn
for any form n with compact support. Indeed, if @ = dn where 5 has compact
support, then by Stokes’ Theorem

f w=l dq:/ n=0.
- U R

This example shows that H(R") 7 0, and a similar argument shows that
if M is any orientable manifold, then A /(M) # 0. We are now going to show
that for any connected orientable manifold M we actually have

HI(M)=~R.
This means that if we choose a fixed @ with [y, @ 3 0, then for any n-form w’
with compact support there is a real number a sucl that @’ —aw is exact. The
number a can be described easily: if

o' —aw =dn,

[ fee =
e[/

the problem, of course, is showing that 5 exists. Notice that the assertion that
H[(M) ~R is equivalent to the assertion that

-

is an isomorpliism of H['(M) with R, i.e., to the assertion that a closed form
with compact support is the differential of another form with compact support
if [yw=0.

then
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9. THEOREM. If M isa connected orientable n-manifold, then H] (M) ~ R.
PROOF. We will establish the theorem in three steps:
(I) The theorem is true for M = R.

(2) If the theorem is true for (7 — 1)-manifolds, in particular for $"~!, then
it is true for R”.

(3) If the theorem is true for R”, then it is true for any connected oriented
n-manifold.

Step 1. Let w be a 1-form on R with compact support such that [ @ = 0. There
is some function j (not necessarily with compact support) such that @ = df.
Since support w is compact, d / = 0 outside some interval [-N, N], so [ is a

S

N ] I

constant ¢; on (—00, —N) and a constant ¢; on (N, 00). Moreover,

0=/Rw=/Rdf=/Rf’(l)d1=cz—c,.

Therefore ¢ = ¢; = ¢ and we have
w=d(f —c)

where f — ¢ has compact support.

Step 2. Let w = fdx' A--- A dx" be an n-form with compact support on R”
such that [z, @ = 0. For simplicity assume that supportw C {p € R" : |p| < 1}.
We know that there is an (n — 1)-form 5 onR” such that w = dn. In fact, from
Problem 7-23, we have an explicit formula for #,

n |
np) =y (=)' (/ " f( - p) dr) XA A AdY A A dxD,
=1 0
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Using the substitution u = |p|t this becomes

n(p) = (ﬁ” w5 du) oF

n
x Z(—I)""xi dx' Ao Adxi A A dX"

i=l

ipl P
= / u""f(u . —) du|-r*o’(p) by Lemma 7.
o |l

Define g: $"~1 — R by

1
20 = [ w1 )

Ontheset A ={p € R":|p| > 1} we have /' = 0, so on A we have

1
n(p) = (fo u"™t (u . l-%l) du) -r*a’(p),

n=(gor)-r*c’ =r*(ga’).

or

Moreover, by Corollary 8 we have for the (# — 1)-form go’ on S"~},

/ go’=/fdx‘/\---/\dx”
Sn—1 B

=/ w=0.
”

Thus, by the hypothesis for Sefr 2,
go’' = dA forsome (n —2)-form A on S"71.

Hence
n=r*dr)=d@*r).

Let i: R" — [0,1] be any C* function with # = 1 on A and # = 0in a
ncighborhood of 0. Then Ar*X is a C* form on R” and

w=dn=dmn-—dr)):
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the form n — d(/r*1) has compact support, since on A we have

n—d(hr*A)=n—-d@r*A)=0.

Step 3. Choose an n-form o such that [, © # 0 and @ has compact support
contained in an open set U C M, with U diffeomorphic to R*. If @’ is any
other n-form with compact support, we want to show that there is a number ¢
and a form 5 with compact support such that

o' =cw+dny.
Using a partition of unity, we can write
o' =g + -+ ¢ro’

where each ¢;@’ has compact support contained in some open set U; C M
with U; diffeomorphic to R”. It obviously suffices to find ¢; and n; with ¢’ =
¢iw +dn;, for each i. In other words, we can assume @’ has support contained
in some open ¥V C M which is diffeomorphic to R".
Using the connectedness of M, it is easy to see that there is a sequence of
open sets
U=W,...,V, =V

diffcomorphic to R”, with V; N V;4; 3 6. Choose forms w; with support w: C

ViN Vi and [, @; # 0. Since we are assuming the theorem for R” we have
+ Vi g

o ~qw=dy

w2 — 0 = dn

o = w1 = dny.

where all ; have compact support (C V;). From this we clearly obtain the
desired result. <
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The method used in the last step can be used to derive another result.

10. THEOREM. If M is any connected non-orientable n-manifold, then
HI (M) =0.

PROOF. Choose ann-form @ with compact support contained in an open set U
diffeomorphic to R", such that [, # 0 (this integral makes sense, since U is
orientable). It obviously suffices to show that @ = dn for some form 7 with
compact support. Consider a sequence

U=V,....V,=V

of coordinate systems (V;, x;) where each x; o x;4+1~ is orientation preserving.
Choose the forms w; in Step 3 so that, using the orientation of V; which makes
xi: Vi > R" orientation preserving, we have fV,— w; > 0; then also fyl_“ w; > 0.
Consequently, the numbers

ci =/ ; // w;—; are positive.
Vi Vi

w; = cw +dn where ¢ > 0.

It follows that

Now if M is unorientable, there is such a sequence where V, = V; but x, ox;~!
is orientation reversing. Taking »' = —w, we have

—w=co+dy forc>0

50 .
(—c - Nw =dy for —c—1%0. o

We can also compute H"(M) for non-compact M.

11. THEOREM. If M is a connected non-compact n-manifold (orientable or
not), then H"(M) = 0.

PROOF. Consider first an n-form @ with support contained in a coordinate
neighborhood U which is diffeomorphic to R”. Since M is not compact, there
is an infinite sequence

U =U,Uy,Us,Us,...
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of such coordinate neighborhoods such that U; N Uiy # 0, and such that the
sequence is eventually in the complement of any compact set.

Now choose n-forms w; with compact support contained in U; N Uiy, such
that fUi w; # 0. There are constants ¢; and forms 5; with compact support
C U; such that

w=qaw;+dn
W = Cipwi +dnip P21
Then
w=dmn+
=dn +c1dnz + 1020
=dm +adnz + ac2dn3 + a16203w3
Since any point p € M is eventually in the complement of the U;’s, we have
o =dn +adn+aadyp +accdna+ -,

where the right side makes sense since the U; are eventually outside of any
compact set.

Now it can be shown (Problem 20) that there is actually such a sequence
Uy, Uz, Us,... whose union is all of M (repetitions are allowed, and U; may
intersect several U; for j < i, but the sequence is still eventually outside of any
compact set). The cover @ = {U} is then locally finite. Let {¢y} be a partition
of unity subordinate to 0. If @ is an n-form on M, then for each U; we have
seen that

¢y;@ = dn; where ; has support contained in U; U Uiy U Ui42U - - - .

Hence

o0 oo o
w=) ¢yo=y dy=d (Z’?) >
i=

i=] i=1
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SUMMARY OF RESULTS

(1) For R" we have

R k=0
HYR") ~
®" {0 k> 0.

(2) If M is a connected n-manifold, then
HOM) ~R
R if M is orientable
Hon~ {5 L
0 il M is non-orientable

H! if M is compact
HM (M)~ ¢
0 if M is not compact.

We also know that H"=1(R" — {0}) # 0, but we have not listed this result, since
we will eventually improveit. In order to proceed further with our computations
we nced to examine the behavior of the de Rham cohomology vector spaces
under C*®° maps f: M — N. If w is a closed k-form on N, then [™w is also
closed (df*w = f*dw = 0), s0 f* takes Z¥(N) to Z*(M). On the other hand,
J* also takes B¥(N) to BX(M), since f*(dn) = d(f*n). This shows that f*
induces a map

ZH(N)/B*(N) - ZK(a)/ BH (w),
also denoted by f™*:
J*: HY(N) - H*(M).

For example, consider the case k = 0. If N is connected, then H%(N) is just
the collection of constant functions ¢: N — R. Then f*(¢) = co f is also a
constant function. If M is connected, then f*: HY(N) = H°(M) is just the
identity map under the natural identification of H°(N) and H°(M) with R.
If M is disconnected, with components Mg, @ € A, then HO(M)is isomorphic
to the direct sum

@ Rq, where each Ry * R;
a€A
the map j™* takes ¢ € R into the element of @ R, with o™ component equal
to c. It N is also disconnected, with components Ng, B € B, then
I* @ Rg — @ Re

BeB a€A

takes the element {cg} of @ﬂes Rp to {cg}, where ¢, = cgwhen f(Mq) C Ng.
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A more interesting case, and the only one we are presently in a position to
look at, is the map
ST HY(N) > H'(M)

when M and N are both compact connected oriented n-manifolds. There is
no natural way to make 4" (M) isomorphic to R, so we really want to compare

/Mf*w and wa

for w an n-form on N. Choose one wg with fN wo # 0. Then there is some

number a such that
/ f*“’o=a-/ .
M N

Since fM ® is an isomorphism of H"(M) and R (and similarly for N) it
follows that for every form w we have

forese fo

The number a = deg f, which depends only on | is called the degree of .
If M and N are not compact, but f is proper (the inverse image of any compact
set is compact), then we have a map

ST HI(N) - HI (M)

and a number deg f, such that

[, 7w = e n fN w

for all forms @ on N with compact support. Until one sees the proof of the
next theorem, it is almost unbelievable that this number is always an integer.

12. THEOREM. Let f: M — N be a proper map between two connected
oriented n-manifolds (M, u) and (N, v). Let ¢ € N be a regular value of f.
Foreach p € /™' (g), let

1 il fep: Mp — N, is orientation preserving

sign, f = (using the orientations p, for M, and v, for N;)

—1 i fxp is orientation reversing.
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Then
degf= ) sign,f (=0if /T'(n)=0)
ref—tg)
PROOF. Notice first that regular values exist, by Sard’s Theorem. Moreover,
/() is finite, since it is compact and consists of isolated points, so the sum
above is a finite sum. )

Let f7'(q) = {p1,---, px}. Choose coordinate systems (Ui, x;) around p;
such that all points in U; are regular values of f, and the U; are disjoint. We
want to choose a coordinate system (V, y) around g such that f~'(V) = U, U
-+ U Ug. To do this, first choose a compact neighborhood W of ¢, and let

W' C M be the compact set
W = ["N(W)= (U1 U-.-UU,).

Then f(W’) is a closed set which does not contain g. We can therefore choose
V C W— f(W'). This ensures that /=1 (V) C UyU-.-UUj. Finally, redefine U;
o be UiN f71(V).

Now choose @ on N tobe @ = gdy' A--- A dy™ where g > 0 has compact
support contained in V. Then support f*w C Uy U...UU;. So

k
] [o= Z / [o.
M i=1 Ui
Since f is a diffeomorphism from each U; to V we have
[T =/ @ if f is orientation preserving
Ui v
= —/ ® if f is orientation reversing.
v

Since f is orientation preserving [or reversing] precisely when sign,, /' =1 [or
—1] this proves the theorem. «»
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As an immediate application of the theorem, we compute the degree of the
“antipodal map” 4: S" — S”" defined by A(p) = —p. We have already
seen that A4 is orientation preserving or reversing at all points, depending on
whether 1 is odd or even. Since A~!(p) consists of just one point, we conclude
that

deg A = (-1)""".

We can draw an interesting conclusion from this result, but we need to intro-
duce another important concept first. Two functions f,g: M — N between
two C* manifolds are called (smoothly) homotopic if there is a smooth function

H: Mx[0,]]> N

with

H(p,0)= J(p)

H(p,1) = g(p)
themap H is called a (smooth) homotopy between f and g. Notice that M is
smoothly contractible to a point po € M if and only if the identity map of M is
homotopic to the constant map po. Recall that for every k-form w on M x [0, 1]
we defined a (kX — 1)-form Jw on M such that

i*w —ig*w = d(Jw) + I(dw).

We used this fact to show that all closed forms on a smoothly contractible man-
ifold are exact. We can now prove a more general result.

forall pe M;

13. THEOREM. If /, g: M — N are smoothly homotopic, then the maps
7* HAE(N) - HA (M)
g*: HY(N) = HX(M)
are equal, f* = g*.
PROOF. By assumption, there is a smooth map H: M x [0,1] - N with
S =Hoip
g=Hoi.
Any element of H¥(N) is the equivalence class [@] of some closed k-form
on N. Then
o - f*o=(Hoh)*w—(Hoi)w
= I (H*0) — ig*(H* w)
= d(JH* @) + I([dH*®)
=d(JH*w) +0.
But this means that g*((w]) = f*([w]). %
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14. COROLLARY. If M and N are compact oriented n-manifolds and the
maps f,g: M — N are homotopic, then deg / = deg g.

15. COROLLARY. If 7 is even, then there does not exist a nowhere zero
vector field on S”,

PROOF. We have already seen that the degree of the antipodal map 4: S” —
S” is (=1)"='. Since the identity map has degree 1, 4 is not homotopic to
the identity for n even. But if there is a nowhere zero vector field on S”, then
we can construct a homotopy between A and the identity map as follows. For
each p, there is a unique great semi-circle ¥, from p to A(p) = —p whose
tangent vector at p is a multiple of X(p). Define

H(p,1) = yp1).

For n odd we can explicitly construct a nowhere zero vector field on S”. For
p=(x1,...,x11) € S" we define

X(p) = (—=X1, %0, =X3, X2, - - - s —Xpt1, Xn);

this is perpendicular to p = (x3, X2,..-, Xs+1), and therefore in $”,. (On S!
this gives the standard picture.) The vector field on S” can then be used to give

™~

7,

™~

™~

a homotopy between A and the identity map.
For another application of Theorem 13, consider the retraction

r:R"— {0} - S"™! r(p) = p/lpl.
Ir i: "' - R” — {0} is the inclusion, then

roi:S"1 5" is the identity 1 of S"'.
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The map
or: R" — {0} — R" — {0} ior(p)= p/lpl

is, of course, not the identity, but it # homotopic to the identity; we can define
the homotopy H by

(@) =)
H(p,t) =tp+( —t)r(p) e R" — {0}. <1=°>/‘q‘/\,

A retraction with this property is called a deformation retraction. Whenever r
is a deformation retraction, the maps (r o/ )* and (i or)* are the identity. Thus,
for the case of S"~! C R” — {0}, we have
*
H*(S"1y — HFR™ - {0})
2%
HER? — {0y) <> HE(S™)
and
r*oi* = (ior)* = identity of H*(R" — {0})
i*or* =(roi)* = identity of H¥(S""").
So i* and r* are inverses of each other. Thus
H*(S"y ~ H¥(R" — {0}) for all k.

In particular, we have H"~!(R" — {0}) & R. A generator of HmY (R —{0}) is
the closed form r*o’.

We are now going to compute H¥(R” — {0}) for all k. We need one further
observation. The manifold

Mx{0}cMxR

is clearly a deformation retraction of M x R!. So H¥(M) ~ H¥(M x R)
forall /.
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16. THEOREM. For 0 < k < n — ] we have H4(R" — {0}) = H¥(S""") = 0.
PROOF. Induction on n. The first case where there is anything to prove is

n=3. We claim H'(R® — {0}) = 0.
Let w be a closed 1-form on R*. Let 4 and B be the open sets

1(0,0,1)
A=R>—{0,0) x (—00,0]}
B =R?—{(0,0) x [0,00)}.
/(o,o,—x)

Since 4 and B are both star-shaped (with respect to the points (0,0, I) and
(0,0, —1), respectively), there are O-forms fy4 and fp on A and B with

w=dfy onA
w=dfg onB.
Now
d(fs — /B)=0 onANB,
and

AN B =[R?2—{0}] xR,

so clearly f4 — fp is a constant ¢ on 4 N B. Thus w is exact, for
w=d(fs-c) on A
o =d(fB) on B

and fy —c= fpon AN B.
If wis a closed 1-form on R*, there is a similar argument, using

A =R*-{(0,0,0) x (—o0,0]}
B =R*-{(0,0,0) x [0,00)}.

If w is a closed 2-form on R*, then we obtain I-forms 74 and 5 with

w=dng onA
w=dng onB.
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Now
ding—ng)=0 onANBAB

and
HY (AN B) = H'(R? - {0}] x R) ~ H'(R* — {0}) = 0.

So n4 — ng = dA for some 0-form A on A N B. Unlike the previous case, we
cannot simply consider 14 — d A, since this is not defined on A. To circumvent
this difficulty, note that there is a partition of unity {¢4,¢5} for the cover {4, B}
of R? —{0}:

ba+¢p=1
dp4+dpp =0
support¢4 C A
support¢p C B.
Now, if
A ANB
¢p)r denotes {¢B on
0 on A— (AN B),
and similarly for ¢4, then

¢gh isa C™ form on A
¢4r 1sa C* form on B.

On AN B we have

n4—d@pr) =n4s—¢pdh—dpp Ak
=04+ (Pa—1)dr+dpsnh
=n4—dr+d(¢qlr)
=ng+d(¢sh).

So we can define a C* form on R” —{0} = A U B by letting it be n4 — d(¢ 1)
on A, and np + d(¢4A) on B. Clearly,

w=dng=d(ng —d(¢gl)) onA
=dng = dnp + d(¢41)) on B,

S0 @ is exact.
The general inductive step is similar. 4
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We end this chapter with one more calculation, which we will need in Chap-
ter 1.

17. THEOREM. For 0 < k < 1 we have Hck (R") = 0.

PROOF. The proof that H2(R") = 0 is left to the reader.

Let @ be a k-form on R” with compact support, 0 < k¥ < n. We know that
w = dn for some (k — 1)-form n on R”. Let B be a closed ball containing
support w. Then on A = R” — B we have dn = 0. Since 4 is diffeomorphic to

R"” — {0} and k — 1 <n — 1 we have from Theorem 16 that
n=d\ forsome (k —2)-form A on A.

Let f/: R" — [0,1] be a C* function with f = 0 in a neighborhood of B and
/ =1onR"—2B, where 2B denotes the ball of twice the radius of B. Then
d(fX) makes sense on all of R” and

w=dn=d@n-dfA))

the form n — d(fA) clearly has compact support contained in 2B. <
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PROBLEMS

1. The Riemann integral versus the Darboux integral. Let [ : [a,b] — R be bounded.
For a partition P = {tg < -+ < 15} of [a,b], let m; = m;(J) be the inf of f
on [ti—1,4] and define M; = Mi(f) similarly. A choice for P is an n-tuple
§ = (E1,... &) with & € [i—1,4i]. We define the “lower sum”, “upper sum”,
and “Riemann sum” for a partition P and choice & by

L(f, P) = D mi(f) - (i — tiey)

i=}

U, P) =Y Mif)- (i — ti-1)
i=1

SULP.E) =) fEN — tim).
i=1

Clearly L(f,P) < S(/, P,&) < U(/, P). We call f Darboux integrable if the
sup of all L(f, P) equals the inf of all U(/f, P); this sup or inf is called the
Darboux integral of f on [a, b]. We call f Riemann integrable if

i ists:
IIPlImOS(f’P’S) exists;

the limit is called the Riemann integral of / on [a, b].

(a) We candefine S(/f, P,€) evenif f is not bounded. Show however, that

";1{20 S(f, P,§) cannot exist if f is unbounded.

(b) If f is continuous on [a,b], then [ is Riemann and Darboux integrable on
[a, b], and the two integrals are equal. (Use uniform continuity of / on [a,b].)
() If f is Riemann integrable on [a, 4], then f is Darboux integrable on [a, b]
and the two integrals are equal.

(d Letmm< f <Monla,b]. Let P={so < -+ <spjand @ ={to < -+- <
tn} be two partitions of [a,b]. For each i = 1,...,n, let

ei = length of [ti—1, ti]
—sum of lengths of all [sq—1, 5] which are contained in [t;-i, t:].

t_a 4

S A A
[Sr—1, See]'s contained in [ti-, ]
shaded lengths = add up to ¢;
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Show that, if M; denotes the sup of f on [t—y, ], then

U, P)SU(S, Q)+ ) (M — Mei

i=f

UL +(M=—m)) e

i=f

There is a similar result for lower sums.
(e) Show that 3°7_; ei — 0 as || P|| = 0, and deduce Darboux’s Theorem:
lim U(f,P) =inf{U(/, Q) : Q a partition of [a,b]}
I Pi—0
I L = : iti
llPll?lo (f, P) = sup{L(f, Q) : O a partition of [a,b]}.
(f) If f is Darboux integrable on [a, b], then [ is Riemann integrable on [a, b].
(g) (Osgood’s Theorem). Let f and g be integrable on [a,b]. Show that fa
choices &,&' for P,

n b
u},llmoizl:f(&)g(é )t — ti-1) =L /e

Hint: 1f1g] < M on [a, b, then | f(§')g(&')— f(&)g'D] < M| S (&)~ f(&)\.
(h) Show that [, f dx + g dy, defined as a limit of sums, equals

b
f @) () + @) W] dr.

2. Compute [, df = fm’”c‘ d0, where ¢(t) = (cos 2mt,sin27t) on [0, 1].
3. For7zan integer, and R > 0,let cgn: [0,1] = R? — {0} be defined by

¢Rn(t) = (R cos 2nnt, Rsin2nmt).

(2) Show that there is a singular 2-cube ¢: [0,1]*> — R? —{0} such that cg,,» —
CRyyn = 0OC.

() If ¢: [0,1] = R? — {0} is any curve with ¢(0) = ¢(1), show that there is
some n such that ¢ —¢;,, is a boundary in R? — {0}.

{c) Show that n is unique. Itis called the winding number of ¢ around 0.
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4. Let /: C -» C be a polynomial, f(z) = 2" +ay2" "4 +a,, wheren > 1.
Define cg,r: [0,1] > C by cp f = [ ocCr,1-

(a) Show that if R is large enough, then cg, s —cg,n is the boundary of a chain
in C — {0}. Hint: Note that cgn,,(1) = [cg,1(1)]", and write

an

f(z)=2"(1+%+...+_)_

zn

(b) Show that f(z) =0 for some z € C (“Fundamental Theorem of Algebra”).
Hint: If f(z) # 0forall zwith |z| < R, then ¢g, 5 — co, s is a boundary.

5. Some approaches to integration use singular simplexes instead of singular
cubes. Although Stokes’ Theorem becomes more complicated, there are some
advantages in using singular simplexes, as indicated in the next Problem.

Let A, C R” be the set of all x € R” such that

n
osx'<1, Yoxfsl
i=1

Ao Ay

A singular n-simplex in M is a C* function ¢: A, — M, and an n-chain
is a formal sum of singular n-simplexes. As before, let /": &, -> R" be the
inclusion map. Define 8;: A,y -> Ap by

do(x) = ([1 - 8’;‘ xi],x',...,x"'l)

3i(x) = (x',...,x0x .. X" 0<i<n

and for singular n-simplexes ¢, define d;c = ¢ o 8. Then we define
" .
de=) (e
i=0

(a) Describe geometrically the images 9;(A,~1) in A,.
(b) Show that 3> =0.
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(c) Show thatif @ = fdx' A ... Adxi A-- A dX" is an (n — 1)-form on R”,

then
/ dw = / .
In arm
(Imitate the proof for cubes.)

(d) Define [, w for any k-chain ¢ in M and k-form w on M, and prove that

/ dw = / [3]
3 ac
for any (k — 1)-form w.

6. Every x € Agqp can be written as ¢x’, for 0 < ¢ < 1, and x' € do(Ay).

Morcover, x’ is unique except when ¢ = 0. For any singular k-simplex ¢: Ax —
R", define ¢: Agyy — R” by

E(x) =1 - c{x’).

Y]

We then define ¢ for chains ¢ in the obvious way.

(a) Show that dc = 0 implies that ¢ = ac.

(b) Let ¢: [0,1] - R? be a closed curve. Show that ¢ is ot the boundary of
any sum ¢ of singular 2-cubes. Hme: If do = 3" ;aici, what can be said about
Z,-ai?

(c) Show that we do have ¢ = do + ¢’ where ¢’ is degenerate, that is, ¢'([0, 1]) is
a point.

(d) If ¢1(0) = ¢2{0) and ¢;(1) = c2(1), show that ¢; — ¢ is a boundary, using
either simplexes or cubes.
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7. Let @ be a 1-form on a manifold M. Suppose that [, @ = 0 for every closed
curve ¢ in M. Show that w is exact. Hint: If we do have w = df, then for any
curve ¢ we have

[w=rcon = reon.

8. A manifold M is called simply-connected if M is connected and if every
smooth map f: S' — M is smoothly contractible to a point. [Actually, any
space M (not necessarily a manifold) is called simply-connected if it is connected
and any continuous /' : S' — M is (continuously) contractible to a point. It is
not hard to show that for a manifold we may insert “smooth” at both places.]

(a) If M is smoothly contractible to a point, then M is simply-connected.

(b) S' is not simply-connected.

(c) S” is simply-connected for n > 1. Hint: Show that a smooth f: S! — S”
is not onto.

(d) If M is simply-connected and p € M, then any smooth map f: S' - M
is smoothly contractible to p.

() If M = UUYV where U and V are simply-connected open subsets with
U NV connected, then M is simply-connected. (This gives another proof that
S" is simply-connected for n > 1.) Hint: Given f: S' — M, partition S! into
a finite number of intervals each of which is taken into either U or V.

(f) If M is simply-connected, then H' (M) = 0. (See Problem 7.)

9. (a) Let U C R? be a bounded open set such that R? — U is not con-
nected. Show that U is not smoothly contractible to a point. (Converse of

Problem 7-24.) Hint: If p is in a bounded component of R? — U, show that
there is a curve in U which “surrounds” p.

(b) A bounded connected open set U C R? is smoothly contractible to a point
if and only if it is simply-connected.

(c) This is false for open subsets of R®.
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10. Let @ be an n-form on an oriented manifold M". Let & and ¥ be two
partitions of unity by functions with compact support, and suppose that

Z/M¢~Iw|<oo.

ped

(a) This implies that 3, Jis ¢ -  converges absolutely.

(b) Show that
Y[ew=-T% [ v

PP ¢ed eV
and show the same result with  replaced by |w|. (Note that for each ¢, there
are only finitely many ¥ which are non-zero on support ¢.)
(c) Show that Y- ycy [y ¥ - l@| < 00, and that

>[oe=3[ vo

ped M vey M
We define this common sum to be [), .
(d) Let A, C (n,n+ 1) be closed sets. Let /: R — R be a C* function with
L4, /= {=1)"/n and support f C U, Au. Find two partitions of unity ®
and ¥ such that 3,cq [y ¢ - f dx and Y wew Jr ¥ - J dx converge absolutely
to diff'erent values.

11. Tollowing Problem 7-12, define geometric objects corresponding to odd
relative tensors of type (';) and weight w (w any real number).
12. (a) Let M be {(x,y) € R? : |(x,y)| < 1}, together with a proper portion

of its boundary, and let @ = x dy. Show that

jM dw;é~/r’!‘Mw’

even though both sides make sense, using Problem 10. (No computations
needed—note that equality would hold if we had the entire boundary.)

(b) Similarly, find a counterexample to Stokes’ Theorem when M = (0,1)
and w is a 0-form whose support is not compact.

(c) Examine a partition of unity for (0, 1) by functions with compact support to
see just why the proof of Stokes’ Theorem breaks down in this case.
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13. Suppose M is a compact orientable 7-manifold (witb no boundary), and 6
is an (n — 1)-form on M. Show that d6 is 0 at some point.

14. Let M, M; C R” be compact n-dimensional manifolds-with-boundary
with M, C My — dM. Show that for any closed (n — 1)-form @ on M),

M,

[ o=f w
am M,

15. Account for the factor 1/|p|* in Lemma 7 (we have r,(v,) = (1/1pD)vr(p)
but this only accounts for a factor of 1/Ip|"~!, since there are n — 1 vectors
Vlyeoe, Upe1).

16. Use the formula for r*dx’ (Problem 4-1) to compute r*¢”. (Note that
r*e’ =r*i*c = (i or)*o;
themapior: R” —{0} — R” —{0}is just r, considered as a map into R” —{0}.)

17. (a) Let M" and N™ be oriented manifolds, and let @ and n be an n-form
and an m-form with compact support, on M and N, respectively. We will
orient M x N by agreeing that vy,..., Un, W1,...,Wn is positively oriented in
(M X N)pgy =~ M, ®Ngif vi,...,0, and wy, ..., wn are positively oriented
in M, and N,, respectively. If 71;: M x N — M or N is projection on the i

factor, show that
/ mte A*n =/ ® / n.
MxN M N

(b) If h: M x N — Ris C®, then

/ hm*o Amg*n = / g,
MxN M

where
gp) = f hp, Ine h(p,) =g h(p,g).
N

(c) Every (m +n)-formon M x N is hn*w A m2*n for some w and 7.
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18. (a) Let p e R" —{0}. Let wy,...,wn~2 € R"; and let v € R"; be (Ap), for
some A € R. Show that

r*a’'(v,w1,..., Wn~2) = 0.

(b) Let M C R" — {0} be a compact (n — ])-manifold-with-boundary which is
the union of segments of rays through 0. Show that [, r*¢’ = 0.

(c) Let M C R"—{0} be a compact (12— 1)-manifold-with-boundary which inter-
sects every ray through 0 at most once, and let C(M) = {Ap : p € M,X > 0}.

(M)

C(M)NS?

Show that

/ r*o’=/ r*o’.
M C(MNS?2

The latter integral is the measure of the solid angle subtended by M. For this
reason we often denote r*c’ by d©®,.

19. For all {x, y,z) € R? except those with x = 0, y = 0, z € (—00,0], we
define ¢(x, y,=) to be the angle between the positive z-axis and the ray from 0
through (x, y, z).
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1 (%,9,2)

(x, 9

(a) ¢(x,y,2) = arctan(Vx? + y? z) (with appropriate conventions).

(b) If v(p) = |pl, and B is considered as a function on R3, 4(x,y,z) =
arctan y/x, then (v,0, ¢) is a coordinate system on the set of all points (x, y, z)
in R? except those with y =0, x € [0,00) or withx =0, y =0, z € (—00,0].
() If v is a longitudinal unit tangent vector on the sphere S2(r) of radius ,
then d¢(v) = 1. If w points along a meridian through p = (x,y,z) € S%(r),

then

1

Vit

dBwp) =

(d) If 6 and ¢ are taken to mean the restrictions of 6 and ¢ to [certain portions
of] §2, then
o'=hdondg,

where : S > R is
h(x,y,z) = =Vx? + y? (the minus sign comes from the orientation).

(e) Conclude that
o' = d(— cos ¢ df).
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(f) Letrz: R?—{0} — S! be the retraction, so that df = r,*i*a, for the form ¢
on R2. Show that

r*df = df.
If 7: R? - R? s the projection, then the form d6 on [part of ] R? is just 7*d6,
for the form d8 on [part of] R2. Use this to show that

r*df = d6.

(g) Also prove this directly by using the result in part (c), and the fact that
re(Up) = vr(p)/| pl for v tangent to S2(| pl).
(h) Conclude that

dO3 = r*c’ = d(—cos(¢ o 1) db)
= d(—cos ¢ db).

(i) Similarly, express d®, on R” — {0} in terms of d©,—; on R"™ — {0}.

20. Prove that a connected manifold is the union Uy U U; U U3 U - - - , where
the U; are coordinate neighborhoods, with U; N U;j 7 0, and the sequence is
eventually outside of any compact set.

21. Let f: M" — N”" be a proper map between oriented n-manifolds such
that fy: Mp — Ny(p) is orientation preserving whenever p is a regular point.
Show that if N is connected, then either f is onto N, or else all points are
critical points of j.

22. (a) Show that a polynomial map f: C — C, givenby f(z) = z"+ai1z"~'+
-+ +ap, is proper (n > 1).

(b) Let f{z) = nz""'+(n—1)a1z""2+- - -+ an—1. Show that we have f'(z) =
limo[f(: +w) — f(2)]/w, where w varies over complex numbers.

w—>

(c) Write f(x+iy) = u(x,y)+iv(x,y) for real-valued functions v and v. Show
that

ou v
’ 7 o jp— ] —
Sxtiy) = 520 p) +ig(x,9)
_ v ) JOu )
= ay(x,y !ay(x,y~
Hint: Choose w to be a real &, and then to be ih.

(d) Conclude that
If'(x +iy)? = det Df (x, y),
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where 7 is defined in part (b), while Df is the linear transformation defined
for any differentiable f: R? — R2.

(e) Using Problem 21, give another proof of the Fundamental Theorem of Al-
gebra.

(f) There is astillsimpler argument, not using Problem 21 (which relies on many
theorems of this chapter). Show directly thatif f: M — N is proper, then the
number of points in /~!(a) is a locally constant function on the set of regular
values of /. Show that this set is connected for a polynomial f: C — C, and
conclude that / takes on all values.

23. Let M"~! C R” be a compact oriented manifold. For p € R" — M, choose
an (n — 1)-sphere T around p such that all points inside T are in R” — M. Let
rp: R" —{p} = T be the obvious retraction. Define the windingnumber w (p)
of M around p to be the degree of r,|M.

(a) Show that this definition agrees with that in Problem 3.

(b) Show that this definition does not depend on the choice of T.

(c) Show that w is constant in a neighborhood of p. Conclude that w is con-
stant on each component of R” — M.

(d) Suppose M contains a portion A of an (7 —1)-plane. Let p and g be points
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close to this plane, but on opposite sides. Show that w(g) = w(p) £ 1. (Show
that r4|M is homotopic to a map which equals 7,|M on M — A and which does
not take any point of A onto the point x in the figure.)

(€) Show that, in general, if’ M is orientable, then R” — M has at least 2 com-
ponents. The next few Problems show how to prove the same result even if M
is not orientable. More precise conclusions are drawn in Chapter 11.

24. Let M and N be compact n-manifolds, and let /,g: M — N be smoothly
homotopic, by a smooth homotopy H: M x [0,1] = N.
(2) Let g € N be a regular value ofy (#. Let #/~'(g) denote the (finite) number
of points in f~!(g). Show that ‘

#/7(9)=#g7'(9) (mod 2).

Hint: H™!(q) is 2 compact ]-manifold-with-boundary. The number of points
in its boundary is clearly even. (This is one place where we use the stronger
form of Sard’s Theorem.)

(b) Show, more gencrally, that this result holds so long as ¢ is a regular value of
both f and g.

25. For two maps f,g: M — N we will write /' =~ g to indicate that [ is
smoothly homotopic to g.

a) If f =~ g, then there is a smooth homotopy H': M x [0,1] = N such that
Py

H'(p,t)= f(p) fort in aneighborhood of 0,
H'{p,t) = g(p) fortin aneighborhood of 1.

(b) ~1isan equivalence relation.

26. If f is smoothly homotopic to g by a smooth homotopy H such that p +
H{p,t) is a diffeomorplism for each ¢, we say that f is smoothly isotopic to g.

(a) Being smootlily isotopic is an equivalence relation.
(b) Let ¢: R” — R be a C* function which is positive on the interior of the
unit ball, and 0 elscwhere. For p € S"!, let H: R x R” - R” satisfy

dH(t,x
)yt

H(0,x) = x.

(Each solution is defined for all 7, by Theorem 5-6.) Show that each x > H{t, x)
is a diffeomorphism, which is smoothly isotopic to the identity, and leaves all
points outside the unit ball fixed.
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(c) Show that by choosing suitable p and ¢ we can make H (1,0) be any point
in the interior of the unit ball.

(d) If M is connected and p,q € M, then there is a diffeomorphism j: M —
M such that f(p) = ¢ and J is smoothly isotopic to the identity.

(e) Use part (d) to give an alternate proof of Step 3 of Theorem 9.

(f) If M and N are compact n-manifolds, and f: M — N, then for regular
values ¢1,92 € N we have

#/7g1) = #/""(g2) (mod2)

(where # /' (g) is defined in Problem 24). This number is called the mod 2
degree of f.

(2) By replacing “degree” with “mod 2 degree” in Problem 23, show that if
M c R"isa compact {n~—1)-manifold, then R” — M has at least 2 components.

27. Let {X'} be a C* family of C® vector fields on a compact manifold M.
(To be more precise, suppose X is a C* vector field on M x [0,1]; then X’ (p)
will denote g, X(p,r)-) From the addendum to Chapter 5, and the argument
which was used in the proof of Theorem 5-6, it follows that there is a C* family
{¢r} of diffeomorphisms of M [not necessarily a 1-parameter group], with ¢p =
identity, which is generated by {X '}, ie., for any C* function /: M — R we

have ) o
(X'/)p) = Jim M

For a family w, of k-forms on M we define the k-form

@ = lim Orth O
h—0 h
(a) Show that for n{t) = ¢,*w; we have
0= ¢ (Ly o +ay).

(b) Let wp and w; be nowhere zero n-forms on a compact oriented n-mani-
fold M, and define
o= (1 —1)wo + twy.

Show that the family ¢, of diffeomorphisms generated by {X '} satisfies

¢t = wo for all ¢

if and only if
in Wy = Wy — Wi.
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(c) Using Problem 7-18, show that this holds if and only if
d(X' S o) = ap — o1.

(d) Suppose that [y, wo = [y, w1, so that wy — w; = dA for some A. Show that
there is a diffeomorphism f1: M — M such that wo = fi*w;.

28. Let f: M* - R”" and g: N' — R” be C* maps, where M and N are
compact oriented manifolds, n = k +1 + 1, and f(M) N g(N) = 0. Define

afg: M x N = S"' CR" - {0}
by

ge) — f(p)

arelp.g) =r(ge) =/ (p) = FOESTOR

We define the linking number of f and g to be
U(/[.g) = degayg,

where M x N is oriented as in Problem 18.

@ £/, 8) = (=D¥*'¢(g. /).
(b) Let H: M x[0,1] - R"and K: N x[0,1] = R” be smooth homotopies
with

H(p,0)=J(p) K(g,0) = g(9)
Hp, ) =7 (p) K(g, 1) =§@9)
such that

{Hp,) : pe M}N{K(g,1):qe N} =0 forevery1.

Show that
8©18) =79
(© For f,g: S' — R show that

_ =t Atu,v)
USg) = G/o /0 e du dv,
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where

7(u,v) = 1g(v) — S ()]

(/1Y) (/%)) (Y @)
A@w,v)=det| (g")() (&%) (£%)'()
g -l g2 - ) g — i)

(the factor 1/4m comes from the fact that [2 6’ = 47 [Problem 9-14]).

(d) Show that £(f,g) = 0 if f and g both lie in the same plane (first do it
for (x, y)-plane). The next problem shows how to determine £(/, g) without
calculating.

29. (a) For (a,b,¢) € R? define

(x—a)dyndz—(y~b)dxAdz+ (z—c)dxAdy

dBap.c) = [(x —a)2 4+ (y — )% + (z — )22

For a compact oriented 2-manifold-with-boundary M C R* and (a,b,c) ¢ M,
let

Qa,b,c) = f d®(a.b,c)'
M

Let (a,b,c) and (a’,0’, ¢’) be points close to p € M, on opposite sides of M.
Suppose (a, b,¢) is on the same side as a vector wp € R*, — M, for which the

triple w , (V1) p, (V2) is positively oriented in R®, when (v1), (v2), is positively
oriented in Mp. Show that

lim  Q(a, b,¢) - Qd', b, ¢') = —4n.
{a,b,6)=>p
(a'.b,c'y>p

Hint: First show that if M = 8N, then Q(a,b,¢) = —4x for (a,b,c) e N - M
and Q(a, b,c) = 0 for (a,b,c) ¢ N.
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(b) Let f: S' — R? be an imbedding such that f(S') = M for some com-
pact oriented 2-manif old-with-boundary M. (An M with this property always
exists. See Fort, Topology of 3-Manifolds, pg. 138.) Let g: S!' — R? and suppose

The figure on the left shows a non-orientable
surface whose boundary is the “trefoil” knot,

&Y

but the surface on the right—including the
hemisphere behind the plane of the paper—
is orientable.

that when g(1) = p € M we have dg/dt ¢ M,. Let n* be the number of inter-
sections where dg/d! points in the same direction as the vector w, of part (a),
and 77~ the number of other intersections. Show that

n=nt—-n" = _—]/ g2*(dQ).
4 J st

(c) Show that

R _ L[ —b)dz —(z—c)dy
0= [, (700 G2 0)

I(x,,2)P
a9 B s dx—(x—a)dz
= (a,b,c) = /s' S ( I(x, 3,2)13 )
PR N Rl Rl el L
E(“’b")_/sl S ( Iy, 21 )

(d) Show that n = £(f, g). Compute £(/,g) for the pairs shown below.

, \
)@ b
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30. (a) Let p,g € R" be distinct. Choose open sets 4,8 C R” — {p, 8} so
that A and B are diffeomorphic to R” — {0}, and A N B is diffeomorphic to R".
Using an argument similar to that in the proof of Theorem 16, show that

pe *q

HY(R" — {p,q}) = 0for 0 < k < n—1, and that H"™=YR" — {p,9}) has

dimension 2.
(b) Find the de Rham cohomology vector spaces of R” — F where F C R" is

a finite set.

31. We define the cup product u: H*¥ (M) x H' (M) > H**! (M) by
[w] v [n] = [ A gl

(a) Show that U is well-defined, i.e., w A 5 is exact if @ is exact and 7 is closed.
(b) Show that v is bilinear.

(c) If « € H¥(M) and B € H!(M), then e u g = (-1)F B ua.

(d) If f: M > N,and @ € H*(N), B € H'(N), then
JHaevup)= [Tayu [7B.

(e) The cross-product X : HX(M) x H'(N) -> H**'(M x N) is defined by
[w] x [n] = [7ar*@ A 7N 7).

Show that x is well-defined, and that

ax B =mptavaytg.
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(f) If A: M — M x M is the “diagonal map”, given by A(p) = (p, p), show
that
auf = Aa%axp).

32. On the n-dimensional torus
T"=8'x...x 8!
QT T2
n times

let d8" denote m;*df, where m;: T" — S is projection on the ™ factor.

(a) Show that all 8" A --- A d@* represent different elements of H*(T™), by
finding submanifolds of T" over which they have different integrals. Hence
dim H*(T") = (7). Equality is proved in the Problems for Chapter 1.

(b) Show that every map f: S" — T" has degree 0. Hint: Use Problem 25.



CHAPTER 9 -
RIEMANNIAN METRICS

In previous chapters we have exploited nearly every construction associated
with vector spaces, and thus with bundles, but there has been one notable
exception—we have never mentioned inner products. The time has now come
to make use of this neglected tool.

An inner product on a vector space V over a field F is a bilinear function
from V x V to F, denoted by (v, w) = (v, w), which is symmetric,

(v, w) = (w, v),
and non-degenerate: if v 3 0, then there is some w 7 0such that
(w,v) # 0.

For us, the field F will always be R.
For each r with 0 < r <1, we can define an inner product ( , ), on R” by

r n
@b)y =Y a'b' = 3" a'b;
i=1

i=r+41

this is non-degenerate because if a # 0, then
n
{@,....,a"),@",...,a",=a"*,...,=a")), = Z(ai)2 > 0.
=1
In particular, for » = 1 we obtain the “usual inner product”, { , ) on R",
n
{a,b) = Zaibi.
i=1

For thisinner product we have {a,a) > 0 foranya 7 0. In general, a symmetric
bilinear function ( , ) is called positive definite if

(,v) >0  forallv#0.

A positive definite bilinear function ( , ) is clearly non-degenerate, and conse-
quently an inner product.

301



302 Chapter 9

Notice that an inner product ( , ) on V is an element of T2(V), so if
f: W — V is a linear transformation, then f*( , ) is a symmetric bilinear
function on W. This symmetric bilinear function may be degenerate even if 1
is one-one, e.g., if ( , ) is defined on R? by

(a,b) = a'b’ —a?b?,

and f: R - R?is

fla) = (a,a).
However, /*( , )isclearly non-degenerate if f isan isomorphism onto V. Also,
if (, ) is positive definite, then f*( , ) is positive definite if and only if f is
one-one.

For any basis vy,..., v, of V, with corresponding dual basis v*y,..., v*;, we
can write
n
()= g ®v'.
ij=1

In this expression.

8ij = (vi>vj),
so symmetry of ( , ) implies that the matrix {g;;) is symmetric,

8ij = 8ji-

The matrix {g;;) has another important interpretation. Since an inner product
{ , ) islinear in the second argument, we can define a linear functional ¢, € V*,
for each v € V, by

dulw) = (v, w).
Since ( , ) islinear in the first argument, the map v +» ¢, is a linear transfor-
mation from V 10 V*. Non-degeneracy of ( , ) implies that ¢y 7 0if v # 0.
Thus, if' V is finile dimensional, an inner product ( , ) gives us an isomorphism
a: V-5 V* with

(v, w) = a{v){w).
Clearly, the matrix (g;;) is just the matrix of a: V — V* with respect to the
bases {v;} for V and {v*;} for V*. Thus, non-degeneracy of { , ) is cquivalen
to the condition that
(gij) is non-singular, det{gij) # 0.

Positive definiteness of ( , ) corresponds to the more complicated condition
that the matrix {gi;) be “positive definitc”, meaning that

n
Zg;jaiaj >0 for allay,...,a, with atleast one a’ # 0.

i=1
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Given any positive definite inner product ( , ) on V we define the associated
norm || || by

vl = V/(v,v) (the positive square root is to be taken).

In R" we denote the norm corresponding to { , ) simply by

bl = Viaay = | ) ).
i=1

The principal properties of || || are the following.

1. THEOREM. Forall v,w € V we have
) Nlavll = lal - vl

(2) lv,w)] < vl - lwll, with equality if and only if v and w are linearly
dependent (Schwarz inequality).

(3) v+ wll < Ivll + llwll (Triangle inequality).
PROOF. (1) is trivial.

(2) If v and w are linearly dependent, equality clearly holds. If not, then 0 #
Av—wforall A € R, so

0<|Av—w|?= (Av—w,Av —w)
= A2|l? = 2A(v, w) + |lw?.

So the right side is a quadratic equation in A with no real solution, and its
discriminant must be negative. Thus

a(v, w)? — 4P lwl? <o.
3) v+ wl? = (v+w,v+w)
= oI + lwl? +2 (v, w)
< Bl + lwl® + 2000 - Jwl by (2)
= (Il + lwl)? &

The function | || has certain unpleasant properties—for example, the func-
tion | | on R” is not differentiable at 0 € R”—which do not arise for the function
|l I>. This latter function is a “quadratic function” on V —in terms of a basis
{vi} for V it can be written as a “homogeneous polynomial of degree 2” in the

components,

P B n 2 n
“Z“"" =) gyddl.
i=l

iJ=1
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More succinctly,
n
2
II || = Z gfjv‘f ~U*j.
ij=1
An invariant definition of a quadratic function can be obtained (Problem 1) from
the following observation.

2. THEOREM (POLARIZATION IDENTITY). If || |l is the norm associ-
ated to an inner product ( , ) on V, then

) (wow) = 3l +wlh? — il = llwl?]

@ (w,w) = v+ wli? = llv = wi?].
PROOF. Compute. <

Theorem 2 shows that two inner products which induce the same norm are
themselves equal. Similarly, if /1 V — V is norm preserving, that is, || f (v)l| =
|lvllforall v € V, then f is also inner product preserving, that is, ( /' (v), f(w)) =
(v,w) forall v,w e V.

We will now see that, “up to isomorphism”, there is only one positive definite
inner product.

3. THEOREM. If (, ) is a positive definite inner product on an s-dimen-
stonal vector space V, then there is a basis vy, ..., v, for V such that (v;,v;) =
8:j. (Such a basis is called orthonormal with respect to { , }.) Consequently;
there is an isomorphism f: R” — V such that

a.6) = (f(a), /b)), a,beR".
In other words,
S =000

PROOF. Let wi,...,w, be any basis for V. We obtain the desired basis by
applying the “Gram-Schmidt orthonormalization process” to this basis:
Since w; # 0, we can define

w)
U =—
llun ]’
and clearly |luj | = 1. Suppose that we have constructed v, .. ., vk so that

(vi, v5) = 85 1<i4,j<k
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and
Spanvy,..., U =spanwy,..., Wk.
Then wg4 is linearly independent of vy, ..., v. Let
Wiy = Whtr — (U1, Vg ) V1 — < — (Vg Vg ) Vg # 0.

It is easy to see that

So we can define

P = 1

and continue inductively. %

A positive definite inner product ( , ) on V is sometimes called a Euclidean
metric on V. This is because we obtain a metric p on V by defining

p(v,w) = |lv—wll.

The “triangle inequality” (Theorem 1(3)) shows that this is indeed a metric. We
also call [[vll the length of v.

We have only one more algebraic trick to play. Recall that an inner product
(, ) on V provides an isomorphism «: V — V* with

a(v)(w) = (v, w).
Using the natural isomorphism i: V — V**, defined by
i(W)A) = A(v),
we obtain an isomorphism

a! i
BV — V — (V¥

We can now use f to define a bilinear function ( , )* on V* by
()t = B)(w) = ie” M) = p@ ().
Now, the symmetry of ( , ) can be expressed by the equation

a(v)(w) = a(w)(v).
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Letting
a@) =i, ow) =g,

this can be written
A (W) = wle W),

which shows that { , )* is also symmetric,
A" = (A, 1)

Consequently { , )* is an inner product on the dual space V* (in fact, the one
which produces ).

To see what this all means, choose a basis {v;} for V, let {v*;} be the dual
basis for V*, and let

n
(,)= Z gijvi @ V.
ij=1

Then

(gij) is the matrix of  «: V — V*  with respect to {v;} and {v*;}

50
(gij)~" is the matrix of @™': V* — V  with respect to {v*;} and {v;}

SO

(gij)_] isthe matrix of ~ B: V* — V** withrespect to {v*;} and {v**;}.

Thus, if we let g”/ be the entries of the inverse matrix, (g7) = (gij)™", so that
n
> &gk =6,
k=1
then

n
( , )t= Z gijv:a-i®v**j

ij=1
"
=Y g'w®v;, ifwe considerv; € V**.
il

Onc can check directly (Problem 9), without the invariant definition, that this
equation defines ( , )* independently of the choice of basis.
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Notice thatif { , ) is positive definite, so that
a(v)(v) >0 forv #0,
then, letting a(v) = A, we have
AMe ) = B >0 for A #0,

so (, )* is also positive definite. This can also be checked directly from the
definition in terms of a basis. In the positive definite case, the simplest way to
describe ( , )* is as follows: The basis v*1,...,v*, of V* is orthonormal with
respect to { , )* if and only if vy,..., v, is orthonormalwith respect to ( , ).

Similar tricks can be used (Problem 4) to produce an inner product on all
the vector spaces TkW), Te(V) = T**), and QK(V). However, we are
interested in only one case, which we will not describe in a completely invariant
way. The vector space "(V) is 1-dimensional, so to produce an inner product
on it, we need only describe which two elements, w and —w, will have length 1.
Let vy,...,v, and wy,...,w, be two bases of V which are orthonormal with
respect to ( , ). If we write

n
wi = Z Qjivj,
j=1
then

n
8ij = (wi, wy) (ZM:W;Z%W) Z ooy (U, Up)

k=1
n
= Z Qkilkj.
k=1
So the transpose matrix A' of A = (a;;) satisfies 4 - A' = J, which implies that
det A = £1. It follows from Theorem 7-5 that for any w € Q"(V') we have
oV, ..., ) = To(w, ..., w).
It clearly follows that
VA AV, = 2w A AW,

We have thus distinguished two elements of "(V); they are both of the form
v* A .AV*, for {v;} an orthonormal basis of V. We will call these two elements
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the elementsof norm 1 in Q" (V). If we also have an orientation u, then we can
further distinguish the one which is positive when applied to any (v1, - -, ¥n)
with [vy, ..., v,] = u; we will call it the positive element of norm 1 in Q"(V).

To express the elements of norm 1 in terms of an arbitrary basis wy, ..., Wy,
we choose an orthonormalbasis vy, . .., v, and write

n
wi = Z i) -
j=

Problem 7-9 implies that
det(e;) W A AwW* S = V5 A AU,

Ifwe write n
()= giwi®uw",
iJj=1

then

n n
gij = (wi, w;) = (Z ki ks Zmﬂ:)
k=1 =1
n
= S ann
k=1

5o if A = (aj;). then
det(gi;) = det(4' - A) = (det 4)%

In particular, det(gij) is always positive. Consequently, the elements of norm 1
in Q"(V) are

+Vdetgi) wh A AW, gij = (Wi wj).

We now apply our new tool to vector bundles. If £ = n: E — Bisa vector
bundle, we define a Riemannian metric on & to be a function ( , ) which assigns
to each p € B a positive definite inner product { , ), on n7'(p), and which
is continuous in the sense that for any two continuous sections s1,52: B — E,
the function

(s1,52) = p = (s1(p), 52(P))p

is also continuous. If & is a C* vector bundle over a C* manifold we can also
speak of C*° Riemannian metrics.
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[Another approach to the definition can be given. Let Euc(V) be the set of all
positive definite inner products on V. Ifwe replace each n~'(p) by Euc(n ™! (p)),
and let

Eu(®) = | Buln ™ (p)),
pEB
then a Riemannian metric on & can be defined to be a section of Euc(¢). The
only problem is that Euc(V) is not a vector space; the new object Euc(&) that we
obtain is not a vector bundle at all, but an instance of a more general structure,
a fibre bundle.]

4. THEOREM. Leté = n: E > M be a [C*] k-plane bundle over a C*®
manifold M. Then there is a [C*] Riemannian metric on &.

PROOF. Thereisan open locally finite cover @ of M by sets U for which there
exists [C™] trivializations

i~ U)—> U x R¥.
On U x R¥, there is an obvious Riemannian metric,

((p,a), (p,0))p = {a,b).
For v,w € 27 (p), define

v, w)¥ = (ty (), (W))p.
Then ( , )V isa [C®] Riemannian metric for £|U. Let {¢y} be a partition of
unity subordinate to @. We define ( , ) by

(v,w), = Zgby(p)(u,w)g v,w 671'_'(/1).
UeO
Then ( , ) is continuous [C*™] and each ( , ), is a symmetric bilinear function
on n ' (p). To show that it is positive definite, note that
vy = ) du(p)iv,n);
Uel®
each ¢u(p)(v, v)'I;' > 0, and for some U strict inequality holds. «

[The same argument shows that any vector bundle over a paracompact space
has a Riemannian metric.]

Notice that the argument in the final step would not work if we had merely
picked non-degenerate inner products ( , )V. In fact (Problem 7), there is no
(, ) on TS? which gives a symmetric bilinear function on each $?, which is
not positive definite or negative definite but is still non-degenerate.
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As an application of Theorem 4, we settle some questions which have till now
remained unanswered.

2. COROLLARY. If £ =n: E — M is a k-plane bundle, then & >~ &*.

PROOF. Let ( , ) be a Riemannian metric for £. Then for each p € M, we
have an isomorphism

ap: w7 (p) = 27 ()]

defined by
ap (V)W) = (v, w), v,wen'(p).

Continuity of ( , ) implies that the union ofall &, is a homeomorphism from £
0 E'=Upemlr ™ ()] &

6. COROLLARY. If £ =n: E — M is a I-plane bundle, then £ is trivial if
and only if £ is orientable.

PROOF. The “only if” part is trivial. If & has an orientation u and ( , ) is a
Riemannian metric on M then there is a unique

sipyen(p)
with
(s(p)ys(plp =1, Is(p)l = p,.
Clearly s is a section; we then define an equivalence /: E — M x R by

SQs(p)) = (p,d).

ALTERNATIVE PROOF. We know (see the discussion after Theorem 7-9) that
if & is orientable, then there is a nowhere 0 section of

Q) =6,
so that &* is trivial. But § >~ £*_ o
All these considerations take on special significance when our bundle is the

tangent bundle TM of a C*° manifold M. In this case, a C°*° Riemannian
metric ( , ) for TM, which gives a positive definite inner product ( , ), on
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each M,, is called a Riemannian metricon M. If (x,U) is a coordinate system
on M, then on U we can write our Riemannian metric ( , ) as

n
()= gijdx' @dx/,

ij=1

where the C* functions g;; satisfy g;; = gji, since ( , ) is symmetric, and
det(g;;) > 0 since ( , ) is positive definite. A Riemannian metric ( , ) on M
is, of course, a covariant tensor of order 2. So for every C*® map f: N - M
there is a covariant tensor f*( , ) on N, which is clearly symmetric; it is a
Riemannian metric on N if and only if f is an immersion (fy, is one-one for
all p e N).

The Riemannian metric { , )*, which ( , ) induces on the dual bundle T*M,
is a contravariant tensor of order 2, and we can write it as

(=Ygl el
’ Pt axi ~ dxJ

Our discussion of inmmer products induced on V* shows that for each p, the
matrix (g(p)) is the inverse of the matrix (gi;(p)); thus

n

Z gikgk/ =6

k=1

Similarly, for each p € M the Riemannian metric ( , ) on M determines
two clements of Q"(M,), the elements of norm 1. We have seen that they can
be written
e " .
+ Vdet(gi; (p)) dx'(p) A -~ A dx"(p).

If M has an orientation &, then p, allows us to pick out the positive element of
norm 1, and we obtain an n-form on M; if x: U — R” is orientation preserving,
then on U this form can be written

Vdet(gi;) dx' A A dx".

Even if M is not orientable, we obtain a “volume element” on M, as defined
in Chapter 8; in a coordinate system (x, U) it can be written as

Vdet(gis) ldx' A oo A dx").

This volume clement is denoted by dV, even though it is usually not d of
anything (even when M is orientable and it can be considered to be an n-form),
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and is called the volume element determined by ( , ). We can then define the

volume of M as
/ av.
M

This certainly makes sense if M is compact, and in the non-compact case (see
Problem 8-10) it cither converges to a definite number, or becomes arbitrarily
large over compact subsets of M, in which case we say that M has “infinite
volume”.

If M is an n-dimensional manifold (-with-boundary) in R”, with the “usual
Riemannian metric”

n
(.)=) dx'®adx,
i=l
then gi; = &ij, so
dV = |dx' A A dx"|,
and “volume” becomes ordinary volume.

There is an even more important construction associated with a Riemannian
metric on M, which will occupy us for the rest of the chapter. For every C*
curve y: [a,b] = M, we have tangent vectors
dy
dt

and can therefore use ( , ) to define their length

= ﬂ,d_y = d_y‘d_y , to be precise |.
di’ di dr’ dt [,

Wec can then define the length of y from a to b,

b d b
booy_ Y _ '
Ls(y) —[1 H ar H dar <—fa ly' dt>.

If y is merely piecewise smooth, meaning that there is a partitiona = tg < - -+ <
1ty = b of [a,b] such that y is smooth on each [1;_1, ;] (with possibly different

y'a)= € My,

|%
di
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lefi- and right-hand derivatives at 1y, ..., 7,_;), we can define thelength of y by
n
Li») =) Ly ylli-,1)
i=1

Whenever there is no possibility of misunderstanding we will denote LY simply
by L. A litle argument shows (Problem 15) that for piecewise smooth curves in
R”, with the usual Riemannian metric

Z dx’ @ dx’,
i=1

this definition agrees with the definition of length as the least upper bound of
the lengths of inscribed polygonal curves.
We can also define a function s: [¢,6] — R, the “arclength function of y”

by

st 2] o
Naturally,
-2

Consequently dy/dt has constant length 1 precisely when s(r) = 7 + constant,
thus precisely when s(t) =1 — a. Then

b—a=s(b)=Lby).
We can reparameterize y to be a curve on [0,6 — «] by defining
7)) =yt —a).
For the new curve ¥ we have

new s(¢) = L§(7) = L5 (y) = old st + a) — old s(a)
=1.

If y satisfies s(1) = ¢ we say that y is parameterized by arclength {and then
often use s instead of 7 to denote the argument in the domain of y).



314 Chapter 9

Classically, the norm || || on M was denoted by ds. (This makes some sort
of sense even in modern notation; equation (%) says that for each curve y and
corresponding s: [a4,b] - R we have

ldst=y*Wl 1)
on [a,b].) Consequently, in classical books one usually sees the equation
n N
ds?= )" gijdxidx’.
ij=1

Nowadays, this is sometimes interpreted as being the equivalent of the modern
equation ( , ) = sz=, gijdx' @ dx’, but what it always actually meant was

112 =) gijdxidx.
ij=1
The symbol dx'dx/ appearing here is not a classical substitute for dx' @ dx/ —
the value (dx‘dx’)(p) of dxidx’ at p should not be interpreted as a bilinear
function at all, but as the quadratic function

v dx (p)) -dx(p))  veM,,

and we would use the same symbol today. The classical way of indicating
dx’ @ dx’ was very strange: one wrote

n
Z gij dx'8x/ where dx and éx are independent infinitesimals.
ij=1

(Classically, the Riemannian metric was not a function on tangent vectors, but
the inner product of two “infinitely small displacements” dx and 8x.)
Consider now a Riemannian metric { , ) on a connected manifold M. If
p.g € M are any two points, then there is at least one piecewise smooth curve
y: [a,b] > M from p to g (there is even a smooth curve from p to g). Define

d(p,g9) = inf{L(y): y a piecewise smooth curve from p to q}.

It is clear that d(p,g) = 0 and d(p, p) = 0. Moreover, if r € M is a third
point, then for any ¢ > 0, we can choose piecewise smooth curves

nila,b]—> M from p o g with L(y) —d(p,9) <¢
¥y: [b,c] > M fromgtor with L(y,) —d(g,r) <e.
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If we define y: [a,c] & M to be y on [a,b] and y, on [b,c], then y isa
piecewise smooth curve from p to r and

L{y) = Lin) + L(r2) < d(p, 9) + d(g,r) +2e.
Since this is true for all £ > 0, it follows that

d(p.r) <d(p,q) +d(g,r).

[Ifwe did not allow piecewise smooth curves, there would be difficulties in fitting
together ¥; and y,, but d would still turn out to be the same (Problem 17).] The
function d: M x M — R has all properties for a metric, except that it is not so
clear that d(p,g) > 0 for p # g. This is made clear in the following.

7. THEOREM. The function d: M x M — R is a metric on M, and if
p: M x M — Ris the original metric on M (which makes M a manifold), then
(M, d) is homeomorphic to (M, p).

PROOF. Both parts of the theorem are obviously consequences of the following

7'. LEMMA. Let U be an open neighborhood of the closed ball B = {p € R" :
Ipl <1}, let ( , ) be the “Euclidean” or usual Riemannian metric on U,

n
(L e=) dx ®@ax’,

i=1

andlet { , ) be any other Riemannian metric. Let | | = llc and | || be the
corresponding norms. Then there are numbers m, M > 0 such that
mel < =M1 on B,

and consequently for any curve y: [¢,b] - B we have

mLe(y) < L(y) < ML(y)
PROOF. Define G: B x S™' —» R by

G(p,a) = lapl,.
Then G is continuous and positive. Since B x $”~ is compact there are num-
bers m, M > 0 such that
m<G<M on B x S

Now if p € Band 0# b, € R”,, let a € S"~' be a = b/16]. Then

m|bl < [biG(p,a) < Mbl;
since

161G (p,a) = b1 - llapll, = Ibla)pll, = lIbll,,

this gives the desired inequality (which clearly also holds for & = 0). +*
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Notice that the distance d(p,gq) defined by our metric need not be L(y) for
any piecewise smooth curve from p to 9. For example, the manifold M might
be R? —~ {0}, and g might be —p. Of course, if d(p,q) = L(y) for some y,

-

then y is clearly a shortest piecewise smooth curve from p to g (there might be
more than one shortest curve, e.g., the two semi-circles between the points p
and —p on S?).

In order to investigate the question of shortest curves more thoroughly, we
have to employ techniques from the “calculus of variations”. As an introduction
to such techniques. we consider first a simple problem of this sort. Suppose we
are given a (suitably diflerentiable) function

F:RxRxR—>R.

We seek, among all functions /' [a,b] = R with f(a) = a’ and f(b) = b’ one

b s

which will maximize (or minimize) the quantity

b
/ F@, f@), /') dr.

For example, if’

Flt,x,p)=V1+ 2,
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then we are looking for a function f on [a,b] which makes the curve 7 +—
(¢, £()) between (a, a’) and (b, ) of shortest length

b
/ 1+ [ dr.
a
As a second example, if
F(t,x,y) =2nxvV1+y?,

then we are trying to minimize the area of the surface obtained by revolving
the graph of f around the x-axis, which is given (Problem 12) by

b R
27(/ SO+ /1) dr. ‘ m

To approach this sort of problem we recall first the methods used for solv-
ing the much simpler problem of determining the maximum or minimum of
a function f: R — R. To solve this problem, we examine the critical points
of f,i.e., those points x for which f’(x) = 0. A critical point is not necessarily
a maximum or minimum, or even a local maximum or minimum, but critical
points arc the only candidates for maxima or minima if [ is everywhere differ-
entiable. Similarly, for a function f: R? — R we consider points (x, y) € R?
for which

(#  Dif(x,y)=D2f(x,y)=0.
o(x,)

This is the same as saying that the curves

te f(x+1,y)
te f(x,y+1)
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have derivative 0 at 0. We might try to get more information by considering
the condition

0= (f oc)(0)
for every curve ¢: (—¢,¢) > R? with ¢(0) = (x,y), but it turns out that these

conditions follow from (#), because of the chain rule.
To find maxima and minima for

b
)= / F(, £, f/(0)dt

we wish to proceed in an analogous way, by considering curves in the set of all
Sunctions [ [a,b] — R. This can be done by considering a “variation” of f,
that is, a function

a (—&¢) x [a,b] > R
such that
a(0,¢) = f(1).

The functions ¢ +— a(u,t) are then a family of functions on (—¢,¢) which
pass through f for u = 0. We will denote this function by &(u). Thus & is a
function from (—¢, £) to the set of functions f: [a,b] = R. Ifeach &(u) satisfies
a(u)(a) = a’, &(u)(b) = &', in other words if

it

a(u,a) =a’ /|
a(u,b) =0b'

for all u € (—¢, £), then we call @ a variation of [ keeping endpoints fixed.
For a variation @ we now compute
daJ(@(u)) /b ( da )
—_— Flt,a(u,t),—(u,1) ) de
7 oo (u,1) y (u,1)

_d
b

u
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fab [ad; . (l au, t), (u t))]

b
=/[ 0.0 ¢ 10, 500

]

+ 2 0 (z 0.7 (:))]

Since 82 /dud! = 9% /dtdu, we can apply integration by parts to the second
term in the integrand, thus obtaining

aJ(a(u))

() - o

u=0 a a

01)[ &S0, ()
-4 (——(t, f(t),f’(t)))] ar

+—(0 t) (r (), f(t))

For variations o keeping endpoints fixed, the second term is 0, and we obtain

b da

- ——(0:)[ L T0. 70

-4 (Gesoro)]

In classical treatments of the calculus of variations, the variations & were taken
to be of the special form

(+) dJ(d&u(u))

u=0

au,t) = f(1)+un(),
for some 7n: [a,b] — R with n(a) = 5(b) = 0. Then we obtain

dJ(&(u))
du

] - E 14
u=o=[,"")[ 0 ), /') (ay(z,f(z),f(z)))] ar

d

The final result is, of course, essentially the same. The derivative £ P J(a(u))

is called the “first variation” of J andis denoted classically by

b rarF dor
=[5 -y
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As is usual in classical notation, the arguments of functions are either put in
indiscriminately or left out indiscriminately—in this case, not only are the ar-
guments ¢ and (¢, /(¢), /(1)) omitted (resulting in the disappearance of the
function f for which we are solving), but the dependence of 8/ on « is not
indicated (which can make things pretty confusing).

If' f is to maximize or minimize J, then 8§J(a) must be 0 for every variation o
of f keeping endpoints fixed. As in the case of I-dimensional calculus, there is
no reason to expect that the condition §J(a) = 0 for all & will imply that f is
even a local maximum or minimum for J, and we emphasize this by introducing
a definition. We call f a critical point of J (or an extremal for J) if §J(a) =0
for all variations « of f keeping endpoints fixed. The particular form (*+) into
which we have put 8/ now allows us to deduce an important condition.

8. THEOREM (EULER’S EQUATION). The C? function f is a critical
point of J if and only if' f satisfies

oF, ., d (oF ,
e s0.10) - 5 (G e so. o) =o
PROOF. Clearly f must make the integral in () vanish for every
da
n() = E(O”)

which vanishes at ¢ and b. So the theorem is a consequence of the following
simple

8. LEMMA. If a continuous function g: [a,b] — R satisfies
b
/ (g0 dr =0
a

for every C* function 7 on [a,b] with 77(a) = n(b) = 0, then g = 0.
PROOF. Choosento be ¢g where ¢ ispositive on (a, b) and ¢(a) = ¢(b) = 0. <

As an example, consider the case where F(f,x,y) = V14 y2. The Euler
cquation is

Ozi(_fL)i
AN+ 1/ 0P )



Riemannian Metrics 321

Re]
Vi 2o g S
A r .
B (—) ’
hence

0= (1 +f12)fll _ f/fl/ — (1 _ f/+ f’z)f",
which implies that f” = 0, so [ is linear.
Notice that we would have obtained the same result if we had considered the
case F(4,x,y) = 1+ y?, for then the Euler equation is simply

d e
0= E(Zf -

This is analogous to the situation in 1-dimensional calculus, where the critical
points of / f are the same as those of f, since

(VT = wa

For the case of the surface of revolution, where F(¢f,x,y) = xV 1+ )'Z, the
Euler equation is

o= Jrrirop - & (M)
“\ i+ o

1+ 2= ff"=0,
which we will also write in the classical form
dy\? d%y
I+(—=] - =0
( dx ) Yax?
To solve this, we use one of the Ro standard tricks (lcaving justification of the
details to the reader). We let

this leads to the equation

l=ﬂ
dx’

Then
a2y _dp _dp dy _ dp

dx? ~ dx _dy.dx_pd_r’
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s0 our equation becomes
dp
14+ p*—yp—=0,
4 yp ar 0.
14
1+ p?

dp = & dy,
y

1
5 log(l + P =log y + constant

y = constant - V1 + p?
dy

= d_:‘\' = \/cyz -1
dy =dx

\/cy2 —1

and thus (see Problem 20 for the definition and properties of the “hyperbolic
cosine” function cosh and its inverse)

h!
cosh ¢y =x+k.

Replacing ¢ by 1/c, we write this as
(*) y =ccosh (%ﬁ)

The graph of
e* +e™*
2
is shown below; it is symmetric about the y-axis, decreasing for x < 0, and
increasingfor x > 0.

coshx =

cosht
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So our surface must look like the one drawn below. It is, by the way, not
trivial to decide whether there aze constants k and ¢ which will make the graph
of (*) pass through (a,a’) and (b,5’). Problem 2] investigates the special case
where o' =¥’

It is easy to generalize these considerations to the case where f: [a,b] - R?
and

b
=/ F@, f(@), ') de for F: RxR" xR" - R.

In this case we consider «: (—¢,¢) x [a,b] > R” with @(0) = f, and compute

that
Ry

—(o ) [ (6 S0, 1'0)

d (oF ,
a (a—y,u, 70, f u)))] dr

b

(o)

1

+Zaa o, 1) (VIOWAO)!

a

Thus, any critical point J of J must satisly the n equations
= (t, (1), f(z))—— (a w7 (t, f(z),f(r))) =0.

We are now going to apply these results to the problem of finding shortest
paths in a manifold M. If y: [¢,b] — M is a piecewise smooth curve, with
y(a) = p and y(b) = g, we define a variation of y to be a function

(—&,€) x [a,b] > M
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for some ¢ > 0, such that

() «@.1) =y),
(2) thereisa partitiona =19 <) < --- <ty = b of [a,b] so that « is C*°
on each strip (—¢&,€) x [ti_1, 4]

We call & a variation of y keeping endpoints fixed if

A3) a(u,a)=p
alu,b) =g

for all u € (—¢,¢).

As before, we let @(u) be the path t — a(u,1). We would like to find which
paths y satisfy
dL(a(u))

=0
du

u=0

for all variations a keeping endpoints fixed. However, we will take a hint from
our first example and first find the critical points for the “energy”

dy d
_1! / dy y> a,
T2, \arar
which has a much nicer integrand; afterwards we will consider the relation
between the two integrals.

We can assumc that cach y|[f;—,#] lies in some coordinate system (x, U)
(otherwise we just refine the partition). If (u,7) isthestandard coordinate system

in (—¢,¢) X [a,b] we write
il
(u 1=
(8u (u, r))

a )
(u,)

(u 1)-0‘*(8[

E(y) =

do
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Then da/d1(u,1) is the tangent vector at time ? to the curve & (u). If we adopt
the abbreviations

alu,t) = X' (au,), YO =X (@) =a'(0,0),

then
o " 3ot 3 dy dyl 8
—(u,t) = —(u,1) - — s — = —_
ot ; a1 X |yt t o dr axi o)

1 % [dy dy
E(YI[Ii—Iali])=§[ <d—};,z> dt
i—1

dy' dy’
=z Z gu(}'(l))—d——d—dl-

[

If we usc the coordinate system x to identify U with R”, and consider the g;;
as functions on R”, then we are considering

1
| roo.yo
ti—y

where n
1
Flry) =3 > giix) - ¥y
i,j=1
Then
aF [ dy' dy’
= (r0. %) =3 Z 2 o
':l
and u
aF dy dy’
o (10 ) = Dartrr G
50

5 (ayt (y( ) )) Zgrr(y(t)) - Z ag,,( ())deL.



326 Chapter 9

In order to obtain a symmetrical looking result, we note that a little index
Jjuggling gives
dgr dyidy” <~ dgady'dyl (- dgpdy'dy!

ax/ di di ~ 4= dxJ di di | 4~ 3xl di dt
1 i,j=1 i,j=1

rj=

S0

dgr, dy! dy” 12':3&1 dy'dy! 1 <~ dgjrdy'dyl
2 Jj=1

\oxi dr dt o dr dr T 2,42 0xT di dr”

\
From (+#*) we now obtain

du

u=0

= [ ¥, z)[Zg,,

fi—t 1y

dg: agi dy'd
w3t 5 (2 %1 - % )))d—y[d—yt}d:

,/l

Z Lo, ) Zg,,(y(z)) -

ti—y

Remember that y is only piecewise C*. Let
ytiz)

dy
d dy.  _
7)’/-(1,-*') = right hand tangent vector of y at #; dt )
d—y(l-_) = left hand tangent vector of y at ; [til_}l,("*)
dr’ s v y(ir41)

Notice that the final sum in the above formula is simply

( ©, f,), ([1 )) —( ©,4- 1), (t, 1 ))

To ablxreviate the integral somewhat we introduce the symbols

. dgir . dgji 08
fis.11 -‘(axﬁﬁ‘ﬁ)
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These depend on the coordinate system, but the integral

f (0 0 dy y di,
i I 1 ij=1

which appears in our result, clearly cannot. Consequently, we will use the exact
same expression for each [ti, #;], even though diflerent coordinate systems may
actually be involved (and hence diflerent g;; and y iy,

Now we just have to add up these results. Let

dr _dv
idr T di

dy , _ .
t,-+)—d—f(r,~ ) i=l..,N-—1

d d
Ay, d_}t/ = d_}[/ (™)

dy _ dy, _
A'”E-_E(’N )

Then we obtain the following formula (where there is a convention being used
in the integral).

9. THEOREM (FIRST VARIATION FORMULA). For any variation a,
we have

dE(a(u))
du u=0
2! i d
/ Z o Ly [Zg,r(y([)) 5 +UZ_: /.41 @) d}; ;[ d

N
0 d
-y (—a‘" ©,1), B, —d”>.
i=0 u 4

(In the case of a variation « leaving endpoints fixed, the sum can be written
from l1to N —1.)

This result is not very pretty, but there it is. It should be noted that [ij,/] are
not the components of a tensor. Nevertheless, later on we will have an invariant
interpretation of the first variation formula. For the time being we present,
with apologies, this coordinate dependent approach. From the first variation
formula it is, of course, simple to obtain conditions for critical points of E.
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10. COROLLARY. If y: [a,b] = M isa C® path, then y is a critical point
of E¢ if and only if for every coordinate system (x, U) we have

dyid
Zg,r(yu)) 7 s Z[u, 1 )2 yt =0 fory() eU.

ij=1

PROOF. Suppose y is a critical point. Given 7 with y(¢) € U, choose a partition
of [a,b] with 1 € (t;-1,1;) for some i, and such that y|[t;-1,4] isin U. If a
is a variation of y keeping endpoints fixed, then in the first variation formula
we can assume that the part of the integral from #i—) to # is written in terms
of (x,U). The final term in the formula vanishes since y is C*. Now apply
the method of proof in Lemma 8’, choosing all da! /0u(0, 1) to be 0, except one,
which is 0 outside of (zi—1,7:), but a positive function times the term in brackets
on (ti—y,11). %

In order to put the equations of Corollary 10 in a standard form we introduce
another set of symbols

n

11 (dgu | dgi  9gij
ki - Pl L7 L1
Zg i, 1= Z_: 2 (8AJ axi axl )

Our equations can now be written

ayk < dy’ dy’
g T 2 Thv @G =0

ij=1

We know from the standard theorem about systems of second order differential
equations (Problem 5-4), that for each p € M and each v € M), there is a
unique y: (—¢,6) = M, for some £ > 0, such that y satisfies

y(©0) =
d—y(O) =v

dy’ dy’
dr dt

ij=1
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Moreover, this y is C* on (—¢,¢). Thislast fact shows thatif y;: [0,6) > M
and y,: (—¢,0] = M are C* functions satisfying this equation, and if moreover

1 (0) = y,(0)

dy,

an 0") = T2,

dr

then ¥, and y, together give a C* function on (—¢,¢). Naturally, we could
replace 0 by any other . We now have the more precise result,

11. COROLLARY. A piecewise C* path y: [a,b] — M is a critical point
for E% if and only if y is actually C* on [a, b] and for every coordinate system
(x, U) satisfies

dy'dy’
= fi uU.
dtz + E rkoyo) = T ory(t) €

ij=1

O

PROOF. Let y be a critical point. Choosing the same o/ as before (all o/ are 0
outside of (1;_1,4)), we see that y| [ti-;,] satisfies the equation, because the
final term in the first variation formula still vanishes. Now choose & so that

Jda dy
— ) =0, — f=1,... — L.
au(o,lx) e i=1,...,N=1

We already know that the integral in the first variation formula vanishes. So
we obtain N
—1
dy . dy
0=— Ay——, AL —},
,Z:( Y T dr

which implies that all A/, are 0. By our previous remarks, this means that y
is actually C® on all of [a,b]. <

As the simplest possible case, consider the Euclidean metric on R”,

n
(,)=) dx'®dx’.
i=1
Here gij = &j, so all dgi; /8x*k =0, and F" = 0. The critical points y for the
energy function satisfy
dzyk
dr?
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Thus y lies along a straight line, so y is a critical point for the length function
as well. The situation is now quite different from the first variational problem
we considered, when we considered only curves of the form ¢ — (1, f(1)).
Any reparameterization of y is also a critical point for length, since length is
independent of parameterization(Problem 16). This shows that there are critical
points for length which definitely aren’t critical points for energy, since we have
just seen that for y to be a critical point for energy, the component functions
of y must be linear, and hence y must be parameterized proportionally to arc-
length. This situation always prevails.

12. THEOREM. If y: [a,b] - M is a critical point for E, then y is param-
eterized proportionally to arclength.

PROOF. Observe first, from the definitions, that

3grj . .
FP e [i4, 71+ [j1,1].

Now we have

dyZ

dt

d

_d - dy'dy’
i = E( Z gu(y(l))z‘ﬁ‘)

ij—]
B n agu d_y_d_y_dy n
_;JZ=: Z=: TGt Z &y (@) d,_f_d,"
ld y
+ Z gir(y(1)—- dI d,z .

ir=1

Replacing 8g;;/0x' by the value given above, this can be written as

d

dy 2
dr

dt

=,Z (Zgﬂ(y(z)) . Z[z/ vy 7)
+Z - (Zg:r(y(t)) + Z[// a2 d[ - )

Since y is a critical point for E, both terms in parentheses are 0 (Corollary 10).
Thus the length |ldy/dt] is constant. 4
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The formula

0gij .
®) Ak = {1k j1+ Lk, ]

occurring in this proof will be used on several occasions later on. It will also be
useful to know a formula for dg” /x¥. To derive one, we first differentiate

" .
Z gimg™ =
m=1

to obtain .

Z 8im agmj = Z %g)::. g

Thus we have

ag¥ ! g™ il mj 08Im
k. Zg' Z Tem! Bk
= > g" g™ ([lk,m] + [mk,1]) by (¥)
1.m

== 28" T = 2" T
1 m

8g'/

E Z(g"rfk +8"Th).

=1

(%)

We can find the equations for critical points of the length function L in ex-
actly the same way as we treated the energy function. For the moment we
consider only paths y: [a,b] — M with dy/dt # 0 everywhere. For the por-
tion y|[ti—1,#] of y contained in a coordinate system (x,U), we have

\ngu(}’(f)) o " a

i,j=1

L i1, 8]) = /

fi

Considering our coordinate system as R”, we are now dealing with the case

> sy

ij=1

F(x,y)=

A\
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We introduce the arclength function

s(1) = Lg(y).

Then d d d
S| = F &
dr H dr| r(}/([)’ dt)'
So we have
n i A
0gij dy' dy’
=) —-—-
oF ) dy _]_I,J_Z;]a,\' dt dt
axl (V( Yar) =3 as
dt
n
dy”
gir(y(0)—
OF . ﬂ _ ; r dt
Y v, )= %
dt

After a little more calculation we finally obtain the equations for a critical point
of L:

d%s
L A S dy'dy)  dy* G
FaRP R D e
Z

It is clear from this that critical points of E are also critical points of L (since
they satisfy d%s/dt> = 0). Conversely, given a critical point y for L with
dy/dt # 0 everywhere, the function

st [a,6] - [0, Ly (y)]
is a diffeomorphism, and we can consider the reparameterized curve
yosT' [0, Lo - M.

This reparameterized curve is automatically also a critical point for L, so it
must satisfy the same differential equation. Since it is now parameterized by
arclength, the third term vanishes, so y o s~ is a critical point for E.

There is only one detail which remains unsettled. Conceivably a critical
point for L might have a kink, but be C® because it has a zero tangent vector
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there, as in the figure below. In this case it would not be possible to reparame-

terize y by arclength. Problem 37 shows that this situation cannot arise.

Henceforth we will call a critical point of E a geodesic on M (for the Rie-
mannian metric ( , ). This name comes from the science of geodesy, which
is concerned with the measurement of the earth’s surface, including surveying
and the measurement of degrees of latitude and longitude. A geodesic on the
earth’s surface is a segment of a great circle, which is the shortest path between
two points. Before we can say whether this is true for geodesics in general,
which are so far merely known to be critical points for length, we must initiate
a local study of geodesics.

The most elementary properties of geodesics depend only on facts about
differential equations. Observe that the equations for a geodesic,

dyk s pdyldy?
aEt 2

have an important homogeneity property: if y is a geodesic, then 7 — y(ct) is
also clearly a geodesic. This feature of the equation allows us to improve the
result given by the basic existence and uniqueness theorems.

13. THEOREM. Let p € M. Then there is a neighborhood U of p and a
number ¢ > 0 such that for every g € U and every tangent vector v € M, with
llvll < e there is a unique geodesic

Yoi (=2,2) > M

satisfying
dy
0) = v.
L O=v
PROOF. The fundamental existence and uniqueness theorem says that there
is a neighborhood U of p and &;,6; > 0 so that for g € U and v € M, with

Wl < &1 there is a unique geodesic

r(0) =g,

Vi (=262,260) > M
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with the required initial conditions.
Choose ¢ < g162: Then if |v| < € and ¢} < 2 we have

lo/eall <1 and  feat] < 2e;.
So we can define yy(7) 10 be yy/e2(€21). %

If v € M is a vector for which there is a geodesic
y:[0,1] > M
satisfying
0) = dy 0)=v
YO =g, —-0) =0,
then we define the exponential of v to be
exp(v) = expgy(v) = y(1).
(The reason for this terminology will be explained in the next chapter.) The
geodesic y can thus be described as
y(t) = expy(1v).

Since M, is an n-dimensional vector space, there is a natural way to give it
a C% suucture. If @ € M, is the set of all vectors v € M, for which expg (v)
is defined, then the map
expy: @ > M
is C, since the solutions of the differential equations for geodesics have a C*°
flow. Identifying the tangent space (My), at v € M4 with M, itself, we have an
induced map
(expg)us: Mg = Mep,(u)-

In particular, we claim that the map
(expg)os: My — M, is the identity.

In fact, 10 obtain a curve ¢ in the manifold M, with de/d1(0) = v e M, =
(Mg)o, we can let ¢(1) = rv. Then expy o ¢(r) = expy(rv), the geodesic with
tangent vector v at time 0, so

(expglox(v) = di expg (c()) = v.
[
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Before proving the next result, we recall some facts about the manifold 7M.
If (x,U) is a coordinate system on M, then for g € U we can express every
vector v € M, uniquely as

We will denote a by %' (v), so that

= a
= ol
v= E]x(v)axi
i=

where m: TM -> M is the projection. Then

>
n(v)

(x'om.. ., x"om X!, L ¥ = (X, 2, %

is a coordinate system on n~'(U). Forv € My, g € U we therefore have
tangent vectors

™
a

3,

il
axt

B

€ (TM)y;
v
|=
<
the vectors 8/3.71"'|,J are all in the tangent space of the submanifold M, C TM,

while the vectors 3/dx* Iv span a complimentary subspace.

14. THEOREM. For every p € M there is a neighborhood W and a number
&> 0 such that

(1) Any two points of W are joined by a unique geodesic in M of length
<e

(2) Let v(g,9') denote the unique vector v € M, of length < & such that
expg(v) = ¢'. Then (g,9') — v(g,9") is a C* function from W x W -»
T/ .

(3) For each g € W, the map exp, maps the open &-ball in M, diffeomor-
phically onto an open set Uy D W.
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PROOF. Theorem 13 says that the vector 0 € M has a neighborhood V in the
manifold TM such that exp is defined on V. Define the C* function F: V —
M x M by

F(v) = (n(v), exp(v)).

Let (x,U) be a coordinate system around p. We will use the coordinate

system

&L Ex LA,
described above, for n='(U). If m;: M x M — M is projection on the ith
factor, then

1 1 = (! 1
(xlomy,...,x"om,x oma,...,x"omy) = (x1', ..., %", X2, .., x2")
is a coordinate system on U x U. Now, using the fact that
(expploa: Mp — Mp

is the identity, & & not hard to see that a 0 € M, we have

9 9 9
F*(Wo)"a?a

9 9
F*(a?fo)‘é;?

Consequently, F, is one-one at 0 € M, so & maps some neighborhood V'
of 0 diffeomorphically onto some neighborhood of (p, p) € M x M. We may
assume that V' consists of all vectors v € M, with g in some neighborhood U’
of pand |jvl} < e. Choose W to be a smaller neighborhood of p for which
FV)YOWx W ¢

(p,p) (p.p)

(p.p)

Given a W as in the theorem, and g € W, consider the geodesics through ¢
of the form 7 +— expg (rv) for ljvll < e. These fill out U;. The close analysis of
geodesics depends on the following.

/ {exp,(v) < vl = ¢}
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15. LEMMA (GAUSS’ LEMMA). In U,, the geodesics through g are perpen-
dicular to the hypersurfaces
{expg(v) : lJvll = constant < €}.

FIRST PROOF. Let v: R — M, be a smooth curve with |fu(7)]l = a constant
k < ¢ for all ¢, and define

a(u,l) = expg(u - v()) —l<u<l

We are claiming that for every such « we have
( (u, 1), (u l)) =0 for all (u,?).

A calculation precisely like thatin the proof of Theorem 12 proves the following
equation, in which the arguments (u, ) and «a(u, {) are omitted, for convenience:

3 [da du 3o/ 3o’ der
0] E(E’E) ; (Zguaz+2[// m au)
i da/ da
Z (rzg”auaz+ Z[/ i az)

The first term on the right is 0 since each curve u +— a(u,?) is a geodesic.
Similarly, we obtain

3 o du aa/ dc!
@ E(E’E) Z (Zg" oudt * Z it 1] du )

which is just twice the second term on the right of (I). But der/du(u,?) is just the
tangent vector at time u to the geodesic u — expg(u - v(1)), where Jlu(?)ll =k
0 Jldee/dull = k. Thus the second term on the right of (2) is also 0. So

<8cx dur

e E) is independent of u.
u

But (0,7) = expy(0) = g, so da/dt(0,7) = 0. It follows that

(Ba do

5;,—37>=0 for all (u,1).
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SECOND PROOF. Let v: R — M be any smooth curve with {Ju(¢) ]| = a constant
k < ¢ for all ¢, and define

Bu,t) = expgylt - v(u)) (note carefully the roles played by 7 and u).

Then B is a variation of the geodesic y () = expg4(¢ - v(0)), defined on [0, 1]. By

the first variation formula, we have

dEBwW)|  _ (aﬂ(o 1),~(1)> (3—6(00),~(0)>
=0

du
0,
-- (—‘3(0 N, <1)>

the integral vanishing since y is a geodesic. But each curve B(u) has energy

a _ ! dlé(“)([) z ! 2,5, _ 12
E(ﬂ("))—/o ”T d1=[0 kidr = k2,

3 dy -
_ (E(O’ 1), E(])>' -

16. COROLLARY. Let c: [a,b] = U, — {g} be a piecewise smooth curve,

SO -
dE(B())

0= du

c(f) = expglu(t) - v(1)),
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for 0 < u(t) < e and fjv(t)}f = 1. Then
Lic > u(®) — u(a)l,

with equality if and only if « is monotonic and v is constant, so that ¢ is a radial
geodesic joining two concentric spherical shells around g.

PROOF. If a(u,1) = expgy(u - v(1)), then c(r) = a(u(s),7) and

de 0 i,
@St Oty
Since
B_a dor -0 do -1
aw’ ar| u|
we have
de|? ,a | BalP? o2
%] =wor+ 5] 2 wor

with equality if and only if der/dt = 0, and hence v'(f) = 0. Thus

/

with equality if and only if « is monotonic and v is constant. <

de

b
al g > f WOl de > lu(b) — ula)l,
dt 0

17. COROLLARY. Let W and ¢ be as in Theorem 15, let y: [0,1] > M be
the geodesic of length < ¢ joining 9,9’ € W, and let ¢: [0,1] — M be any
piecewise C* path from g to ¢’. Then

L(y) < L(c),

with equality holding if and only if ¢ is a reparameterization of y.

PROOF. We can assume that ¢’ = expg(rv) € U, — {g} (otherwise break ¢ up
into smaller pieces). For § > 0, the path ¢ must contain a segment which joins
the spherical shell of radius § to the spherical shell of radius r, and lies between
them. By Corollary 16, the length of this segment has length > r — §. So the
length of ¢ is > r, and clearly ¢ must be a reparameterization of y for equality
to hold. <
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We thus see that sufficiently small pieces of geodesics are minimal paths for arc-
length. We can use Corollary 17 to determine the geodesics on a few simple
surfaces, without any computations, if we first introduce a notion which will
play a crucial role later. If (M, (, )) and (M’,( , )) are C* manifolds with
Riemannian metrics, then a one-one C* function f: M — M’ is called an
isometry of M into M’ if f*( ,) = (, ). For example, reflection through a
plane £2 C R™*! is anisometry /: S" — S”. Itis clear thatif ¢: [0,1] - M
is a C* curve, then the length of ¢ with respect to ( , ) is the length of foc¢
with respect to ( , )’; and if ¢ is a geodesic, then f e c is likewise a geodesic.

Forthe isometry /: §* — S” mentioned above, the fixed point set is the great
circle C = S"N E2. Let p,g € C be two points with a unique geodesic C’
of minimal length between them. Then I(C’) is a geodesic of the same length
as C’ between I(p) = p and I(g) = g. So C' = I(C’), which implies that
C’ C C, so that C is a geodesic. Since there is a great circle through any point
of §” in any given direction, these are all the geodesics.

oY

Notice that a portion of a great circle which is larger than a semi-circle is
definitely not of minimal length, even among nearby paths. Antipodal points on

- path of smaller length

N

the sphere have a continuum of geodesics of minimal length between them. All
other pairs of points have a unique geodesic of minimal length between them
but an infinite family of non-minimal geodesics, depending on how many times
the geodesic goes around the sphere and in which direction it starts.
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The geodesics on a right circular cylinder Z are the generating lines, the

circles cut by planes perpendicular to the generating lines, and the helices
on Z. In fact, if L is a generating line of Z, then we can set up an isometry
1:Z - L — R? by rolling Z onto R2. The geodesics on Z are just the images

under /7! of the straight lines in R2. Two points on Z have infinitely many
geodesics between them.

We are now in a position to wind up our discussion of Riemannian met-
rics on M by establishing an important connection between the Riemannian
metric ( , ) and the metric d: M x M — R it determines,

d(p,q) =inf{L(y) : y a piecewise smooth curve from p to g}.

Notice that on both the sphere and the infinite cylinder every geodesic y defined
on an interval [a, b] can be extended to a geodesic defined on all of R. This is
false on a cylinder of bounded height, a bounded portion of R”, or R” — {0}.
In general, a manifold M with a Riemannian metric ( , ) is called geodesically
complete if every geodesic y: [a,b] = M can be extended to a geodesic from R
to M.
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18. THEOREM (HOPF-RINOW-DE RHAM). If (, ) is a Riemannian
metric on M, then M is geodesically complete if and only if M is complete
in the metric d determined by ( , ). Moreover, any two points in a geodesi-
cally complete manifold can be joined by a geodesic of minimal length.

PROOF. Suppose M is geodesically complete. Given p,q € M with d(p,q) =
r > 0, choose U as in Theorem 14. Let S C U, be the spherical shell of radius
8 < &. There is a point

po = exppdv, ol =1
on S such that d(po,q) < d(s,q) for all s € S. We claim that
() expp(rv) = g;

this will show that the geodesic y(¢) = exp,(fv) is a geodesic of minimal length
between p and g. To prove this result, we will prove that

() d(y(t),9) =r—1t te [8,r].
First of all, since every curve from p to g must intersect S, we clearly have
d(p,g) = min(d(p,s) + d(s,)) = & +d(po,9)-
So d(po,q) = r — 8. This proves that (+) holds for 1 = 8.

Now let 79 € [8,r] be the least upper bound of all ¢ for which (xx) holds. Then
(#x) holds for 1o also, by continuity. Suppose 7o < r. Let S’ be a spherical shell

ge

o
S

of radius 8’ around y(to) and let po’ € S’ be a point closest to 9. Then

d(y(to),q) = min(d(y(t0),5) +d(s,9)) = &' + d(py', g),
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SO
(k) d(po’s9) = (r —10) = &

Hence
d(p, po’) 2 d(p,q) — d(po’.q) =10+ 8"

But the path ¢ obtained by following ¥ from p to y(f) and then the minimal
geodesic from y (%) to po’ bas length precisely 10 +8’. So ¢ is a path of minimal
length, and must therefore be a geodesic, which means that it coincides with y.
Hence
Yo+ &)= po'.
Hence (##x) gives
dy(to+8),9) =1 — (to +8),

showing that (#x) holds for to +8’. This contradicts the choice of fo, so it must
be that fg = r. In other words, () holds for ¢ = r, which proves (x).

From this result, it follows easily that M is complete with the metric d. In
fact, if A C M has diameter D, and p € A, then the map expy: My, - M
maps the closed disc of radius D in M, onto a compact set containing A. In
other words, bounded subsets of M have compact closure. From this it is clear
that Cauchy sequences converge.

Conversely, suppose M is complete as a metric space. Given any geodesic
y: (a,b) > M, choose tn — b. Clearly y(1,) is a Cauchy sequence in M, so it
converges 1o some point p € M. Using Theorem 14, it is not difficult to show
that y can be extended past b. Consequently, by aleast upper bound argument,
any geodesic can be extended to R. <

As a particular consequence of Theorem 18, note that there is always a min-
imal geodesic joining any two points of a compact manifold.
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ADDENDUM
TUBULAR NEIGHBORHOODS

Let M" C Nk be a submanifold of N, withi: M -» N the inclusion map,
so that for every p € M we have i,(Mp) C N,. If (, ) is a Riemannian metric
for N, then we can define M,,J' C Ny as

My ={weN,: (v,i,w)=0foral we M}

Let
E= U M,,J' and w@: E-> M take /MI,J' to p.
PEM
It is not hard to see that v = @w: E -» M is a k-plane bundle over M, the
normal bundle of M in N.
For example, the normal bundle v of $"~! € R” is the trivial I-plane bundle,
for v has a section consisting of unit outward normal vectors. On the other hand

N

if M is the Mobius strip and S! C M is a circle around the center, then it is
not hard 1o see that the normal bundle v will be isomorphic to the (non-trivial)
bundle M -> S'. If we consider S' € M C P2, then the normal bundle

of S'in P2 is exactly the same as the normal bundle of S' in M, so it too is
non-trivial.
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Our aim is to prove that for compact M the normal bundle of M in N is
always equivalent to a bundle 7w : U — M for which U is an open neighborhood
of M in N, and for which the 0-section s: M — U is just the inclusion of M
into U. In the case where N is the total space of a bundle over M, this open
neighborhood can be taken to be the whole total space. But in general the
neighborhood cannot be allof N. For example, as an appropriate neighborhood
of S' ¢ R? we can choose R? — {0}.

Abundlen: U — M with U anopenneighborhood of M in N, for which the
0O-section s: M — U is the inclusion of M in U, is called a tubularneighborhood
of M in N. Before proving the existence of tubular neighborhoods, we add some
remarks and a Lemma.

If m: U - M is a tubular neighborhood, then clearly

mos = identity of M,

som is smoothly homotopic to the identity of U,

so 7 is a deformation retraction, and Hk(U) ~ Hk(M); thus M has the same
de Rham cohomology as an open neighborhood. Moreover, if we choose a
Riemannian metric (, ) for 7: U - M and define D = {e € U : (e,e) <1},
then D is a submanifold-with-boundary of U, and the map n|D: D — M is
also a deformation retraction. So M also has the same de Rham cohomology
as a closed neighborhood.

19. LEMMA. Let X be a compact metric space and Xo C X a closed subset.
Let f: X — Y be alocal homeomorphism such that f|Xp is one-one. Then
there is a neighborhood U of Xj such that f|U is one-one.
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PROOF. Let CC X x X be
{(x,) e X x X :x # yand [(x) = f(y)}-

Then C is closed, for if (xn, y,) is a sequence in C with x, — x and y, = »,
then f(x) = lim f(x,) = im f(¥s) = f(¥), and also x # y since [ is locally
one-one.

If g:C > Ris g(x,y) = d(x,Xq) + d(y, Xo), then g > 0 on C. Since C
is compact, there is ¢ > 0 such that g > 2e on C. Then f is one-one on the
e-neighborhood of Xo. <+

20. THEOREM. Let M C N be a compact submanifold of N. Then M has
a tubular neighborheod 7: U — M in N, which is equivalent to the normal
bundle of M in N.

PROOF. Choose a Riemannian metric ( , ) for N, with the corresponding
norm | ||, and metricd: N x N — R. Let

E={v:iveNyandve M,,J',forsomepeM)
E.={ve E: |l <é¢}
Us={geN:dg,M) <e}.

It follows easily from Theorem 13, and compactness of M, that exp is defined
on E¢ for sufficientlysmall ¢ > 0. We claim that for sufficiently small ¢, the map
exp is a diffecomorphism from E¢ onto U,. This will clearly prove the theorem.

Let V C E be the set of a non-critical points for exp. Then ¥V O M (consid-
ered as a subset of E via the 0-section), and ¥y = V N E; is compact; since exp
is one-one on M C Vi, it follows from Lemma 19 that for sufficiently small ¢
the map exp is a diffeomorphism on E..

It is clear also that exp(£¢) C Us. To prove that exp is onto U, choose any
g € Ug, and a point p € M closest to g. If y:[0,1] = N is the geodesic of
length < & with y(0) = p and y(1) = g, it is easy to see that y is perpendicular
to M at p (compare the second proof of Gauss’ Lemma). This means that
q = exppdy/dt(0) where dy/dt(0) € E,. %

One of the interesting features of Theerem 20 is that all the paraphernalia
of Riemannian metrics and geodesics are used in its proof, while they do not
even appear in the statement. Theorem 20 will be needed only in Chapter 11,
where we will also need the following modification.
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21. THEOREM. Let N be a manifold-with-boundary, with compact bound-
ary dN. Then 0N has (arbitrarily small) open [and closed] neighborhoods for
which there are deformation retractions onto dN.

PROOF. Exactly the same as the proof of Theorem 20, using only inward point-
ing normal vectors. %
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PROBLEMS

1. Let V be a vector space over a field F of characteristic # 2, and let h: V x
V — F be symmetric and bilinear.

(a) Define g: V. — F by g(v) = h(v,v). Show thatif ¢1,...,¢n is a basis

for V*, then
n
q= Z aijv‘,- . v‘j
for some a;;. =t
(b) Show that
q(=v) =49(v)

h(u,v) = 3[gCu +v) = () — 9(v)].
(c) Suppose g: V — F satisfies g(—v) = v, and that /i(x, v) = g(u+v) —g(v) —
g(v) is bilinear. Show that

glu+v+w) —glu) —g{v+w) = glu+v)—gu) —g(v) —g(u+w) —g(u) — g(w).
Conclude that ¢(0) = 0, and g(2u) = 4g(¥). Then show that g(v) = h(v, v).

2. Let (, ) be a Euclidean metric for V*. Suppose ¢:, ¥; € V* satislfy ¢y A
e AG =Y A Ay # 0, and let Wy and Wy, be the subspaces of V*
spanned by the ¢; and ¥;.

(a) Show that w € Wy if and only if @ A ¢y A .-« A = 0. Conclude that
Wy = Wy.

(b) Let 01,...,0x be an orthonormal basis of Wy = Wy. If ¢ = 3; ajioj,
show that the signed k-dimensional volume of the parallelepiped spanned by
5., ¢k is det(aij). (The signis + if ¢1,..., ¢ has the same orientation as
01,...,0k, and — otherwise.)

(c) Using Problem 7-9, show that this volume is the same for ¥1,..., ¥k.

(d) Conversely, if Wy = Wy, and the signed volumes of the parallelepipeds are
the same, show that ¢y A= Agg = Y1 Ao APg.

Ifwe identify V with V**, so that we have a wedge product v; A- - - Avk of vectors
v; € V, then we have a geometric condition for equality with w; A -++ A wy.
In Legons sur la Géométrie des Espaces de Riemann, E. Cartan uses this condition to
defne QK (V*) as formal sums of equivalence classes of k vectors; he deduces
geometrically the corresponding conditions on the coordinates of v;, w;.

3. Let V be an n-dimensional vector space, and ( , ) an inner product on V
which is not necessarily positive definite. A basis vy,...,v, for V is called
orthonormal if (v;, v;) = £§;;.
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(a) If V # {0}, then there is a vector v € V with (v,v) # 0.

(b) For W C V,let W = {ve V: (v,w) =Oforallw € W}. Prove that
dim WL > n — dim W. Hint: If {w;} is a basis for W, consider the linear
functionals A;: V — R defined by Ai(v) = (v, wi).

(c) If (,) is non-degenerate on W, then V = W @ W+, and (,)isalso
non-degenerate on wt.

(d) V has an orthonormal basis. Thus, there is an isomorphism f: R" —
V with f*(, ) = (, )r for some r (the inner product ( , ), is defined on
page 301).

(e) The index of ( , ) is the largest dimension of a subspace W C V such that
( » )IW is negative definite. Show that the index is n — r, thus showing that r
is unique (“Sylvester’s Law of Inertia”).

4. Let (, ) be a (possibly non-positive definite) inner product on V, and let
Ul,..., Vs be an orthonormal basis (see Problem 3). Define an inner product
(,)* on Q%(V) by requiring that

U*i,/\-"/\”*ik l<ii<--+<ikx<n

be an orthonormal basis, with
(' Ao AU U A A v*jk)k = det{(vi,, Vjp))-
(a) Show that ( , )k is independent of the basis vy, ..., vk (Use Problem 7-16.)
(b) Show that
@1 A Mgt Aee Ag)® = det((@i, wi)*) = det((¢i ¥i)').

(¢) If (', ) has index i, then

WH A AV LU A AT = (—=1)

(d) For those who know about @ and Ak, Using the isomorphisms ®kV* ~
(®I‘V)* and AK(V*) ~ (AkV)*, define inner products on ®kV and AKV by
using the isomorphism V — V* given by the inner product on V. Show that
these inner products agree with the ones defined above.

5. Recall the definition of vy x +++ x vy in Problem 7-26.

(a) Show that {v; X -+ X vp_y,v;) =0.

(b) Show that vy X - -+ x v,,_j| = ~/det(gi;), where gi; = {v;,v;). Hint: Apply
the result on page 308 to a certain (# — 1)-dimensional subspace of R”".
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6. Let £ = n: E — B be a vector bundle. An indefinite metric on & is
a continuous choice of a non-positive definite inner product ( , ), on each
771 (p). Show that the index of ( , )p is constant on each component of B.

7. This problem requires a little knowledge of simple-connectedness and cov-
ering spaces.

(@) There is no way of continuously choosing a 1-dimensional subspace of S?,
for each p € §2. (Consider the space consisting of the two unit vectors in each
subspace.)

(b) There is no Riemannian metric of index 1 on S2.

8. Let (,) and ( , )’ be two Riemannian metrics on a vector bundle £ =
m: E — B. Let S be the set of e € E with (e,e) = 1, and define S’ similarly.
Show that S is homeomorphic to S'. I & is a smooth bundle over a manifold M,
show that S is diffeomorphic to S”.

9. Show by a computation that if the functions g;; and g’;; are related by
ax’ ax/
!
o8 = D G ot
with det(g;;) # 0, and the functions g, g’/ are defined by
hd : N :
Y ety =48, Zg”k " = 8.
k=1

then
o 7
g6 = iy Ox’ ax’'8
Z axi dxi

This, of course, is the classical way of defining the tensor [having the compo-
nents] g'.

10. (a) Let ( , ) be a Riemannian metric on M, and 4 a tensor of type (:), 50
that A(p): Mp — M,. Define a tensor B of type (g) by

B(p)(v1,v2) = (A(p) (1), v2).
If the expression for 4 in a coordinate system is

"
A=Y Aldre

ij=1

]
axJ’
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show that B = 3_; ; Bix dx! @ dxk, where

n
Bie=)_ Al gt
j=t

(b) Similarly, define a tensor C of type (g) by
C(p)(h1,h2) = (A(p)* (M), 42).
Show that if C has components C*/| then

n
cki = Z gkiA{ .

i=1
The tensors B and C aresaid to be obtained from A by “raising and lowering
indices”.
11. (a) Let X),..., X, be linearly independent vector fields on a manifold M
with a Riemannian metric ( , ). Show that the Gram-Schmidt process can be
applied to the vector fieldsall at once, so that we obtain 1 everywhere orthonor-
mal vector fields Y,...,Y,.
(b) For the case of a non-positive definite metric, find Y3,...,¥n with (1, Y;) =
=+38;; in a neighborhood of any point.

12. (a) If f: [a,b] -> R is positive, show that the area of the surface obtained
by revolving the graph of f around the x-axis is

b
/ e/ 1+ ()2,

(b) Compute the area of S2.

13. Let M C R” be an (n — 1)-dimensional submanifold with orientation .
The outward unit normal v(p) at p € M is defined to be that vector in R”,
oflength 1 such that v(p), (v1)p, ..., (Un—1)p is positively oriented in R", when
(v1)ps -+ -» (Un—1)p is positively oriented in M,.
(a) If M = 9N for an n-dimensional manifold-with-boundary N C R”", then
v(p) is outward pointing in the sense of Chapter 8.
(b) Let dV,—y be the volume element of M determined by the Riemannian
metric it acquires as a submanifold of R”. Show that if we consider v(p) as an
element of R”, then
v(p)
U
dVar(p) ((@)ps - -» (Wnr)p) =det |

Up—1
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Conclude that dV,,—(p) is the restriction to M, of
n
S =D ) dx(p) A--- AdxI(p) AL AdX"(p).
i=1

(c) Note that v; X -++ X vz = av(p) for some @ € R (by Problem 5). Show
that for w € R” we have
(W, v(p)) - (W1 X -+ X Up—1,0(p)) = (W, V1 X+ =+ X Vpy).
Conclude that
vi(p) - dVn-1(p) = restriction to M, of
(=1 "dx"(p) A--- Adxi(p) A+ AdX"(p).

(d) Let M C R" be a compact n-dimensional manifold-with-boundary, with v
the outward unit normal on dM. Denote the volume element of M by dV,,

and that of 3M by dV,_;. Let X = 3; a'3/3x" be a vector field on M. Prove
the Divergence Theorem:

/ divX dVn =/ (X,v)d Var
M aM
(the function div X & dcfined in Problem 7-27). Hint: Consider the form

on M defined by

n
o= (-1)"a" dx' AveoAdXT A AdX"

i=1
(e) Let M C R’ be a compact 2-dimensional manifold-with-boundary, with
orientation w, and outward unit normal v. Let T be the vector field on M
consisting of positively oriented unit vectors. Denote the volume element of M
by d A, and that of dM by ds. Let X be a vector field on M. Prove (the original)
Stokes’ T heorem:

/ (V x X,u)dA:/ (X,T)ds
M am
(V x X & defined in Problem 7-27).

14. (a) Let V¥, be the volume of the unit ball in R”. Show that

1
Vo =f (1 = x2)V2y, g
-1
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1
) If 1, =/ (1 = x3)D72 gx show that
—1

n—1
In= In—s.
n

(c) Using V1 = 2, V, = m, show that

”n/2
—_— n even
(n/2)!
- H(+1)/25(n—1)/2
——— dd.
1-3:5...n "o
”n/Z
(Interms of the T function, this can be written ————)
T +n/2)

(d) Let Au—i be the (1 — 1)-volume of S”"~. Using the method of proof in
Corollary 8-8, but reversing the order of integration, show that

1
1
Vn =/ I’"_IA;._1 dr = —Au—.
0 n

(e) Obtain this same result by applying the Divergence Theorem (Problem 13),
with X(p) = pp.

15. (a) Let ¢ [0,1] — R”" be a diflerentiable curve, where R” has the usual
Riemannian metric ( , ) = Y; dx’ @ dx’. Show that

1 n
L(c) = oIy @) .
0

i=1

(b} For the special case c: [0,1] — R? given by ¢(r) = (1, f(1)), show that this

length,
1
[ e,

is the least upper bound of the lengths of inscribed polygonal curves.

I

Hint: 1f the inscribed polygonal curve is determined by the points (¢, c(t;)) for
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a partition 0 =19 < --- < 1, = 1 of [0,1], then we have

o) = o)l =y = -2 + (@) = [(i-)?
= i = ti-0)2 4 SUED) = tim1)?

for some &; € [ti-1, ).
(c) Prove the same result in the general case. Hint: Use the results of Prob-
lem 8-1, and uniform continuity of v/ on a compact set.

It is natural to suppose that the area of a surface is, similarly, the least upper
bound of the areas of inscribed polygonal surfaces, but as H. Schwarz first
observed, this lcast upper bound is infinite for a bounded portion of a cylinder!
To illustrate Schwarz’s example I have plagiarized the following picture from a
book called Mamemamuuecxuii Ananus na Mwuozoobipasusx, written by someone
called M. Cimnak.

h

Top view

To increasce the number of triangles, we maintain the hexagonal arrangement,
bui move the planes of the hexagons closer together, so that the triangles are more
nearly in a plane parallel to the bases of the cylinder. In this way, we can increase
the number of triangles indefinitely, while the area of each approaches /1/ /2.

The topic of surface area for non-differentiable surfaces is a complex one, which
we will not go into here.
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16. Let ¢: [0,1] = M be a curve in a manifold M with a Riemannian metric
(, ) ¥ p:[0,1] > [0,1] is a diffeomorphism, show that

L(c) = L(c o p).

17. Show that the metric d on M may be defined using C®, instead of piece-
wise C* curves. (Show how to round off corners of a piecewise C* path so that
the length increases by less than any given ¢ > 0; remember that the formula
for length involves only first derivatives.)

18. (a) Let B C M be homeomorphic to the ball {p € R" : |p| < 1} and let
S C M be the subset corresponding to {p € R" : [p| = 1}. Show that M — §
is disconnected, by showing that M — B and B — § are disjoint open subsets of
M-S

b)If p e B~S and g € M — B, show that d(p,q) > milgd(p,q'). Use

q'e

this fact and Lemma 7' to complete the proof of Theorem 7. (In the theory of
infinite dimensional manifolds, these detailsbecome quite important, for M-S
does nor have to be disconnected, and Theorem 7 is false.)

19. (a) By applying integration by parts to the equation on pages 318-319,
show that
aJ@(u))
du

b 52y aF ,
=/ aMa,(l),t) [H(t,f(t),f(l))

u=0
t oF

- f Lt (r),f’(r))dr] dr;
a X

this result makes sense even if f is only C'.
(b) Du Bois Reymond’s Lemma. If a continuous function g on [a,b] satisfies

b
] n'(1)g(t)dt =0

a
for all C* functions  on [a,b] with n(a) = n(b) = 0, then g is a constant.
Hint: The constant ¢ must be
1 b
c=— u) du.
—a l &)

We clearly have
b
f n'(1)[g(r) = cldt =0,
a

so we need to find a suitable n with n’(r) = g(1) = c.
(c) Concludethatifthe C' funciion / is acritical point of J, then f still satisfies
the Euler equations (which are not a priort meaningful if f is not C2).
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20. The hyperbolic sine, hyperbolic cosine, and hyperbolic tangent functions
sinh, cosh, and tanh are defined by

X — ¥ e* 4™ sinh x
_— coshx = x =

sinhx = R —_—,
2 2

(a) Graphssinh, cosh, and tanh.
(b) Show that
cosh? — sinh? = 1
tanh? -H/cosh2 =1
sinh(x + y) = sinh x cosh y + cosh x sinh y
cosh(x + y) = cosh x cosh y + sinh x sinh y
sinh’ = cosh
cosh’ = sinh.
(c) For those who know about complex power series:

. sinix
sinhx =

s cosh x = cosix.
]

(d) The inverse functions of sinh and tanh are denoted by sinh™" and tanh™,
respectively, while cosh™ denotes the inverse of cosh |[0,00). Show that

sinh(cosh™ x) = Vx2 — 1
cosh(sinh™ x) = v'1 + x?

—ly
cosh(tanh™ x) = 1 (cosh™)'(x) =

S
Ve e

sinh ™!y (x) =

-

+
1

21. Consider the problem of finding a surface of revolution joining two circles
of radius 1, situated, for convenience, at  and —a. We are looking for a function

hat’d a
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of the form .
f(x) =ccosh=
¢

where ¢ is supposed to satisfy

ccosh% =1 (c>0)

(a) There is a unique yo > 0 with tanh yo = 1/yo. Examine the signof 1/y —
tanh y for y > 0.
(b) Examine the sign of cosh y — ysinhy for y > 0.
(c) Let
Aale) =(‘C05h; c>0.

Show that 4, has a minimum at a/yo, find the value of A, there, and sketch
the graph.

(d) There exists ¢ with ccosha/c = 1 if and only if @ < yo/cosh yo. If a =
yo/ cosh yo, then there is a unique such ¢, namely ¢ = a/yo = 1/ cosh yo. If
a < Yo/ cosh yo, then there are two such ¢, with ¢; < a/yo < ¢z It turns out
that the surface for ¢, has smaller area.

—yo/ cosh yo' —a a 'yo/ cosh yo

(e} Using Problem 20(d), show that

[Po~12,50 Vyo* = 1~ .67]
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[These phenomena can be pictured more easily if we use the notion of an
envelope—c.f. Volume III, pp. 176f. The envelope of the 1-parameter family
of curves ¥

Je(x) = c cosh <

is determined by solving the equations

3fe(x) _
c

0=B

X X . X
cosh — — =sinh —.
c ¢ ¢
We obtain
x x
— = %)o, y = c cosh— = ¢ cosh yo,
c c
so the envclope consists of the straight lines

cosh yo
—_—x.
Yo

y=:|:

The unique member of the family through (yo/ cosh yo, 1) is tangent to the
envelope at that point. Tor a < yof cosh yo, the graph of fe, is tangent to

a yo/coshyg

coshyo /| ™,
p = ———X,
yo 7

the envelope at points P, Q € (—a,a), but the graph of f, is tangent to the
cnvelope at points outside [—a,a]. The point Q is called conjugate to P along
the extremal f¢;, and it is shown in the calculus of variations that the existence
of this conjugate point implies that the portion of f, from P to (a, 1) does no
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give a local minimum for /f\/ 1+ (/). (Compare with the discussion of

conjugate points of a geodesic in Volume IV, Chapter 8, and note the remark
on pg. V.396.)]

22. All of our illustrations of calculus of variations problems involved an F
which does not involve ¢, so that the Euler equations are actually

aF . d (F )
Fuo. -5 (Guo.rm)=
(a) Show that for any f and F' R? — R we have
d J[aF daF
dt(r T'5 )=f[ax‘an}’

and conclude that the extremals for our problem satisly

(b) Apply this to F(x, ) = xV'1 + y? to obtain directly the equation dy/dx =
Vey? = 1 which we eventually obtained in our solution to the problem.
23. (a) Let x and x’ be two coordinate systems, with corresponding g;; and g'i;
for the expression of a Riemannian metric. Show that
dg'ap <~ Ogiy Ox* 3x! ax/
By = 2 5k 57 G 038
Z": S faxT 3%/ ax/  92xf
+ = 8ij \ gxre gxBox? + 9xB Bxregxry )
() For the corresponding [i/,k] and [aB, Y], show that
n i i n
ax' 9xJ oxk axt 3%x/
I oo 089X/
byl = ijZkz—n[lj’k] ax' ox'B axw T Z Bx'¥ ax'edx'B’

so that [{j,k] are not the components of a tensor.
(c) Also show that
n

i i a. n !
Y = Z rk ax’ ax/ ax'Y Z 2x! ax'
p ol U gx 9x'B dxk ax'®gx'8 axT
k=
24. Show that any C* structure on R is diﬁeomorphlc to the usual C™ struc-
ture. (Consider the arclength function on a geodesic for some Riemannian

metric on R.)
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25. Let (,) =% dx’ @ dx' be the usual Riemannian metric on R”, and
let 2,-']- giydu’ @ du’ be another metric, where u',...,u" again denotes the
standard coordinate system on R”. Suppose we are told that there is a diffeo-
morphism f: R" — R” such that 3, ; gij du’ @ du/ = f*( , ). How can we
go about finding f?

(a) Let 8f/0u’ = e;: R" — R". Ifwe consider ¢; as a vector field on R”, show
that f,(3/0u') = e;.

(b) Show that gi; = (e:, ej).

(c) To solve for f itis, in theory at least, sufficient to solve for the e;, and to
solve for these we want to find differential equations

satisfied by the e;’s. Show that we must have
" " 2 7l 1
def %S af
Bijk = Z=;gkr L= ,Z,:—_auia'l’ s

(d) Show that

3y _i LA A A T

uk duiduk dul * dul duk dut

L=
ou =

n
=) g Al + girAf
r=l

= B,‘k‘j + Bkj‘,x
() By cyclically permuting £, j, k, deduce that
Bijk = [i/K],

so that A, = T7. In Legons sur la Géométrie des Espaces de Riemann, E. Cartan uses
this approach to motivate the introduction of the I‘,’j.
(f) Deduce the result A, = T}, directly from our equations for a geodesic.
(Note that the curves obtained by setting all but one f* constant are geodesics,
since they correspond to lines parallel to the x'-axis.)
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26. If (V',(, ))and (V”,( , )") are two vector spaces with inner products,
we define (, )onV =V'@®&V"by

(v/ ® vu’ w® wn) = (U', w/)/ + (U", w'y

(a) Show that ( , ) is an inner product,

(b) Given Riemannian metrics on M and N, it follows that there is a natural
way to put a Riemannian metric on M x N. Describe the geodesics on M x N
for this metric.

27. (a) Let y: [a,b] > M be a geodesic, and let p: [o,8] — ] be a
diffeomorphism. Show that ¢ = y o p satisfies

det ded dck L0
d12 + Z T )€ dr di T dr gy
i, }=1 P

(b) Conversely, if ¢ satisfies this equation, then y is a geodesic.
(c) If ¢ satisfies

det de! dek
i Z ThemZ 7= Z-u()  foru:R—R,

i, j=1
then ¢ is a reparameterization of a geodesic. (The equation p”(1) = p'(1)u(?)
can be solved explicitly: p(1) = [ eM©) ds, where M'(s) = u(s).)
28. Let ¢ be a curve in M with dc¢/dt # 0 everywhere, and consider the hy-
persurfaces

{expe()V : vl = constant, where v € M,y with (v,dc/d1) = 0}.

Show that for v € M) with (v,dc/dr) = 0, the geodesic u +— expeu - v
is perpendicular to these hypersurfaces. (Gauss’ Lemma is the “special case”
where ¢ is constant.)
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29. Let y: [a,b] - M be a geodesic with y(a) = p, and suppose that exp,, is
a diffeomorphism on a neighborhood @ C M, of {ry’(0) : 0 < 1 < 1}. Show
that y is a curve of minimal length between p and g = y(b), among all curves
in exp(0). (Gauss” Lemma still works on exp(0).)

30. If (, ) isa Riemannian metricon M andd: M x M — R is the corre-
sponding metric, then a curve y: [a,6] = M with d(y(a),y(b)) = L(y) is a
geodesic.

31. Sclwarz’s inequality for continuous functions states that

(2] (1) ([ %)

with equality if and only if’ / and g are linearly dependent (over R).

(a) Prove Schwarz’s inequality by imitating the proof of Theorem 1(2).
(b) For any curve y show that

LEWP < 6 - )ELy),

with equality if and only if y is parameterized proportionally to arclength.
(c) Let y: [a;6] = M be a geodesic with Lg(y) = d(y(a), y(8)). If cla) =
y(a) and c(b) = y(b), show that

L) _ L©)? <

E(c).
b—a ~b=a £

Ey) =
Conclude that E(y) < E(c) unless ¢ is also a geodesic with
L3(©) = d(c(a), ().

In particular, sufficiently small pieces of a geodesic minimize energy.

32. Let p be a point of a manifold M with a Riemannian metric ( , ). Choosc
a basis vy, ..., v of Mp, so that we have a “rectangular” coordinate system
onMpgivenby Y ; a'vi = (a',...,a"); let x be the coordinate system yoexp™'.
defined in a neighborhood U of p.

(a) Show that in this coordinate system we have I'i"/-(p) = 0. Hint: Recall
the equations for a geodesic, and note that a geodesic y through p is just exp
composed with a straight line through 0 in M,, so that each y* is linear.
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() Let 7: U — Rber(g) = d(p,q), so that 7 o y = 35 (y¥)%. Show that
d*(roy)?) dy*\? dy' dy’
— 1 ) - 3 of i Al A
dr? [Z( dt ) ‘Zy Ty dt dt ]
k ik
(c) Note that
' a2
<Y (%)-
oy dt P’ t
Using part (a), conclude that if [y’(0) |l is sufficiently small, then

d2(r oy)?
aa 0.

so that d(r o y)?/dt is strictly increasing in a neighborhood of 0.

(d) Let Be = {v e Mp: |[vll < ¢} and Se = {v € M, : |lvll = &}. Show that
the following is true for all sufficiently small &€ > 0: if y is a geodesic such that
y(0) € exp(Se) and such that y'(0) is tangent to exp(S¢), then there is § > 0
(depending on y) such that y(7) ¢ exp(Be) for 0 # t € (=6,8). Hint: If y'(0) is

tangent to exp(Se), then d(r o y)/dt = 0.

(€) Let g and ¢’ be two points with r(g),7(g9") < € and let y be the unique
geodesic of length < 2¢ joining them. Show that for sufficiently small ¢ the
maximum of r o y occurs at either g or g'.

(f) Aset U C M is geodesically convex if every pair g,9’ € U has a unique
geodesic of minimum length between them, and this geodesic lies completely
in U. Show that exp({v € M, : |lvll < &}) is geodesically convex for sufficiently
small ¢ > 0.

(g) Let f: U — R” be a diffeomorphism of a neighborhood U of 0 € R”
into R”. Show that for sufficiently small ¢, the image of the open e-ball is
convex.
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33. (a) There is an everywhere differentiable curve ¢(r) = (¢, /(1)) in R? such

that
length of ¢|[0, 4]

im
h=0 |c(h) —cO)]
Hint: Make ¢ look something like the following picture.

#1.

. length from
(1,0)to (1,0) 55 1

length from
0w 4,00 L

(b) Consider the situation in Corollary 15, except that ¢(r) = g if and only if
t = a, and suppose u'(1) > 0 for 7 near 0. If ¢ is C', then v(r) approaches a
limit as 7 — 0 (even though v(0) is undefined). Show that if ¢ is C', then there
is some K > 0 such that for all 7 near 0 we have

%—T(M,l) < Ku ?3_(:(1”)’ O0<uc<l
Hint: In M 4 we clearly have
‘d(u'v(’))H=|"|' dv(r) )
dt dr

Since expy is locally a diffecomorphism there are 0 < K; < K3 such that
Killvll < llexpgavll < Kaflvll

for all tangent vectors v at points near g.
(c) Conclude that

h da 2
7(4)2 —
N Lecl0R) . /(; \/u 12+ ’81 (u(l),t)” di
h—0 d(p,c(h))  h—o u(h)
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(d) If ¢ is C', show that L(c) is the least upper bound of inscribed piecewise
geodesic curves.

34. (a) Using the methods of Problem 33, show that if ¢ is the straight line
joining v,w € Mp, then
lim LEPD
v,w—0 L(c)
(b) Similarly, if’ yy,w is the unique geodesic joining exp(v) and exp(w), and
Yu,w = €Xp © Cy,u, then
L(Yo,w) _
im —Rt =
v L(Co,w)
(c) Conclude that
lim d(exp v, expw) _
vuw—0  flv—wl
35. Let /: M — N be an isometry. Show that f is an isometry of the met-
ric space structures determined on M and N by their respective Riemannian
metrics.

36. Let M be a manifold with Riemannian metric ( , ) and corresponding
metric d. Let f: M — M be a map of M onto itself which preserves the
metric d.

(@) If y is a geodesic, then f oy is a geodesic.

(b) Define f': M, — Mjy(p) as follows: For y a geodesic with y(0) = p, let

o) = df(V(I))

=0
Show that || f'(X)[f = IX1l, and that f’(cX) =cf'(X).
(c) Given X,Y € M,, use Problem 34 to show that
AX.Y) _IXPPHAVIE  fX YR
xn-nrn Ixn-nrn fexit- ey q

CIXIP+0Y I [dexpiX,exptY))?

him
Ixm-ira =0 fuXf-feYf
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Conclude that (X,Y), = (/(X), /'(Y))s(py, and then that f/(X +7Y) =
J'X)+ /().

(d) Part (c) shows that f*: M, — M,y is a diffeomorphism. Use this to show
that f is itself a diffeomorphism, and hence an isometry.

37. (a) For v, w € R" with w # 0, show that

v rwli— vl @, w)
Iim —————— = ———,
=0 1 fol

The same result then holds in any vector space with a Euclidean metric ( , ).
Hint: If v: R" — R is the norm, then the limit is Dv(v)(w). Alternately, one
can use the equation (1, v) = [lull - [fv]l - cos@ where 6 is the angle between u

and v.
(b) Conclude that if w is linearly independent of v, then

. Nyl — vl = flewll
fim 12N ol - el
1—0 t

0. v

(c) Let y: [0,1] > M be a piecewise C! critical point for length, and suppose
that y'(t%) # y'(t™) for some 79 € (0,1). Choose #; < o and consider the
variation & for which & () is obtained by following ¥ up to 71, then the unique
geodesic from y(#;) to ¥(t0 + u), and finally the rest of y. Show that if # is

y(0)

close enough to 7o, then dL(rSz(u))/du|"=0 # 0, a contradiction. Thus, critical
paths for length cannot have kinks.
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38. Consider a cylinder Z C R? of radius . Find the metric d induced by the
Riemannian metric it acquires as a subset of R?.

39. Consider a cone C (without the vertex), and let L be a generating line.
Unfolding C — L onto R? produces a map /: C — L — R? which is a local

isometry, but which is usually not one-one. Investigate the geodesics on a cone
(the number of geodesics between two points depends on the angle of the cone,
and some geodesics may come back to their initial point).

40. Let g: S" — P be the map g(p) = [p] = {p,—p}.

(a) Show that there is a unique Riemannian metric ( , ) on P” such that
g*(( . ) is the usual Riemannian metric on §” (thc one that makes the inclusion
of $" into R"*! an isometry).

(by Show that every geodesic y: R — P” is closed (that is, there is a number a
such that y(t +a) = y(r) for all 7), and that every two geodesics intersect exactly
once.

(c) Show that there are isometries of P onto itself taking any tangent vector
at one point to any tangent vector at any other point.

These results show that P* provides a model for “elliptical” non-Euclidean
geometry. The sum of the angles in any triangle is > 7.

41. The Poincaré upper half-plane J? is the manifold {(x,y) € R? : y > 0}
with the Riemannian metric
()= dx ®@dx +dy®dy

)= 72 .

(a) Compute that

1
I =Th=T}=-— 1 T = - all other I‘i"j =0.
J ¥y

>
)
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(b) Let C be a semi-circle in J¢2 with center at (0, ¢) and radius R. Considering
it as a curve ¢ > (2, ¥(?)), show that

dy@) _ -y y'w?

de? t—-c y()

(c) Using Problem 27, show that all the geodesics in #? are the (suitably pa-
rameterized) semi-circles with center on the x-axis, together with the straight
lines parallel to the y-axis.

(d) Show that these geodesics have infinite length in either direction, so that the
upper half-plane is complete.

(¢) Show that if y is a geodesic and p ¢ y, then there are infinitely many
geodesics through p which do not intersect y.

(f) For those who know a little about conformal mapping (compare with Prob-
lem IV.7-6). Consider the upper half-plane as a subset of the complex num-
bers C. Show that the maps

f(z) = a,b,c,d €eR, ad ~bc>0

are isometries, and that we can take any tangent vector at one point to any
tangent vector at any other point by some f,. Conclude that if length AB =
length A’B’ and length AC = length A’C’ and the angle between the tangent
vectors of f and y at A equals the angle between the tangent vectors of B’
and y’ at A’, then length BC = length B’C’ and the angles at B and B’ and
at C and C' are equal (“side-angle-side”). These results show that the Poincaré

B

upper half-plane is a model for Lobachevskian non-Euclidean geometry. The
sum of the angles in any triangle is < 7.
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42. Let M be a Riemannian manifold such that every two points of M can be
joined by a unique geodesic of minimal length. Does it necessarily follow that
the Riemannian manifold M is complete?

43. Let M be a manifold with a Riemannian metric ( , ), and choose a fixed
point p € M. Suppose that every geodesic y: [a,b] — M with initial value
y(a) = p can be extended to all of R. Show that the Riemannian manifold M
is geodesically complete.

44. Let p be a point in a complete non-compact Riemannian manifold M. Prove
that there is a geodesic y: [0,00) — M with the initial value y(0) = p, having
the property that y is a minimal geodesic between any two of its points.

45. Let M and N be geodesically complete Riemannian manifolds, and give
M x N the Riemannian metric described in Problem 26. Show that the Rie-
mannian manifold M x N is also complete.

46. This problem presupposes knowledge of covering spaces. Let g: M — N
be a covering space, where N is a C* manifold. Then there is a unique C*
structure on M which makes g an immersion. If ( , ) isa Riemannian metric
on N, then g*( , ) is a Riemannian metric on M, and (M,g*( , )) is complete
if and only if (W, (, )) is complete.

47. (a) If M" C N7tk is a submanifold of N, show that the normal bundle v
is indeed a k-plane bundle.
(b) Using the notion of Whitney sum @ introduced in Problem 3-52, show that

VO TM ~ (TN)|M.

48. (a) Show that the normal bundles v, v of M" C N7tk defined for two
different Riemannian metrics are equivalent.
(b) If £ = m: E - M is a smooth k-plane bundle over M”, show that the
normal bundle of M C E is equivalent to &.

49. (a) Given an exact sequence of bundle maps

g
0—>E,i>E2——>E3—>0

as in Problem 3-28, where the bundles are over a smooth manifold M [or, more
generally, over a paracompact space], show that E; >~ E1 @ E3.

(b) If ¢ = n: E — M is a smooth bundle, conclude that TE >~ n*(¢) @
a*(TM).
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50. (a) Let M be a non-orientable manifold. According to Problem 3-22 there
is S' € M so that (TM)|S" is not orientable (the Problem deals with the case
where (TM)|S! is always trivial, but the same conclusions will hold if each
(TM)|S! is orientable; in fact, it is not hard to show that a bundle over S' is
trivial if and only if it is orientable). Using Problem 47, show that the normal
bundle v of S? C M is not orientable.

(b) Use Problem 3-29 to conclude that there is a neighborhood of some S! ¢ M
which is not orientable. (Thus, any non-orientable manifold contains a “fairly
small’’ non-orientable open submanifold.)



CHAPTER 10
LIE GROUPS

his chapter uses, and illuminates, many of the results and concepts of the
preceding chapters. It will also play an important role in later Volumes,
where we are concerned with geometric problems, because in the study of these
problems the groups of automorphisms of various structures play a central role,
and these groups can be studied by the methods now at our disposal.
A topological group is a space G which also has a group structure (the product
of a,b € G being denoted by ab) such that the maps

(a,b) — ab from G xGto G
a al from G to G

are continuous. It clearly suffices to assume instead that the single map (a, b)
ab~! is continuous. We will mainly be interested in a very special kind of
topological group. A Lie group is a group G which is also a manifold with a
C structure such that

(6 ¥) = xy

x> x7!

are C™ functions. It clearly suffices to assume that the map (x, y) > xy~'
is C™. As a matter of fact (Problem 1), it even suffices to assume that the map
(x, ) > xyis C®.

The simplest example of a Lie group is R”, with the operation +. The
circle S' is also a Lie group. One way to put a group structure on S' is to
consider it as the quotient group R/Z, where Z C R denotes the subgroup
of integers. The functions x + cos27rx and x > sin2nx are C* functions
on R/Z, and at each point at least one of them is a coordinate system. Thus

the
map (x,3) » x—y > xp7!

m m m
RxR — R — S'=R/Z.
which can be expressed in coordinates as one of the two maps
(x,y) > cos2a(x — p) = cos2nx cos2ny + sin 2nx sin 2wy
(x, ) > sin2n(x — y) =sin2nxcos2ny — cos2nx sin 2wy,
is C: consequently the map (x, ) = xy~! from S' x S' to S is also C*.

371
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If G and H are Lie groups, then G x H, with the product C* structure,
and the direct product group structure, is easily seen to be a Lie group. In
particular. the torus S' x S is a Lie group. The torus may also be described
as the quotient group

R x R/(Z x Z),

the pairs (a,b) and (a’,b") represent the same element of S' x ST if and only
ifa'-ae€Zand b’ —be Z

Many important Lie groups are matrix groups. The general linear group
GL(#,R) is the group of all non-singular real n x n matrices, considered as a
subset of R™. Since the function det: R™ — R is continuous (it is a polynomial
map), the set GL(n,R) = det™"(R — {0}) is open, and hence can be given the
C* structure which makes it an open submanifold of R"*. Multiplication of
matrices is C*, since the entries of AB are polynomials in the entries of A
and B. Smoothness of the inverse map follows similarly firom Cramer’s Rule:

(A7")ji = det AY [ det 4,

where A isthe matrix obtained from A by deleting row i and column ;.
One of the most important examples of a Lie group is the orthogonal group
O(n), consisting of all 4 € GL(1, R) with 4 - A* = I, where A' is the transpose
of A. This condition is equivalent to the condition that the rows [and columns]
of A are orthonormal, which is equivalent to the condition that, with respect
to the usual basis of R”, the matrix A represents a linear transformation which
is an “isometry”, i.e., is norm preserving, and thus inner product preserving.
Problem 2-33 presents a proof that O(n7) is a closed submanifold of GL(#, R),
of dimension n(n — 1)/2. To show that O(#) is a Lie group we must show that
the map (x,») ~ xp~! which is C*® on GL(1,R), is also C* as a map from
O(n) x O(n) 10 O(n1). By Proposition 2-11, it suffices to show that it is continuous;
but this is true because the inclusion of O(#) - GL(n, R) is a homeomorphism
(since O(n) is a submanifold of GL(1, R)). Later in the chapter we will have
another way of proving that O(#) is a Lie group, and in particular, a manifold.
The argument in the previous paragraph shows, generally, that if # C G isa
subgroup of G and also a submanifold of G, then H isa Lie group. (This gives
another proofthat S isa Lie group, for S' C R? can be considered as the group
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of complex numbers of norm 1. Similarly, % is the Lie group of quaternions
of norm 1. It is know that these are the only spheres which admit a Lie group
structure.) It is possible for a subgroup A of G to be Lie group with respect to
a C structure that makes it merely an immersed submanifold. For example,
if L C R xR is a subgroup consisting of all (x,cx) for ¢ irrational, then the

image of L in S! x S! =R x R/(Z x Z) is a dense subgroup. We define a Lie
subgroup H of G to be a subset H of G which is a subgroup of G, and also a
Lie group for some C® structure which makes the inclusion map i: H — G an
immersion. As we have seen, a subgroup which is an (imbedded) submanifold
is always a Lie subgroup. It even turns out, after some work (Problem 18), that
a subgroup which is an immersed submanifold is always a Lie subgroup, but we
will not need this fact.

The group O(n) is disconnected; the two components consist of all A € O(n)
with det A = 41 and det A = —1, respectively. Clearly SO(n) = {4 € O(n) :
det A = 1}, the component containing the identity 7, is a subgroup. This is not
accidental.

1. PROPOSITION. If G is a topological group, then the component K con-
taining the identity e € G is a closed normal subgroup of G. If G is a Lie
group, then K is an open Lie subgroup.

PROOF. If a € K, then ¢™'K is connected, since & +> a~'b is a homeomor-
phism of K to itself. Since e = a™'a € a™' K, we have a™' K C K. Since this
is true for all « € K, we have K~' K C K, which proves that X is a subgroup.

Forany b € G, it follows similarly that 5K~ is connected. Since e € bKb™,
we have bKb™! C K, so K is normal. Moreover, X is closed since components
are always closed.

If G is a Lie group, then K is also open, since G is locally connected, so K
is a submanifold and a subgroup of G. Hence K is a Lie subgroup. «»

The group SO(2) is just S', which we have already seen is a Lie group. As
a final example of a Lie group, we mention E(n), the group of all Euclidean
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motions, i.e., isometries of R”. A little argument shows (Problem 5) that every
element of E(17) can be written uniquely as A - T where A C O(n), and 7 is a
translation,

T(x) = 14(x) = x +a.
We can give E(17) the C® structure which makes it diffeomorphic to O(17) x R”.
Now E(n) is not the direct product O(n) x R” as a group, since translations and
orthogonal transformations do not generally commute. In fact,

AT AN (x) = A(A7x +a) = x + A(a) = 140y (%),

SO
AT A7 = 1400,  ATa = T4 A.
Consequently,
AT.(B1p)"" = Atgwe B = Aty pB™!
= AB™1p(a_p),
which shows that E(n) is a Lic group. Clearly the component of ¢ € E(n) is
the subgroup of all A7 with A € SO(n).

For any Lie group G, if a € G we define the left and right translations.
La: G — Gand Rs: G — G, by

La(b) = ab
Ra(b) = ba.

Notice that L, and R, are both diflecomorphisms, with inverses L,~1 and Rg—1.
respectively. Consequently, the maps

Lax: Gp = Gap
Rav: Gb = Gpa
are isomorphisms. A vector field X on G is called left invariant if
Lo X=X foralla € G.
Recall this means that
LaxXp = Xap foralla,b € G.
It is easy to see that this is true if we merely have
LanXe = X, foralla € G.

Conscquently, given X, € G,. there is a unique left invariant vector field X
on G which has the value X, at e.
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2. PROPOSITION. Every left invariant vector field X on a Lie group G
is C™.

PROOF. 1t suffices to prove that X is C* in a neighborhood of e, since the
diffeomorphism L, then takes X to the C* vector field La4X around a (Prob-
lem 5-1). Let (x, U) be a coordinate system around e. Choose a neighbor-
hood V of e so that a,b € V implies ab~' € U. Then for a € V we have

Xx'(a) = LaxXe(x)
= X.(x o Lg).

Since the map (a,6) -» abisC®onV x V we can write

xiab) = x'La(®) = fi(x"(a),. .., x"(@),x"(B),...,x"(B))
for some C* function /7 on x(V) x x(V). Then

Xx'(a) = Xo(x" 0 Lg)

AxPoLy) "8
2 : jAX © =a) - z i =
™, where X, = 2 (4 |,

e

=Y ¢ Duyj I (x(a), x(e)).

j=1
which shows that X x' is C*. This implies that X is C*. ¢

3. COROLLARY. A Lie group G always has a trivial tangent bundle (and is
consequently orientable).

PROOF. Choose a basis Xje,..., X ne for Ge. Let Xi,...,Xn be the left invari-
ant vector fields with these values at e. Then X7,..., X, are clearly everywhere
linearly independent, so we can define an equivalence

f:TG - G xR"

_f(Zc’Xi(a)) = (@, %
=1
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A left invariant vector field X is just one that is Lg-related to itself for all a.
Consequently, Proposition 6-3 shows that [ X ,Y ] isleft invariantif X and Y are.
Henceforth we will use X, 7, etc., to denote elements of G, and j;, 7, etc., 1o
denote the left invariant vector fields with f(e) = X, )7(3) =Y, etc. We can
then define an operation [ , ] on G, by

X, 7] =X, 7).

The vector space G, together with this [ , ] operation, is called the Lie algebra
of G, and will be denoted by £(G). (Sometimes the Lie algebra of G is defined
instead to be the set of left invariant vector fields.) We will also use the more
customary notation g (a German Fraktur g) for £(G). This notation requires
some conventions for particular groups; we write

gl(m,R) for the Lie algebra of GL(1, R)
o(r) for the Lie algebra of O(r1).

In general, a Lie algebra is a finite dimensional vectorspace V, with a bilinear
operation [ , ] satisfying

X, X]=0
[X.Y,Z]+[[Y,Z, X1 +[[Z,X],Y]=0  “Jacobi identity”

forall X,Y,Z e V.

Since the [ , ] operation is assumed alternating, it is also skew-symmetric,
[X,Y]= ~[Y, X]. Consequently, we call a Lie algebra abelian or commutative
if [X,Y]=0forall X,Y.

The Lie algebra of R” is isomorphic as a vector space to R”. Clearly £(R")
is abelian, since the vector fields 8/dx’ are left invariant and [9/0x7,8/dx/] = 0.
The Lie algebra £(S') of S' is I-dimensional, and consequently must be
abelian. If V; are Lie algebras with bracket operations [ , ]; for i = 1,2, then
we can define an operation [ , ] on the directsum V=V @ Vo (= Vj x Vs as
a set) by

(X1, X2), (Y1, Y2)] = ([X1, Yi]h, [ X2, Yalo).

It is easy to check that this makes V into a Lie algebra, and that £(G x H)
is isomorphic to £(G) x L(H) with this bracket operation. Consequently, the
Lie algebra £(S! x --- x S!) is also abelian.

The structure of gi(7,R) is more complicated. Since GL(n,R) is an open
submanifold of ]R"z, the tangent space of GL(n,R) at the identity / can be
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identified with R"’. If we use the standard coordinates x” on ]R"z, thenannxn
(possibly singular) matrix M = (M;) can be identified with

3
M,:ZM,-,-WI

iJ

Let M be the left invariant vector field on GL(n,R) corresponding to M. We
compute the function Mx*! on GL(n, R) as follows. For every A € GL(n,R),

MxK(A) = Ma(M) = LauMy Ky = My (% o La).

Now the function x* o [ 4: GL(n,R) = GL(1,R) is the linear function
n
Ko La)(B) = x¥/(AB) = 3 AkeBai,
a=1

with (constant) partial derivatives

3 kl A j=1
a7 O o L= {0 j#l.
So
i a
Ma*(A) = Mi(xF o Ly) = EM"J'W(}"“ o La)
i
n n
= MyAki= ) MaiAra.
i=1 a=1
Thus,
8 ki _ [ Mu k=i
dxii 0 ki,

So if N is another n x n matrix, we have

ad
axt/

Ny(FEMYy =5 Ny —— (M x*)
ij

n
= NyMy = (NM).
j=i

From this we see that

~ o~ a
M, N1 =Y (MN - NM)y | 5
o axk |,
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thus, if we identify gl(n, R) with ]R"z, the bracket operation is just
[M,N]=MN — NM.

Notice that in any ring, if we define [a,b] = ab — ba, then [ , ] satisfies the
Jacobi identity.

Since O(n) is a submanifold of GL(n,R) we can consider O(n); as a subspace
of GL(n,R);, and thus identify o(n) with a certain subspace of R"*. This
subspace may be determined as follows. If A: (—¢,6) = O(n) is a curve with
A(0) = 1, and we denote (A(t))i; by Ai; (1), then

D Aw(DAR W) = 83
k=1

differentiating gives
A 08 + 8 Ap'(0) = 0,

which shows that
Aij'(0) = — A;i'(0).

Thus O(n); C R™ can contain only matrices M which are skew-symmetric,
0 Mix Myz ... My,
-Mi2 0
M=\ -M3; 0
—Min 0
This subspace has dimension #n(#—1) /2, which is cxactly the dimension of O(1),
so O(n); must consist exactly of skew-symmetric matrices. If we did not know

the dimension of O(#1), we could use the following line of reasoning. For each
i, j with i < j, we can define a curve A: R — O(n) by

f J

cost  sint i
A@t) = (rotation in the (i, j)-plane)
—sint  cost Jj

"
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with sint and —sint at (i, j) and (j, ), 1’s on the diagonal except at (i,i) and
(/, /), and O’s elsewhere. Then the set of all A(0) span the skew-symmetric ma-
trices. Hence O(1); must consist exactly of skew-symmetric matrices, and O(n)
must have dimension n(n — 1)/2.

We do not need any new calculations to determine the bracket operation
in o(n). In fact, consider a Lie subgroup H of any Lie group G, andleti: H —
G be the inclusion. Since iy: H, — G, is an isomorphism into, we can identify
H. with a subspace of G.,. Any X € H, can be extended to a left invariant
vector field X on H and a left invariant vector field X on G. Foreacha € H C
G, we have lefl translations

Lo H— H. L;: G- G
and
Lgoi=iola
So
TxX(a) = TaLlax X = Laa((xX) = X (a).
In. other words, X and ¥ are i-related. Consequently, if Y € H,, then [f,?]
and [X, 7] are 7-related, which means that
(X, Y1) = i (X, ¥ (e,
Thus, H. C G, = g is a subalgebra of g, thatis, H, is a subspace of g which is
closed under the [ , ] operation; moreover, H, with thisinduced [ , ] operation
is just ) = L(H).

This correspondence between Lie subgroups of G and subalgebras of g turns

out to work in the other direction also.

4. THEOREM. Let G be a Lie group, and [) a subalgebra of g. Then there
is a unique connected Lie subgroup A of G whose Lie algebra is 0.

PROOF. Fora € G, let Aq be the subspace of G, consisting of all X(a) for
X € I). The fact that ) is a subalgebra of g implies that A is an integrable
distribution. Let H be the maximal integral manifold of A containing e. If
b € G, then clearly Lps(Aa) = Apa, 50 Lpy leaves the distribution A invariant.
It follows immediately that L, permutes the various maximal integral manifolds
of A among themselves. In particular, if b € H, then Ly~ takes H to the
maximal integral manifold containing Lp-1(d) = e, so Ly~1(H) = H. This
implies that H is a subgroup of G. To prove that it is a Lie subgroup we just
need to show that (¢, 5) > ab™! is C*™. Now this map is clearly C® as a map
into G. Using Theorem 6-7, it follows that it is C* as a map into H.
The proof of uniqueness is left to the reader.
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There is a very difficult theorem of Ado which states that every Lie algebra
is isomorphic to a subalgebra of GL(WV,R) for some N. It then follows from
Theorem 4 that every Lie algebra s isomorphic to the Lie algebra of some Lie group. Later
on we will be able to obtain a “local” version of this result. We will soon see to
what extent the Lie algebra of G determines G.

We continue the study of Lie groups along the same route used in the study
of groups. Having considered subgroups of Lie groups (and subalgebras of their
Lie algebras), we next consider, more generally, homomorphisms between Lie
groups. If ¢: G — H is a C* homomorphism, then ¢,: G, = H,. For any
a € G we clearly have

$oLo=Low o

so if X € G, and X = Pee X is the left invariant vector field on H with
value ¢, X at e, then

¢;aj;((1) = @ualasxX = L¢(a)t¢’€X
= X(¢(a)).

Thus X and X are ¢-related. Consequently, the map ¢xe: g — [y is a Lie
algebra homomorphism, that is,

GeelaX +BY) = ague X + bdreY
¢xe[Xx }’] = [¢*8X,¢,e}’]4

Usually, we will denote @ue simply by ¢x: g — D).

For example, suppose that G = H = R. There are an enormous number
of homomorphisms ¢: R — R, because R is a vector space of uncountable
dimension over @, and every linear transformation is a group homomorphism.
But if ¢ is C, then the condition

(s +1) = ¢(s) + (1)

implies that
dp(t+s)  de(s)
ds = Tas
evaluating at s = 0 gives
#'(1) = ¢'(0),
which means that ¢(r) = ¢t for some ¢ (= ¢'(0)). It is not hard to see that even
a continuous ¢ must be of this form (one first shows that ¢ is of this form on the
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rational numbers). We can identify £(R) with R. Clearly the map ¢«: R —> R
is just multiplication by ¢.

Now suppose that G = R, but # = S! = R/Z. A neighborhood of the
identity e € S' can be identified with a neighborhood of 0 € R, giving rise to an
identification of £(S') with R. The continuous homomorphisms ¢: R — S!
are clearly of the form

X c
R— R — R/Z;

once again, ¢x: R — R is multiplication by c.

Notice that the only continuous homomorphism ¢: S! — R is the 0 map
(since {0} is the only compact subgroup of R). Consequently, a Lie algebra ho-
momorphism g — ) may not come from any C* homomorphism ¢: G — H.
However, we do have a local result.

5. THEOREM. Let G and H be Lie groups, and ®: g — § a Lie algebra
homomorphism. Then there is a neighborhood U of e € G and a C* map
¢: U — H such that

P(ab) = ¢(a)p(b) whena,b,abe U,
and such that for every X € g we have
¢*e){ = (D(X)

Moreover, if there are two C* homomorphisms ¢, y: G — H with ¢,, =
Yxe = ®, and G is connected, then ¢ = y.

PROOF. Lett (German Fraktur k) be the subsetf C g x § of all (X, & (X)), for
X € g. Since ¢ is a homomorphism, 1 is asubalgebraof gx ) = £L(G x H). By
Theorem 4, there is a unique connected Lie subgroup K of G x H whose Lie
algebra is . If m: G x H — G is projection on the first factor, and w = m;| X,
thenw: K — G is a C* homomorphism. For X € g we have

0. (X, D(X)) =X,

50 wx: K(e,ey = Ge is an isomorphism. Consequently, there is an open neigh-
borhood V of (¢,¢) € K such that w takes V diffeomorphically onto an open
neighborhood U of ¢ € G. If m2: G x H — H is projection on the second
factor, we can define

¢p=mow ' on U.



382 Chapter 10

The first condition on ¢ is obvious. As for the second, if X € g, then
ox(X, P (X)) = X,
0
G X = 72 (X, P (X)) = P(X).
Given ¢, ¥: G — H, define the one-one map 6: G — G x H by

6(a) = (a,¥(@))-
The image G’ of 6 is a Lie subgroup of G x H and for X € q we clearly have
0 X = (X, 2 (X)),

s0 L(G') = 1. Thus G’ = K, which implies that ¥ (¢) = ¢(a) foralla € G. *»

6. COROLLARY. If two Lie groups G and H have isomorphic Lie algebras.
then they are locally isomorphic.

PROOF. Given an isomorphism ®: @ — ), let ¢ be the map given by Theo-
rem 5. Since ¢y = P is an isomorphism, ¢ is a diffeomorphism in a neighbor-
hood of ¢ € G. %

Remark: For those who know about simply-connected spaces it is fairly easy
(Problem 8) to conclude that two simply-connected Lie groups with isomorphic
Lie algebras are actually isomorphic, and that all connected Lie groups with a
given Lie algebra are covered by the same simply-connected Lie group.

7. COROLLARY. A connected Lie group G with an abelian Lie algebra is
itself abelian.

PROOF. By Corollary 6, G is locally isomorphic to R”, so ab = ba for a, b
in a neighborhood of e. It follows that G is abelian, since (Problem 4) any
neighborhood of e generates G. %

8. COROLLARY. For every X € G, there is a unique C* homomorphism
¢: R — G such that
d¢

Ef:()—
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FIRST PROOF. Define ®: R — £L(G) by
d(a) =alX.

Clearly @ is a Lie algebra homomorphism. By Theorem 5, on some neighbor-
hood (—¢,¢) of 0 € R there isa map ¢: (—¢,6) - G with

Pls+1)=p()p () Isl,lel s +11 <€
and b 4
-‘ﬁ =0 =¢* (‘7[- 1=0) =X
To extend ¢ to R we write every ¢ with |f| > ¢ uniquely as
t=k(e2)+r k an integer, |r| < ¢/2
and define

#(e/2)---ple/2) - p(r) [#(e/2) appears k times] k>0
o(—e/2)---d(—¢/2) - p(r) [¢(—e/2) appears —k times] k < O.
Uniqueness also follows from Theorem 5.

SECOND (DIRECT) PROOF. If /: G - RisC® and ¢: R - G isa C®
homomorphism, then

d¢ i L@U+ 1) — J(6(1)
@ AL P AV ALY

di )= -0 h

= i L@0OO0) — S0

h—0 h

(1) = {

d

= Joleuyod

u=0

d .
= Lou» d_:f’ - f)
= Ly X (/) = X(@O)/).

Thus ¢ must be an integral curve of X , which proves uniqueness. Conversely,
if ¢: R = G s an integral curve of X, then

1> @(s) - (1)
is an integral curve of X which passes through ¢(s) at time ¢ = 0. The same is
clearly true for

1> p(s+1),
50 ¢ is a homomorphism. We know that integral curves of X exist locally; they
can be extended to all of R using the method of the first proof. ¢
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A homomorphism ¢: R — G is called a 1-parameter subgroup of G. We
thus see that there i a unique 1-parameter subgroup ¢ of G with given tangent
vector dg/dt(0) € G.. We have already examined the 1-parameter subgroups
ui . More interesting things happen when we take G to be R — {0}, with
multiplication as the group operation. Then all C® homomorphisms ¢: R —
R — {0}, with

®(s +1) = p(s)o1),

must satisfy

#'(1) = ¢'(0)o(1)

¢(0) =1.
The solutions of this equation are

() = e

Notice that R— {0} is just GL(1, R). All C* homomorphisms ¢: R — GL(n, R)
must satisfy the analogous differential equation
#'(1) = ¢'(0) - $(2),
#(0) =,

where - now denotes matrix multiplication. The solutions of these equations
can be written formally in the same way

(*)

(%) @ (1) = exp(19'(0)),
where exponentiation of matrices is defined by
A A A3
exp(A)=I+T!-+j+T+...

This follows from the facts in Problem 5-6, some of which will be briefly reca-
pitulated here.
If A = (a;;) and |A| = max |a;;|, then clearly
4+ Bl <14l +18I
|AB| = nlAl-1B]:

hence |AIF < n¥~" Al < nk|A1*. Consequently;

AN AN+K mlanp® (nlApN X

— e < e
IR oT! gy 0 Ao
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so the series for exp(4) converges (the (i, /)™ entry of the partial sums converge),
and convergence is absolute and uniform in any bounded set. Moreover (see
Problem 5-6), if AB = BA, then

exp(A + B) = (exp A)(exp B).
Hence, if ¢(1) is defined by (xx), then

exp(1¢/(0) + hg'(0)) — exp(1¢'(0))
h

#0=

= Jim RSO =TT w0y
h—0 h
1) | REOP
—lim—U 20 explg’(0)
h—0 h
= ¢'(0)9(1),

so ¢ does satisf'y ().
For any Lie group G, we now define the “exponential map”

exp: g =G

as follows. Given X € g, let ¢: R — G be the unique C* homomorphism
with d¢/d1(0) = X. Then
exp(X) = ¢(1).

We clearly have
exp(ti +12) X = (expt1 X)(exp 1, X)
exp(—tX) = (exptX)™".

9. PROPOSITION. The map exp: G, — G is C* (note that G, ~ R” has a
natural C structure), and 0 is a regular point, so that exp takes a neighborhood
of 0 € G, diffcomorphically onto a neighborhood of e € G. If ¥: G — H is
any C* homomorphism, then

G, L H,

expo Y, = ¥ oexp. epr lexp
G L H
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PROOF. The tangent space (Ge X G)(x,q) of the C* manifold G, x G atthe
point (X,a) can be identified with G, @ G,. We define a vector field ¥ on
Ge x G by

s (T}

(8he x 8!

Then Y has aflow a: R x (Ge x G) = Ge x G, which we know is C*. Since
exp X = projection on G of (1,08 X),

it follows that exp is C*°.
If we identify a vector v € (G¢)o with G, then the curve ¢(t) = tv in G, has
tangent vector v at 0. So

d exp(c(t))

expyo(v) = i exp(tv)

=0

=0
=v.
So exp,, is the identity, and hence one-one. Therefore exp is a diffeomorphism

in a neighborhood of 0.
Given y: G —> H,and X € G, let ¢: R — G be a homomorphism with

do _
di =0 -
Then Y o¢p: R — H is a homomorphism with
d(¥ o ¢)
=y, X
| |

Consequently,

exp(W,X) = 0 $(1) = Ylexp X). &

10. COROLLARY. Every one-one C* homomorphism ¢: G — H is an
immersion (so ¢(G) is a Lie subgroup of H).

PROOF. 1If ¢,p(f(p)) = 0 for some non-zero X € g, then also ¢,.(X) = 0.
But then
e = exp Py (1X) = Plexp(1 X)),

contradicting the fact that ¢ is one-one. ¥



Lie Groups 387

11. COROLLARY. Every continuous homomorphism ¢: R — G is C*.
PROOF. Let U be a star-shaped open neighborhood of 0 € G on which exp
is one-one. For any a € exp(3U), if a = exp(X/2) for X € U, then
a=exp(X/2) = [exp(X/9),  expX/4eexp(3U).
So a has a square rootin exp(3U). Moreover, if a = 6% for b € exp(3U), then
b=-exp(Y/2) for Y € U, so
exp(X/2) = a = b* = [exp(Y/2)]* = exp Y.

Since X/2,Y € U it follows that X/2 =Y, so X/4 = Y /2. This shows that
every a € exp(3U) has a unique square root in the set exp(3U).

Now choose € > 050 that ¢(¢) € exp(%U) for |t] < €. Let ¢(¢) = exp &,
X € exp(3U). Since

[¢(e/2) = ¢(e) = [exp X/2T,
it follows from the above that ¢(¢/2) = exp(X/2). By induction we have
o(e/2") = exp(X/2").
Hence
d(m[2" - &) = P(e/2")™ = [exp(X[2")]" = exp(m /2" - X).
By continuity,
o(s€) = expsX foralls € [—1,1]. *

12. COROLLARY. Every continuous homomorphism ¢: G — H is C*.
PROOF. Choose a basis X1i,..., Xy for G. The map t > ¢(exptX;) is a
continuous homomorphism of R to A, so there is Y; € H, such that
PlexptX;) = exptY;.

Thus,
(%) @ ((expti X1) -+ (exp tnXu)) = (exp Y1) - - - (exptn¥n).
Now the map y: R" — G given by

Y, ., 1) = (expt X1) - (exp ty Xn)

d
Ve (a_X' 0) =X,

so ¥ is a diffeomorphism of a neighborhood U of 0 € R" onto a neighbor-
hood V of e € G. Thenon V,

p=(@oy)oy,

and (+) shows that ¢ o ¥ is C*. So ¢ is C™ at e, and thus everywhere. <

is C® and clearly
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13. COROLLARY. If G and G’ are Lie groups which are isomorphic as topo-
logical groups, then they are isomorphic as Lie groups, that is, there is a diffeo-
morphism between them which is also a group isomorphism.

PROOF. Apply Corollary 11 to the continuous isomorphism and its inverse. «»

The properties of the particular exponential map
exp: R” (=gl(1,R)) - GL(1,R)
may 11ow be used to show that O(n) is a Lie group. It is easy to see that
exp(M*) = (exp M)".
Moreover, since exp(M + N) = (exp M)(exp N) when MN = NM, we have
(exp M)(exp—M) =1.
So if M is skew-symmetric, M = —M", then
(expM)(exp M)t =1,
i.e., exp M € O(n). Conversely, any A € O(n) sufficiently close to / can be
written A = exp M for some M. Let A' = expN. Then I = A . At =
(cxp M)(exp N), so exp N = (exp M)™! = exp(—M). For sufficiently small M
and N this implies that N = —M. So exp M' = A' = exp(—M); hencc
M' = —M. It follows that a neighborhood of I in O(n) is an n(n — 1)/2
dimensional submanifold of GL(n,R). Since O(n) is a subgroup, O(n) is itself
a submanifold of GL(n, R).

Just as in GL(1,R), the equation exp(X +Y) = exp X exp Y holds whenever
[X,Y] = 0 (Problem 13). In general, [X, Y] measures, up to first order, the
extent to which this equation fails to hold. In the following Theorem, and in
its proof, to indicate that a function ¢: R — G, has the property that c(1)/13 is

bounded for small 7, we will denote it by O(3). Thus O(r3) will denote different
functions at different times.

14. THEOREM. If G isa Lie group and X,Y € Ge, then
2
(1) exp (X expr¥ = expr(X + V) + ’;[x, Y1+ 064}

(@) exp(—1X)exp(—1Y) exptX exprY = exp{r2[X, Y]+ O(1%)}
(3) exprX exp 1Y exp(—1X) = exp{1Y +13[X, Y]+ O(%)}.
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PROOF. We have

() Ff@=Folf) = LoX(N) = X(fo L= | fa-expux).
u=0

Similarly,
(i) Pr@=2L]  fa epur)
a) = Lot o).

For fixed s, let
(1) = fexpsX exptY).

Then
d
(i) ¢'() = -f(cxp sX exptY) = . f(expsX exptY expuY)
u=0
= (Yf)(exp sX exptY) by (ii).
Applying (iii) to ¥/ instead of f gives
(iv) 9" (1) = [7(?f)](cxp sX exptY).
Now Taylor’s Theorem says that

¢()

@) = ¢(0) + @' () + ——=1% + O(¢3).
Suppose that f(e) =0. Then we have
v) S(expsX exptY) = f(expsX) + I(’);f)(cxst)

2 oo
+ S Y I NexpsX) + ow®).
Similarly, for any F.
d ~
7; FlexpsX) = (XF)(expsX)
d? ~ =~
52 FlexpsX) = [X(XF))(expsX)

FlexpsX) = Fle) + s(¥F)(e) + = [X(XF)](e)+0(ss).

389
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Substituting in (v) for F = f, F = ¥f, and F = ¥(¥f) gives
Vi) SlexpsX exptY) = s(X1)(e) + t(Ff)e)
+ %z[f()?f)](e) + ’32[7@)](@ +stXF)e)
+ O(s®) + O(:3) + O(s%) + O(st?).

In particular,
(vii) flexptX exptY) =t[(X + ¥) f](e)

+22 [(—'\72—'\7 + X7+ E) f] (e) + O(%).
Now for small 7 we can write

exptX exptY =exp Z(r)

for some C* function Z with values n G.. Applying Taylor’s formula to Z
gives
Z(1) =12y + 12 Z2 + O(e%),

for some Z{,Z3 € Ge. If f(e) =0, then clearly [(A() + O(t%) = f(A(1) +
O(1%), so by (vi) we have

(viii) TexpZ (1) = f(explt Zy +12Z3)) + O(%)
=UZi f)e) + A Zy S )e)
2 ~ ~
+ SIZUZ ) + 0.

Since we can take the /7s to be coordinate functions, comparison of (vii) and
(viii) gives

Y'I'?:Z]
22, 5 XX | oo VY
#+22:T+XY+T.

which gives
Zi=X+Y,  Zy=:[XY]

thus proving (1).
Equation (2) follows immediately from (1).
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To prove (3), again choose f with f(e¢) = 0. Then similar calculations give

(ix) flexptX exptY exp(—1X))
o o o XX W XX o, Lo oo
=z[(X+Y—X)f](e)+12[(T+T+T+X}'—XX—YX)}(L»)

+0(?).
Ifwe write
exptX exptY exp(—tX) = exp(tS; + 1285 4+ 0(t%)),
then we also have
) JlexptX exptY exp(—tX)) = [ (exp(iSy +1782)) + O(*)
=181 1)@ +(Saf N
+ ;[5.(5. o) + o).
Comparing (ix) and (x) gives the desired result. <

Notice that formula (2) is a special case of Theorem 5-16 (compare also with
Problems 5-16 and 5-18).

The work involved in proving Theorem 14 is justified by its role in the fol-
lowing beautiful theorem.

15. THEOREM. If G is a Lie group and H C G is a closed subset which is
also a subgroup (algebraically), then A is a Lie subgroup of G. More precisely,
there is a C™ structurc on H, with the relative topology, that makes it a Lie subgroup
of G.

PROOF. We attempt to reconstruct the Lie algebra of H as follows. Leth C G,
be the set of alt X € G, such that exprX € H for alt 1.

Assertion J. Let X; € G, with X; — X and let ; = 0 with each % #0. Suppose
expt;X; € H for alt i. Then X € Iy
Proof. We can assume f; > 0, since exp(—%;X;) = (expt;X;)~! € H. For 1 > 0,
let
1
ki (1) = largest integer < e
i
Then ; ;
—=1 <ki(t) = ~,
] 1i
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so
tiki (1) = 1.

Now

explki(1)iXi) = [exp(tiX; )]k' @

ki(t)tiXi — tX.

Thus exptX € H, since H is closed and exp is continuous. We clearly also have
expiX € Hfort <0,s0 X € ) QED.

We now claim that [y C G, is a vector subspace. Clearly X € [j implies
sX efhforaltse R If X,Y € ), we can write by (1) of Theorem 14
exptX exptY = exp{t(X +Y)+1Z(1)}
where Z(1) = Oast — 0. Choose positive £; — O and let X = X +Y + Z(#).
Then Assertion J implies that X' +7 € I). Alternatively, we can write, for fixed .

t Y 12
(cxp;){exp’—'}’) =exp{I(X+Y)+E[X,Y]+O(l/nz)};

taking limits as n — co gives exp (X + Y) € H.

[Similarly, using (2) of Theorem 14 we see that [X,Y] € 1), so that ) is a
subalgebra, but we will not even use this fact.]

Now let U be an open neighborhood of 0 € G, on which exp is a diffeomor-
phism. Then exp(ly N U) is a submanifold of G. It clearly suffices to show that
if U is small enough, then

HNexp(U) =exp(hnU).
Choose a subspace [y C G, complementary to ), sothat Ge = @ [
Assertion 2. 'The map ¢: Ge — G defined by
S(X +X')=expXexp X' Xeh Xely
is a diffeomorphism in some neighborhood of 0.

Proof. Choose a basis Xi,..., X, ..., Xy of Ge with Xi,..., X} a basis for ).
Then ¢ is given by

(Za,X,) —exp(za,X,)exp( Z a,-X,-).

k11
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Since the map YV_, a;X; > (ai,...,a) is a diffeomorphism of G, onto R".
it suffices to show that

k
v(ay,...,a,) = exp(Ea,—X,-) exp(
i=1

n

3 a,—X,—)

i=k+1

is a diffeomorphism in a neighborhood of 0 € R”. This is clear, since

" ]
*oxi
Assertion 3. There is a neighborhood V' of 0 in [y such that exp X' ¢ H if
0£ X' eV,
Proof. Choose an inner product on )’ and et K C {)’ be the compact set of all
X' € ) with 1 <|X’| < 2. If the assertion were false, there would be X € Iy
with X;" — 0 and exp X’ € H. Choose integers n; with

0) =X. QED.

niXi'e K.
Choosing a subsequence if necessary, we can assume X' — X' € K. Since
I/ni = 0, exp(1/ni)(n;i Xi') € H,
it follows from Assertion 1 that X' € [), a contradiction. Q.E.D.

We can now complete the proof of the theorem. Choose a neighborhood
U =W x W of G on which exp is a diffecomorphism, with

W a neighborhood of 0 € [y
W' a neighborhood of 0 € Iy

such that W' is contained in V' of Assertion 3, and ¢ of Assertion 2 is a diffeomor-
phism on W x W'. Clearh-

exp(h NU) C HNexp(U).
To prove the reverse inclusion, let a € H Nexp(U). Then
a=expXexpX’ XeW, X' eW.

Since a,exp X € H we obtain exp X' € H,500= X', and a € exp(h N U). %
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Upto now, we have concentrated on the left invariant vector fields, but many
properties of Lie groups are better expressed in terms of forms. A form o is
called Ieft invariant if Ls'w = o for all a € G. This means that

w(b) = Lo*[w(abd)].

Clearly, a left invariant k-form o is determined by its value w(e) € QKG.).
Hence, if ®',..., 0" are left invariant I-forms such that o' (e), ..., ®"(¢) span
G.*. then every left invariant k-form is

> a0 A A = > e’
7

fi<ee<iy

for certain constants a;. 1f o' (¢), ..., w"(e) is the dual basis to Xj,..., Xy € Ge.
then any C® vector field X can be written

n
X = ij/i;j for C* functions /7.
j=

Then
o' (X) =1,

s0 ' is C®. Tt follows that any left invariant form is C*.
If w is lelt invariant, then for a € G we have

Lo*dw = d(La*w) = do,

so dw is also left invariant. The formula on page 215 implies that for a lefi
invariant 1-form w and left invariant vector fields X’ and ¥ we have

do(X,7) = X)) - Y(eX) - o(X. 7))
=-o([X,¥)).

(*) do(e)(X,Y) = —w(e)([X,Y]),

the bracket being the operation in gq.
Thc interplay between left invariant and right invariant vector fields is the
subject of Problem 11. Here we consider the case of forms.
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16. PROPOSITION. Let ¥: G — G be y(a) =a™ .
() A form w is left invariant if and only if ¥*e is right invariant.
9) If we € QX(Ge), then ¥ we = (—1) e
3) If  is lelt and right invariant, then dw = 0.
)

(

(
(4) If G is abelian, then g is abelian (converse of Corollary 7).

PROOF. (1) Clearly

YoRy=LyoY,

Ke)
Rb*w* — W*Lb—‘*-

If w is left invariant, then
Ry (o) = Ly o =0,
so Y*w is right invariant. The converse is similar.

(2) Tt clearly suffices to prove this for & = 1 So it is enough to show that
Yre(X) = —X for X € G.. Now X is the tangent vector at ¢ = 0 of the curve
1 > exptX. So PueX is the tangent vector at 1 = 0 of 1 +> (exptX)~! =
exp(—t X); this tangent vector is just —X.

(3) If @ is a left and right invariant k-form, then
V(@) = (=D we.
Since ¥*w and w are both left invariant, we have
Yo = (-D)*o.
The form dw is also left and right invariant, so
¥ (dw) = (1) Hdo.

But
P (dw) = d(¥*w) = d((-1)fw) = (-1)* do.

Sodw =0.

(4) If G is abelian, then all left invariant 1-forms w are also right invariant. So
dw = 0 for all left invariant 1-forms. It follows fi-om (*) that [X,Y] = 0 for all
X,Y €q.
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Aliernate proof of (4). By Theorem 14, if G is abelian, then for X,Y € G, we
have

2 2
X Y1+ 0@’ = S X1+ o).
Hence
X, Y]+ 0%/ = 4[Y, X1+ Oy /i,
Letting 1 — 0, we obtain [X,Y] = [V, X]. &
Since dw & left invariant for any left invariant , t follows that for a basis !,
., " of invariant 1-forms we can express each dw¥ in terms of the o' A /.
First choose X), ..., Xn € G dual to w'(e),...,»"(e). There are constants C,-/j-
such that

X, Xj] = Z chxe:

clearly we also have
n
i Xj1=Y Ct%,
k=1

The numbers Ciﬁi are called the constants of swucture of G (with respect to the
basis X1,..., Xy of g). From skew-symmetry of [ , ]and the Jacobi identity we
obtain

0 ¢ =-Cj
Z(c"c +chcl+clicly=0
ik b + CriCy) = 0.

From (*) on page 394 we obtain

chw Awf————zckw Y

i<j

It turns out that (2) is exactly what we obtain from the relation d2w* = 0. Con-
dition (2) is thus an integrability condition. In fact, we can prove (Problem 30)
that if C,.’;- are constants satisfying (1) and (2), then we can find everywhere
linearly independent 1-forms @', ..., ®" in a neighborhood of 0 € R” such that

' 1 o
do* =—§EC,!;w' Awl.
i
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Moreover, the existence of such o' implies (Problem 29) that we can define a
multiplication (a, ) + ab in a neighborhood of 0 which is a group as far as
it can be and which has the ' as left invariant 1-forms. From this latter fact
and (a suitable local version of) Theorem 5 we could immediately deduce the
following Theorem, for which we supply an independent proof.

17. THEOREM. Let G be a Lie group with a basis of left invariant 1-forms

w!,...,®" and constants of structure C,-’}. Let M" be a differentiable manifold

and let 8',...,6” be everywhere linearly independent 1-forms on M satisfying
k_ _ ki i
= ZC’ N
i</

Then for every p € M there is a neighborhood U and a diffeomorphism
J: U — G such that

= f*o'.
PROOF. Letm: M x G — M and m2: M x G — G be the projections. Let
e'k - 71'|*9k, a—)k __n.z*wk
Then
d@* — &%) ==y CE(I6' A 67] - [& A @T])
i<j
== CiI6' A/ ~ @)+ (6 -~ &) nd].
i<j

By Proposition 7-14, M x G is foliated by n-dimensional manifolds whose
tangent spaces at each point are annihilated by all ¥ — @*. Choose a € G
and let T be the folium through (p, a). Now 6,....6"@,...,0" arc linearly
independent evervwhere; so on I'(,,4), which is the set of vectors in (M x G)(p,a)
where 6% — @k = 0, the sets 8',...,6" and @',...,@" are cach linearly inde-
pendent. Hence my: ' — M and n3: T' — G are cach diffecomorphisms
in some neighborhood of (p,a). This means that I' contains the graph of
a diffeomorphism f from a neighborhood U of p to a neighborhood of a.

{ ¢

M
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Let /: U — M x G bethemap
J@) = /@) cT.
Since 6k — @* =0 on I", we have
0=f10" =) = [rm0k = [rayet
= (m1 0 f)*0F — (my0 )0

:"..Bk —f*wk. 0:0

It & also possible to say by how much any two such maps differ:

18. THEOREM. Let M be a connected manifold, let G be a Lie group, and
let /i, /2: M — G be two C*™ maps such that

fe) = f2* ()

for all left invariant 1-forms w. Then f; and f2 differ by a left translation, that
is, there is a (unique) @ € G such that

So=Lao fi.

PEDESTRIAN PROOF. Case 1. M = R and the wo maps y;,v,: R — G satisfi
71(0) = y5(0). We must show that y; = y,. For every lefi invariant I-form w

we have
A\ _ . d — i
oo () =ro (5] )= (3]
d
=t ()

. d
= (@i otao] (‘2

!
= w(%(1)) ([Lyz(tM(r?—‘L (d—y,l) :

It follows that
b2 = [ L ] an
d vl @7 ], g
If we regard y; as given, and write this equation out in a coordinate system.
then it becomes an ordinary diflerential equation for y; (of the type considered
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in the Addendum to Chapter 5), so it has a unique solution with the initial
condition y,(0) = ¥,(0). But this solution is clearly y, = y,.

Case 2. M = R, but the maps y,,y, are arbitrary. Choose a € G so that
¥2(0) = a - y,(0).
If w is a left invariant 1-form, then
(La o 11)" (@) = 11" (La*w) = y,*(@) = y;"(w).
Since L, 0 y,(0) = y,(0), it follows from Case 7 that L, oy, = y,.

Case 3. General case. Let po € M. Choose a € G so that
Sa(po) =a- fi(po).

For any p € M there is a C* curve c: R - M with ¢(0) = po and ¢(1) = p.
Let yi = fioc. Then
¥ (@) =" ¥ (@) = ¢* fit(w) = ¥, ().
By Case 2, we have
nt)=a-y ) for all 1.
inparticular for ¢t = 1,s0 f2(p) = a- fi(p).

ELEGANT PROOF. Letn;: GxG — G be projection on the i™ factor. Choose
abasis !,...,w" for the left invariant 1-forms. For (a,b) € G x G, let

n
Aap) = m ker(im*e’ — m2*w').

i=1

Then A is an integrable distribution on G x G. In fact, if A(G) C G x G is the
diagonal subgroup {(a,a) : @ € G}, then the maximal integral manifolds of A
arc the left cosets of A(G). Now define i: M — G x G by

h(p) = (/i(p), f2(p))-
By assumption,
/1*(71';*(1)" —Nz*wi) - fl*ﬂ)i - fz*ﬂ)i = 0.

Since M is connected, it follows that #(M) is contained in some left coset
of A(G). In other words, there are a,b € G with

afy(p) =bfr(p) forall pe M. &
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19. COROLLARY. If G is a connected Lie group and f: G — G isa C%
map preserving left invariant forms, then f = L, for auniquea € G.

While left invariant I-forms play a fundamental role in the study of G, the
left invariant n-forms are also very important. Clearly, all left invariant n-forms
arc a constant multiple of any non-zero one. If ¢” is a left invariant n-form.
then o” determines an orientation on G, and if f: G = R is a C*® function
with compact support, we can define

L se.

Since 0" is usually kept fixed in any discussion, this is often abbreviated to

/Gf or /Gf(a)du.

The latter notation has advantages in certain cases. For example, left invariance

of o” implies that
/ /(a) da::/ J(ba)da.
G G

in other words.
[ o= [eon  whore s@) = say
G G
note that Ly is an orientation preserving diffeomorphism, so
2 g |2

Lo = [ rsen= [(rotarie = [(roLaon

which proves the formula]. We can, of course, also consider right invariant
n-forms. These generally turn out to be quite different from the left invariant
n-forms (see the example in Problem 25). But in one case they coincide.

20. PROPOSITION. If G is compact and connected and o is a left invariant
n-form, then o is also right invariant.

PROOF. Suppose @ # 0. Tor each a € G, the form R,"w is left invariant, so
there is a unique real number f(a) with

R'o = f(a)w.
Since Rp* o Rp* = (Rap)*, we have
J(ab) = f(ba) = f(a)- f(b).
So /(G) C Ris a compact connected subgroup of R—{0}. Hence f(G) = {1}. %
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We can also consider Riemannian metrics on G. In the case of a compact
group G there is always a Riemannian metric on G which is both left and
right invariant. In fact, if ( , ) is any Riemannian metric we can choose a
bi-invariant n-form ¢” and define a bi-invariant (( , )) on G by

v, W) = / (Las Ron(V), Las Ry (W)) da db.
GxG

We are finally ready to account for some terminology from Chapter 9.

21. PROPOSITION. Let G be a Lie group with a bi-invariant metric.

(1) For any a € G, the map I,: G — G given by I,(b) = ab~'a is an isometry
which reverses geodesics through a, i.e., if y is a geodesic and y (0) = a, then
L(y() =y(=1).

(2) The geodesics y with y(0) = e are precisely the I-parameter subgroups
of G, iec., the maps ¢ > exp(tX) for some X € q.

PROOF. (1) Since
L(6) = 57",

the map Jew: Ge = G is just multiplication by ~1 (see the proof of Proposi-
tion 16(2)), so it is an isometry on G,. Since

Io = Rgmi Ie Ly

for any a € G, the map Jes: Ga — G,-1 is also an isometry. Clearly I, reverses
geodesics through e.
Since
Io=RaleR, ",

it is clear that I, is an isometry reversing geodesic through a.
(2) Let y: R — G be a geodesic with y(0) = e. Tor fixed ¢, let
P) =y +u)
Then y is a geodesic and p(0) = y(1). So
Iyl ey () = Iy@)(y (—u)) = Iy (P(—u = 1))
=yt +u)=yu+2).

But also
Lyl (b) = y()by (1),
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SO
y(O)y )y () =y(u+2).

It follows by induction that
y(u)=y@)" for any integer n.
If ¢/ = »'t and 1" = n"t for integers n’ and n”, then
Y+ =y ()" =y,

so ¥ is a homomorphism on Q. By continuity, y is a I-parameter subgroup.

These are the only geodesics, since there are I-parameter subgroups with
any tangent vector at f = 0, and geodesics through e are determined by their
tangent vectors at £ = 0. ¢

We conclude this chapter by introducing some neat formalism which allows
us to write the expression for dw* in an invariant way that does not use the
constants of structure of G. If V is a d-dimensional vector space, we define a
V-valued k-form on M to be a function @ such that each w(p) is an alternating
map

o(p): Myx---xM,—> V.
LA

k times

If vy,..., vy is a basis for V, then there are ordinary k-forms ',...,? such
that for Xi,...,Xx € M, we have

d
o(P)Xh,. -, Xe) =Y o' (p)(Xy,..., Xi)uix

i=1

we will write simply
d
w= Zwi v
i=1
For any V-valued k-form o we define a V-valued (k + 1)-form dw by
d N
do = Zdw' v
i=1

a simple calculation shows that this definition does not depend on the choice of
basis vy, ...vq for V.
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Similarly, suppose p: U x V -> W is a bilinear map, where U and V have
bases uy,...,uc and vy, ..., Vg, respectively. If @ is a U-valued k-form

c
o= E o' u;
i=t

and 7 is a V-valued /-form

LJ N
=3 vy,
j=1

then
c

d
Z Zwi Ayl - plui,vg)
i=1 j=1

isa W-valued (k +/)-form,; a calculation shows that this does not depend on the
choice of bases uy,...,uc or v, ...,vy. We will denote this W-valued (k + /)-
form by p(w A 7).

These concepts have a natural place in the study of a Lie group G. Although
there is no natural way to choose a basis of left invariant I-forms on G, there @
a natural g-valued I-form on G, namely the form @ defined by

) w(a)(X() = X eg.

Using the bilinear map [ , ]: @ x @ -> @, we have, for any g-valued k-form g

and any g-valued /-form A on G, a new g-valued (k + /)-form [p AA] on G.
Now suppose that Xj,..., X, € Ge = g is a basis, and that o',...,0" is a

dual basis of left invariant 1-forms. The form @ defined by (%) can clearly be

written
n
= Ewk < Xg.
k=1
Then
n
) dw =" do* - X

k=1

n
E(EC/}wi A wj) - X

k=1 ‘i<j
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On the other hand,
n
X X]= Y ChXe,
k=1

SO

n n

¥y [wAw]=E(ZZC,’;w"AwJ-Xk).

k=1 Vi=l j=1

Comparing (I) and (2), we obtain the equations of structure of G:

dw:—é[a)/\w].

The equations of structure of a Lie group will play an important role in
Volume III. For the present we merely wish to point out that the terms dw and
[@ A @] appearing in this equation can also be defined in an invariant way. For
the term dw we just modify the formula in Theorem 7-13: I U is a vector field
on G and f is a g-valued function on G, then (Problem 20) we can define a
g-valued function U () on G. On the other hand, w(U) is a g-valued function
on G. For vector fields U and V we can then define

do(U,V) = U(w(V)) ~ V(o)) —o([U, V).

Recall that the value at @ € G of the right side depends only on the values Ua
and Vg of U and V at a. If we choose U = X, V =Y for some X,Y € G,
then

do(a)(Xa, ¥a) =0=- 0~ w(a)(X, V)

= —w(e)([X, ¥ since [X, ¥] is left invariant
=—o(e)([X,Y]) by definition of [ , ]in G.
=-[X,7Y]

> > } by definition of w.
= ~[w(a)(Xa), 0(a)(Ya)]

It follows that for any vector fields U and V we have

do(U,V) = ~[w(U),w(V)]. ‘

Problem 20 gives an invariant definition of p(wAn) and shows that this equation
is equivalent to the equations of structure.



Lie Groups 405

WARNING: In some books the equation which we have just deduced appears
as do(U,V) = ~ %[w(U),w(V)]. The appearance of the factor % here has
nothing to do with the } in the other form of the structure equations. It comes
about because some books do not use the factor (k + /)!/ k! I! in the definition
of A. This makes their A A5 equal to % of ours for 1-forms A and 5. Then the
definition of d(}_ w; dx') as 3 dw; A dx' makes their dw equal to  of ours

for 1-forms w.
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PROBLEMS

1. Let G be a group which is also a C* manifold, and suppose that (x, y) - xy
is C.

(a) Find f~' when f: Gx G — G x G is f(x,y) = (x,xy).

(b) Show that (e, e) is a regular point of f.

(9) Conclude that G is a Lie group.

2. Let G be a topological group, and H C G a subgroup. Show that the
closure H of H is also a subgroup.

3. Let G be a topological group and # C G a subgroup.

(a) If H is open, then so is every coset g H.
(b) If H is open, then H is closed.

4. Let G be a connected topological group, and U a neighborhood of ¢ € G.
Let U™ denote all products a; - - - ay for a; € U.

(a) Show that U™t} is a neighborhood of U”.

(b) Conclude that | J, U" = G. (Use Problem 3.

(c) If G is locally compact and connected, then G is o-compact.

5. Let f: R" — R" be distance preserving, with f(0) =0.

(a) Show that f takes straight lines to straight lines.

(b) Show that f takesplanes to planes.

(c) Show that f is a linear transformation, and hence an element of O(n).
(d) Show thatany element of E(1) can be written 4 - 7 for A € O(n) and 7 a
translation.

6. Show that the tangent bundle TG ofa Lie group G can always be made into
a Lie group.
7. We have computed that for M € gl(n,R) we have

~ ~ 9 ~ n

M= "M — where Mx*(4) =) MaAka.

kil
kil dx o=}

(a) Show that this means that
M(A)=A-M eR” = GL(n,R) 4.

(Itisactually clear a priori that M defined in this way is left invariant, for L 44 =
L, since Ly is linear.)
(b) Find the right invariant vector field with value M at J.
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8. Let G and H be topological groups and ¢: U — H a map on a connected
open neighborhood U of ¢ € G such that ¢(ab) = ¢(a)p(b) when a,b,ab € U.

(a) Foreach ¢ € G, consider pairs (V, ¥), where V C G is an open neighbor-
hood of ¢ with V - V=! € U, and where y: V — H satisfies Y¥(a) - ¢ (b)~' =
¢lab™") for a,b € V. Define (V1,¥;) ~ (Va, %) if ¥; = Y2 on some smaller
neighborhood of ¢. Show that the set of all i equivalence classes, forall c € G.
can be made into a covering space of G.

(b) Conclude that if G is simply-connected, then ¢ can be extended uniquely
to a homomorphism of G into H.

9. In Theorem 5, show that ¢ and ¥ are equal even if they are defined only
on a neighborhood U of e € G, provided that U is connected.

10. Show that Corollary 7 is false if G is not assumed connected.

11. If G is a group, we define the opposite group G° to be the same set with
the multiplication « defined by as b = b-a. If g is a Lie algebra, with operation
[, ], we define the opposite Lic algebra g° to be the same set with the operation
[X,Y]° =~[X,Y].

(a) G° is a group, and if ¥: G — G is a > a”!, then ¥ is an isomorphism
from G to G°

(b) a° is a Lie algebra, and X > —X is an isomorphism of g onto °.

(c) £L(G°) is isomorphic to [£L(G)]° = a°.

(d) Let [ , ] be the operation on G, obtained by using right invariant vector
fields instead of left invariant ones. Then (g, [ , ]) is isomorphic to £(G°), and
hence to g°.

() Use this to give another proof that q is abelian when G is abelian.

12. (a) Show that
ex 0 a\_( cosa sina
Ploz 0) 7\ -sina cosa)
(b) Use the matrices A4 and B below to show that exp(4 + B) is not generally
equal to (exp A)(exp B).

0 1 0 0
=(os) #=(400)
13. Let X,Y € G, with [X,Y]=0.
(a) Use Lemma 5-13 to show that (exp s X )(exptY) = (exptY)(expsX).
(b) More generally, use Theorem 5 to show that exp is a homomorphism

on the subspace of G spanned by X and Y. In particular, exp(X +Y) =
(exp X)(expY).
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14. Problem 13 implies that expt(X +Y) = (exptX)(exptY)if [X,Y]=0. A
more general result holds. Let X and Y be vector fields on a C*° manifold M
with corresponding local I-parameter families of local diffeomorphisms {¢:},
{¥s}. Suppose that [X,Y]=0, andletn, =@ o ¥ =¥ 0¢,.
(a) Show that
dan:(p)
dt

(b) Using Corollary 5-12, show that

dni(p)
dt

= X(dp)) + (YW e(p)).

= X(m(p)) + Y(n:(p))-

In other words, {1} is generated by X + Y.
15. (a) If M is a diagonal matrix with complex entries, show that

trace M

detexpM = e
(b) Show that the same equation holds for all diagonalizable M with complex
entries.
(c) Conclude that it holds for all M with complex entries. (The diagonalizable
matrices are dense; compare Problem 7-15.)
(d) Using Proposition 9, show that for the homomorphism det: GL(n,R) —
R ~ {0}, the map dets: gl(n,R) > £L(R ~ {0}) =R is just M 1> trace M.
(e) Usc this fact to give a fancy proof that trace MN = trace NM. (Look at
trace(MN — NM) = trace[M, N].)
(f) Prove the result in part (d) directly, without using (c). (Since det. and tracc
are homomorphisms, it suffices to look at matrices with only one non-zero entry.)
(g) Now usc this result and Proposition 9 to give a fancy proof of (c).

16. (a) Let U be a neighborhood of the identity (1,0) of S (considered as a
subsct of R?). Show that no matter how small U is, there are elements a € U
which have square roots outside U in addition to their square root in U.

(b) Show that for each n > 1, there is a neighborhood U of e € G such that
every element in U has a unique 7' root in U.

(c) For G = S', show that there is no neighborhood U which has this property
for alt n.

17. (a) Let (x, V) be a coordinatc system around e € G with x/(e) =0. Let

x'(@b) = [i(x(a),...,x"(a),x" (b),...,x" (b))
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for C* functions f7. Show that
D; f1(0) = Dy f1(0) = 81,
(b) If &, B: (—e,6) = G are differentiable, show that
(e - B)'(0) =’ (0) + B'(0).

(c) Also deduce this result from Theorem 14(1). (Not even the full strength of (1)
is needed; it suffices to know that exptX exptY = exp{t(X + Y) + O(¢)}. The
argument of part (a) is essentially equivalent to the initial part of the deduction

of (1))

18. Let G be a Lie group, and let # C G be a subgroup of G (algebraically),
such that every a € A can be joined to ¢ by a C* path lying in 4. Let §) C Ge
be the set of tangent vectors to all C* paths lying in A.

(a) Show that [)is a subalgebra of G,. (Use Theorem 14.)

(b) Let K C G be the connected Lie subgroup of G with Lie algebra §). Show
that # C K. Hint: Join any a € H 10 ¢ by a C* curve ¢, and show that the
tangent vectors of ¢ lie in the distribution constructed in the proof of Theorem 4.
(c) Let ¢1,...,cx be curves in A with {¢;'(0)} a basis for §. By considering
the map f(t',...,t%) = ci(t!) - - - cx (t¥), show that K C H. Thus, H is a Lie
subgroup of G. It is even true that # C G is a Lie subgroup if A is path
connected (by not necessarily C* paths); see Yamabe, On an arcwise connected
subgroup of a Lie group, Osaka Math. ]. 2 (1950), 13-14.

(d) If # C G is a subgroup and an immersed submanifold, then A is a Lie
subgroup.

19. For a € G, consider the map b > aba™' = L,R,~'(b). The map
(LaRa_l)*: a—=>4g

is denoted by Ad(a); usually Ad(a)(X) is denoted simply by Ad(a)X.

(a) Ad(ub) = Ad(a)oAd(b). Thuswehavea homomorphism Ad: G — Aut(g),
where Aui (@), the automorphism group of g, is the set of all non-singular linear
transformations of the vector space g onto itself (thus, isomorphic to GL(n, R)
if @ has dimension n). The map Ad is called the adjoint representation.
(b) Show that

exp(Ad(a)X) = a(exp X)a_'.

Hint: This follows immediately from one of our propositions.
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(c) For A € GL(n,R) and M € gl(n,R) show that
Ad(AM = AMA™.

(It suffices to show this for M in a neighborhood of 0.)
(d) Show that
Ad(exptX)Y =Y +1[X, Y]+ O(?).

(e) Since Ad: G — g, we have the map

tangent space of Aut(g) at the

Adse: g (= Ce) — identity map Iq of g to itself.

This tangent space is isomorphic to End(q), where End(q) is the vector space of
all linear transformations of g into itself: If ¢ is a curve in Aut(q) with ¢(0) = 1,
then toregard ¢'(0) as an element of Aui(g), we let it operate on Y € @ by

d
O =l er).
1=0

(Compare with the case g = R", Aut(q) = GL(n, R), End(g) = n x h matrices.)
Use (d) to show that
Ad,(X)(Y) = [X,Y].

(A proof may also be given using the fact that [X,¥] = L;?.) The map
Y - [X,Y] is denoted by ad X' € End(g).
(f) Conclude that

dXx)?
(a )+

Ad(exp X) = exp(ad X) = Ig +ad X + 5

(g) Let G be a connected Lie group and H C G a Lie subgroup. Show that #
is a normal subgroup of G if and only if ) = L(H) is an ideal of g = £L(G),
thatis, ifand only if [X,Y] e hforall X €g,Y €.

20. (a) Let /: M — V,where V is a finite dimensional vector space, with basis
vy,--.,vd. For X, € M,, define X,(f) € V by
d
XN =) X,/ ve
i=1

where [ = ZL] JST-vi for f1: M — R. Show that this definition is indepen-
dent of the choice of basis vi, ...,va for V.
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(b) If w isa V-valued k-form, show that dw may be defined invariantly by the
formula in Theorem 7-13 (using the definition in part (a)).
(c) For p: U x V — W, show that p(w A ) may be defined invariantly by

pl@ AR)(XY, ..., Xi, Xeyry ooy i)
1

= aesZk:J,, sgn 0 - p(@(Xo0),- -+, Xok)s N KXo ths1)s -+, Xo ks )))-
Conclude, in particular, that
[0 A 0)(X,Y) =2[0(X),0(Y)].
(d) Deduce the structure equations from (b) and (c).

21. (a) If w isa U-valued k-form and nisa V-valued /-form,and p: UxV —
W, then
d(plw A 1)) = p(dw A n) + (—~1)K plw A dn).

(b) For a g-valued k-form w and /-form n we have
[ An) = (=)Aol
(c) Moreover, if X is a g-valued m-form, then
=D*"w Al AN+ (=DM AT ARl + (=1 A Ty A w)] =0.

22. Let G C GL(n, R) be a Lie subgroup. The inclusion map G — GL(n,R) —
R"* will be denoted by P (for “point”). Then dP is an R"*-valued 1-form (it
corresponds to the identity map of the tangent space of G into itself). We can
also consider dP as a matrix of 1-forms; it is just the matrix (dx'/), where each
dx¥ is restricted to the tangent bundle of G. We also have the R*-valued
1-form (or matrix of 1-forms) P~' . dP, where - denotes matrix multiplication,
and P! denotes the map A+ 47} on G.

(a) P7'.-dP = p(P~'AdP),where p: R” x R™ — R™ is matrix multiplication.

(b) La*dP =A-dP. (Use f*d =df*)
(c) P~} .dP is left invariant; and (dP) - P~} is right invariant.
(d) P~!.dP is the natural g-valued I-form w on G. (It suffices to check that

P .dP=watl)
(e) Using dP = P - w, show that 0 = dP - w + P - dw, where the matrix of
2-forms P-dw is computed by formally multiplying the matrices of 1-forms dP
and w. Deduce that

do+w-0=0.
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If  is the matrix of 1-forms w = (©™), this says that

doll =Y o* ot
k
Check that these equations are equivalent to the equations of structure (use the
form do(X,Y) = —[w(X),0(Y)].)
23. Let G C GL(2,R) consist of all matrices (3 ?) with @ # 0. For conve-
nience, denote the coordinates x'! and x'2 on GL(2,R) by x and y.

(a) Show that for the natural g-valued form w on G we have
_ 1 fdx dy
*=3\lo o)
so that dx/x and dy/x are left invariant 1-forms on G, and a left invariant
2-formis (dx A dy)/x>.

(b) Find the structure constants for these forms.
(c) Show that

@py. pi=1 ("“’ ‘J"’x“‘dJ’)
X 0 0

and find the right invariant 2-forms.

24. (a) Show that the natural gl(n, R)-valued 1-form @ on GL(n, R) is given by
l n
i _ ik ki
[} —det(x"‘/’) kgly X",
where

(3*F) = det(x*P) . (x*#)~".

(b) Show that both the left and right invariant n?-forms are multiples of

1
m(dxn Ao AdX"Y A A @XM A A dX™).

25. The special linear group SL(n,R) C GL(n, R) is the set of all matrices of
determinant 1.

(a) Using Problem 15, show that its Lie algebra s[(n, R) consists o[ all matrices
with trace = 0.
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(b) For the case of SL(2,R), show that

1. gp = vdx — ydu vdy — ydv
pe-ap (—udx+xdu —udy+xdv )’

where we use x, y, u, v for x"!, x'2, x2 x2_ Check that the trace is 0 by
differentiating the equation xv — yu = 1.

g q J
(c) Show that a left invariant 3-form is

vdx ndundy —ydx ndundv.
26. For M, N € o(n) = L(O(n)) ={M : M = —M"}, define

(N, M) = —trace M - N,

(a) { , )isa positive definite inner product on ().
(b) If A € O(n), then

(Ad(A)M,Ad(A)N) = (M, N).

(Ad(A) is defined in Problem 19.)
(c) The left invariant metric on O(17) with value ( , ) at O(n); is also right
invariant.

27. (a) If G is a compact Lie group, then exp: ¢ — G is onto. Hint: Use
Proposition 21.

(b) Let A € SL(2,R). Recall that A satisfies its characteristic polynomial, so
A? — (trace A)A + I = 0. Conclude that trace A2 > —2.

(c) Show that the following element of SL(2, R) is not A for any 4. Conclude
that it is not in the image of exp.

(3 %)

(d) SL(2,R) does not have a bi-invariant metric.

28. Let x be a coordinate system around ¢ in a Lie group G, letmj: GxG — G
be the projections, and let (y,z) be the coordinate system around (e, ¢) given
by p' = x' omy, z' = x' o 75. Define ¢': G x G — R by

¢'(a,b) = x(ab),
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and let X; be the left invariant vector field on G with

d
Xi(e) = |,

(a) Show that

"o
M=§Wa¢
where X
WM=%%@
(b) Using LaLp = Lgs, show that )
[LanX; (D)) = [Xi(ab)](x).
Deduce that
Xi®)(x' o Lg) =y (ab).
and then that

A I
S vl %(a, b) = vl(ab).
j=1

Letting ¥ = (1/}}) be the inverse matrix of ¢ = (11/,«’), we can write

ag' o i
327 (@0) = 3 Wi(ab) - ¥j(b).
i=]

This equation (or any of numerous things equivalent to it) is known as Lié’s first
Jfundamental theorem. The associativity of G i implicitly contained in it, since we

used the fact that LoLp = Lgp.

(c) Prove the converse of Lie’s first fundamental theorem, which states the following.
Let ¢ = (¢',...,¢") be a differentiable function in a neighborhood of 0 € R
[with standard coordinate system y*,..., " =!,...,z"] such that

#(a,0) =a for a € R".

Suppose there are diff erentiable functions w}!' in a neighborhood of 0 € R” [with

standard coordinate system x1 . ,Xx"] such that

Vi) =8

! n . .
) %(a, by = ZW{(¢((I’ b)) - 1:0}-(17) {or (a, b) in a neighborhood
i=1

of 0 e R?".
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Then (a,b) > ¢(a, b) isa local Lie group structure on a neighborhood of0 € R”
(it is associative and has inverses for points close enough to 0, which serves as
the identity); the corresponding left invariant vector fields are

ZW, 8)1

[To prove associativity, note that

3¢! (9(a,b),2)

= W@, 6),) - @) by )

i=1
and then show that ¢(a,¢(b, z)) satisfies the same equation.]
29. Lie’s second fundamental theorem states that the left invariant vector fields X; of
a Lie group G satisfy
n
(X, X1 =) Ch Xy
k=1

for certain constants C,.".—in other words, the bracket of two left invariant vector
fields is left invariant. The aim of this problem is to prove the converse of Lie’s
second fundamental theorem, which states the following: A Lie algebra of vector fields
on a neighborhood of 0 € R”, which is of dimension 7 over R and contains a
basis for R"g, is the set of left invariant vector fields for some local Lie group
structure on a neigh borhood of 0 € R”.

(a) Choose Xy,..., X, in the Lie algebra so that X;(0) = 3/0x|g and set

Z ‘/f, axl

n
o = Zx/}; dxi,
j=1
then the w’ are the dual forms, and consequently
dok = =3 "Ch o' Ao C} constants.

i<j
(b) Let 7 : R* x R" — R" be the projections. Then

n R n X

7w — e’ = Z(@’ o73) |:d(.\‘l omy) — Z(w,-’ o73) -m"w'].

1=t i=1
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Consequently, the ideal generated by the forms d(x! 0312)= 37, (¥{ 0712)-11* 0
is the same as the ideal 4 generated by the forms st =t Using the fact
that the Cjik are constants, show that d(d) C 4. Hence R" x R” is foliated by
n1-dimensional manifolds on which the forms d(x! o1r7) — S (1//,! orry) MW’
all vanish.

(c) Conclude, as in the proof of Theorem 17, that for fixed a, there is a function
®,: R" — R” satisfying ®,(0) = a and

dolb) = > pl(@4(b)) - o' (b),
i=1
or cquivalently;

0% by = 3 w(@alb) - B
s () = DYl (Pa(b)) - 4 (5).
=
Now set ¢(a,b) = Pq(b), and use the converse of Lie’sfirst fundamental theo-
rem.

30. Lie’s third fundamenial theorenwr states that the C}k satisfy equations (1) and (2)
on page 396, i.c., that the left invariant vector fields form a Lie algebra under
[, ]- The aim of this problem is to prove the comerse of Lie’s tlurd fundamental
‘warem, which states that any n-dimensional Lie algebra is the Lie algebra for
some local Lie group in a neighborhood of 0 € R”.

Let C,.’; be constants satisfying equations (1) and (2) on page 396. We would
like to find vector fields Xj,...,X, on a neighborhood of 0 € R” such that
[Xi. Xj] = S k=1 CK X. Equivalently, we want to find forms o’ with

do* =~ "Cko' nwl.
i<j
Then the result will follow from the converse of Lie’s second fundamental the-
orem.
(a) Let £¥ be functions on R x R” such that
E_ x ki
m =6~ ZCU,\ hl
ij
h*0,x) =0.
These are equations “depending on the parameters x” (see Problem 5-5(b)).
Note that h¥(1,0) = 8%, so that 1% (1,0) = 8k Let o* be the 1-form on R x R”

defined by
ok = Sk dx.
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and write
do* = M 4+ (dr A ak).

where A% and &% do not involve dt. Show that
6/1 ah
k _
A _g(ax' axl) dx' Adxt

ok =dx* ~ Z Ck x'od.

(b) Show that
dik = di A (— S ckdxiacl =k x’w‘)
iJ iJ
(c) Let
6% = Ak +%ZC‘,—’;UiA01.
iJj
Show that
=din (=L et - chchxer ol
iJ i,j rs

+ terms not involving d1.

Using

Y Y ckclo nol =3 Y (ChCl ~ Chciet nad

i,j rs ij rs

1
=352 D ACKCL+CiClyo® ndd,

Bj s
and equation (2) on page 396, show that

dt/\( Z xA 4 qukcijx'U‘Aaj)

I

+ terms not involving d1.
Finally deduce that
=dt N~ Z C/-’; x716! 4+ terms not involving dt.

417
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(d) We can write
0% = ghdx' ndx.

i<j

where gk(0.x) = 0 (Why?). Using (c), show that
agl{\j k .
ST ;Cm"' &ij-

Conclude that 8% = 0.
(¢) We now have

3 1 . .

k_ _ 2 k i J

AN = 2_§_CU'U Ao’
ij

| :
Ao _ 2 k i J k
do” = 25 Cijo' nol 4+ (di na”).

iJ

Show that the forms wf (x)= a"(],.\‘) satisfy

3 1 . .
do* = _EZQ§“"A‘*’I~
ihJ



CHAPTER 11

EXCURSION IN THE REALM
OF ALGEBRAIC TOPOLOGY

his chapter explores further properties of the de Rham cohomology vector
spaces of a manifold. Our main results will be restatements, in terms of the
de Rham coliomology; of fundamental properties of the ordinary cohomology
which is studied in algebraic topology. Because we deal only with manifolds.
many of the proofs become significantly easier. On the other hand. we will be
using some of the main tools of algebraic topology. thus retaining much of the
flavor of that subject. Along the way we will deduce all sorts of interesting con-
sequences, including a theorem about the possibility of imbedding #-manifolds
in R*
Lect M be a manifold with M = U U V for open sets U,V C M. Before
examining the cohomology of M we will simply look at the vector space CK(M)
of k-forms on M. Let

iy: U - M v: VoM
Jjurunv U v:unv s v

be the inclusions. Then we have two linear maps & and f.

=iy @i B=ju=pn
ck ) I, ckiye vy ckwunv)
defined by
a(w) = (iv* (), iv'(®)) Bh1,h2) = jut (ki) ~ j¥*(Aa).

Here iy*(w) is just the restriction of ® to U. etc. Clearly foa = 0: In other
words, imagea C ker B. Moreover, the converse holds: ker 8 C imagea. For,
i B(A1,A2) =0, then Ay = A2 on U NV, so we can define w on M to be i
on U and Az on V. and then a(®) = (iy,A2). The equation imagea =kerfis
expressed by saving that the above diagram is exact at the middle vector space.
We can extend this diagram by putting the vector space containing only 0 at the

419
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ends; the arrows at either cnd of the following sequence are the only possible
linear maps.

1. LEMMA. The sequencc

0 ckmy 5 ckay e crvy b own V)50
is exact at all places.

PROOF. 1t is clear that « is one-one. This is equivalent to exactness at Ck(M).
since the image of the first map is {0} C CckM). Similarly, exactnessat C¥(U N
V) is equivalent to B being onto. To prove that 8 is onto, let {¢y,¢v} be a
partition of unity subordinate to {U, V}. Then w € CX(U N V) is

o = v, —pyw).

where ¢y denotes the [orm equal to ¢yw on U NV, and equal to 0 on
U~(UNYV) &

By putting in the maps d. we can expand our diagram as follows,

0 ckm)y —2 . ckwye ckv) ckunvy——o
Jd Jdﬂitl J(/

0 kM) 9, Ry @ kI v) L ek n )

so that the rows are all exact. It is easy to check that this diagram commutes.
that is, any two compositions {rom one vector space to another are equal:

24

(d@®d)oa =aod jd@d

I
U
®
U

dof=Bo(d®d)
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Our first main theorem depends only on the simple algebraic structure in-
herent in this diagram. To isolate this purely algebraic structure, we make
the following definitions. A complex C is a sequence of vector spaces C*.
k =0,1,2,..., together with a sequence of linear maps

d*. ¢k > ¢kt

satisfying d*+1 o d* = 0, or briefly, d> = 0. A map a: C; - C2 between
complexes is a sequence of linear maps

ok of > F

such that the following diagram commutes for all &.

Ck ot o
dik d-*
k+1 N
C|k+l o C:k+‘

The mest important examples of complexes are obtained by choosing C* =
C* (M) for some manifold M, with d* the operator d on k-forms. Another
example, implicit in our discussion, is the direct sum C = C; ® G, of two
complexes, defined by

ct=ctect d=datedt
TFor any complex C we can define the cohomology vector spaces of C by

ker d*

k — p—
s = image d¥~1"

Naturally, if C = {C*(M))}, then H*(C) is just HXM). If a: G = Gy is a
map between complexes. then we have a map, also denoted by a.

a: HK(C) » HXG).

To define @ we note that every clement of HK(Cy) is determined by some
¥ e CF with di*(x) = 0. Commutativity of the above diagram shows that
dFak(x)) = aktdik(x) = 0, so ak(x) determines an element of H*(C2),
which we define to be a(the class determined by x). This map is well-defined.
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for if we change x to x + di* () for some y € Ci¥~?, then a* (x) is changed
to

o x + di* 1)) = ok () + aK (¥ 1))

= ak(x) + d2 @ ().
which determines the same element of H¥(G). When Cif = CK(M), ot =
C*(N). and a: CX(M) —» CK(N) is f*for f: N — M, then this map is just
I HR(M) - HKWV).

Now suppose that we have an exact sequence of complexes
o B
0-C — G —C3—0.

which really means a vast commutative diagram in which allrowsare exact.

J J J

k=1 k=1
0 JoL ok B k- 0
i
jd]k-l dzk—l d}k—l
A & y
= 0 ot —2 o — fe 0
(]11‘ szk ‘d;k
i H
0 Potax aktt o gt olas 0

J J J

What does this imply about the maps a: Hk(C1) — Hk(Cz) and B: HX(Cy) —
AH¥(C3)? The nicest thing that could happen would be for the following dia-
gram to bc exact:

a B
0> HYG) — H¥G) — HNG)— 0.
This is nof true. For example, if U and V are overlapping portions of S? for
which there is a deformation retraction of UNV into S?, then we have an exaci
sequence

0 s > ckyectvy > ckunvy > 0.
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but not an exact sequence

0 H(5%) HYU)® H'(V) H'UNV)——0.
2 2 2
0 0 R

Nevertheless, something very nice is true:

o B
2. THEOREM. If 0 - C; ——» C; ——> Ci — 0 is a short exact sequence of
complexes, then there are linear maps

§%: HYN(G3) > H*(Cr)

so that the following infinitely long sequence is exact {everywhere):

p s
0— HO(C) 2 H%C3) ——> HY(C3) —> H'(Cy) — -+
B §
<o HYC) > HHCa) = HNG) = HFH(C) = -+

PROOF. Throughout the proof, diagram (x) should be kept at hand. Let x €
CiF with d¥ (x) = 0. By exactness of the middle row of (#), there is y € C
with g¥(y) = x. Then

0 = di*(x) = di¥ B* (y) = B*H1d* ().

So d*(y) € ker B**! = imageakt!; thus do*( 1) = a**!(z) for some (unique)
= € Ci**!. Moreover.

WP EF ) = Rk (2) = dF K () = 0.

Since a*t! is one-one, this implies that di**1(z) = 0, so z determines an ele-
ment of H¥+1(C}): this element is defined to be 8% of the element of H*(C3)
determined by x.

In order to prove that 8 is well-defined, we must check that the result does
not depend on the choice of x € C5* representing the element of H*(C3). So
we have (0 show that we obtain 0 € H¥*1(()) if we start with an element of
the form ds¥='(x") for x’ € C:*~'. In this case, let x' = *~'(3"). Then

x= d;k_l(,\”) = d3k—lﬁk-l(},r) - ﬂkdzk_l(y’),

so we choose d-¥~1(3") as 3. This means that dzk(_v) =0,and hence = = 0.
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1t is also necessary to check that our definition is independent of the choice
of y with BX(y) = x; this is left to the reader.

The proof that the sequence is exact consists of 6 similar diagram chases. We
will supply the proof that kera C image8. Let x € Ci¥ satisfy di*(x) = 0, and
suppose that ot"(.\') € Czk represcnts 0 € H"(Cg). This means that ot"(,\‘) =
d¥~1(y) lor some y € G, Now

dy* =t By = RN (y) = Bt ) = 0.

So g*='(») represents ali element of H*~1(C3). Moreover. the definition of §
immediately shows that the image of this element under 8 is precisely the class
represented by x. <

It is a worthwhile exercise to check that the main step in the proof of Theo-
rem 8-16 is precisely the proof that kerar C image 8, together with the first part
of the proof that 8 is well-defined. All of Theorem 8-16 can be derived directly
from the following corollary of Lemma 1 and Theorem 2.

3. THEOREM (THE MAYER-VIETORIS SEQUENCE). If M = UU V.
where U and V are open. then we have an exact sequence (eventually ending
in 0%s):

0~ HUM) = - = HY (M) = HYU) ® H*(V) > H* WU nv) § B¥ 10y 5 -

As several of the Problems show. the cohomology of ncarly everything can
be computed by a suitable application of the Mayer-Vietoris sequence. As a
simple cxamplc. we consider the torus T = S' x S', and the open sets U
and V illustrated below. Since there is a deformation retraction of U and ¥

onto circles, and a deformation retraction of U NV onto 2 circles, the Mayer-
Vietoris sequence i
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— HYT) — HYU) @ H(V) — H'WUNV) — HYT) — H'W)e H'(V) —

P 2
3 E
— H(UNV)— HYT) — 0.
% 2
ROR R

The map H'(U NV) = H¥(T) is not 0 (it is onto H2(T)), so its kernel is
I-dimensional. Thus the image of the map H'(U)® H'(V) - H'(U N V)
is 1-dimensional. So the kernel of tkis map is 1-dimensional. and consequently
the map H'(T) - H'(U) @ H'(V) has a I-dimensional image. Similar rea-
soning shows that this map also has a l-dimensional kernel. It follows that
dim H!(T) = 2. The reasoning used here can fortunately be systematized.

4. PROPOSITION. If the sequence
0— Vl_a’ Voo oo Voo > Vi 50
is exact, then
0=dim Vi —dim Va +dim V3 — .- + (~1)*"' dim V.
PROOF. By induction on k. For k = 1 we have the sequence
0> V) >0

Exactness means that {0} C V) is the kernel of the map V| — 0, which implies
that V), =0.

Assume the theorem for k — 1. Since the map V> — V3 has kernel a(V)), it
induces a map Va/a(V1) — V3. Moreover, this map is one-one. So we have an
exact sequence of k — ] vector spaces

0> VaW) > Vios -5 Vo> Ve o 0:
hence

0 =dim Vafa(Vy) ~ dim Vs + - -
=—dimV;+dimV, —dimV3+ ---.

which proves the theorem for k.
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Rather than compute the cohomology of other manifolds, we will use the
Maver-Vietoris sequence to relate the dimensions of H*(M) to an entirely
different set of numbers, arising from a “triangulation” of M, a new structurc
which we will now define.

The standard n-simplex A, is defined as the set

A,,={xelk"“;05x"51and Z;':}xf=1}.

A
JaY
Ay J/ ' /

R ———, —_—

0 1

(In Problem 8-5. A, is dcfined to be a different, although homeomorphic, set.}
The subset of A, obtained by setting n — k of the coordinates x’ equal to 0
is homcomorphic to Ag. and is called a A-face of A, If A C M is a dif
feomorphic image ol some A, then the image of a k-face of A, is called a
k-face of A. Now by a triangulation of a compact n-manifold M we mean a
finite collection 10"} of diffeomorphic images of A, which cover M and which
satisfy the following condition:

If 0"iNg"; £ 0. then for some k the intersection ¢”; No"; isa k-face
of both ¢”; and ¢”;.

& “.

\’ah d

The standard triangulations
. of 82 (after Steinbery intersections
14 . of 3-simplexe
2) @2
Invalid \
lnangulalrons V
=2

1t is a difficult theorem that every ™ manifold has a triangulation; for a
proof see Munkres. Etementary Differential Topotogy. or Whitney, Geometric Inlegration
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Theory. Assuming that our manifold M has a triangulation {0";} we will call
each ¢”; an n-simplex of the triangulation; any k-face of any ¢o”; will be called
a k-simplex of the triangulation, We let a, be the number of these k-simplexes.

Now let U be the disjoint union of open balls, one within each n-simplex ¢";,
andlet V,—; be the complement of the set consisting of the centers of these balls,
so that V,_1 is a neighborhood of the union of all (7 —1)-simplexes of M. Then

M = U U V,_; where U N V,_; has the same cohomology as a disjoint union
of &, copies of $"~!. Consider first the case where nn > 2. The Maver-Vietoris

sequence breaks into pieces:

M

0— HOM) — HYU) ® HO(Vyey) — HOU N Veey) — H' (M)

— HU)Y® H (V) — H' (U N Vi)
] I
0 0

Forl <k <n—1.
HNU A V,y) - HK (M) - B (U) @ H* (Vaer) = BYU N Vy)

It I I
0 a 0

H™2(U N Vo) — B(M) — BV @ HY 7 (Vi) —
fl 1
0 0

— H™'U N Vo) — B (M) — H"(U) @ H" (V1)
n

0
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Applying Proposition 4 to these pieces vields

dim HK (Vp1) = dim % (M) O0<k<n-2
dim " (Vue1) = dim H"~1(M) — dim H" (M) + 5.
For the case » = 2 we easily obtain the same result without splitting up the
sequence. We now introduce the Euler characteristic x(M) of M, defined by
X(M) =dim HO(M) — dim H' (M) + dim H* (M) — - - - + (=1)" dim H"(M).

This makes sense for any manifold in which all #% (M) are finite dimensional;
we anticipate here a later result that 7% (M) is finite dimensional whenever M
is compact. The above equations then imply that

n—1
XVac1) = Y _(=D¥ dim ¥ (V)
k=0
n—2
=) (- dim #¥(M)
k=0
+ (=1)""[dim B~ (M) — dim A" (M) + a,)]
= X(M) - (=1)"a.

or
X(M) = x(Vaa) + (=1)"tn.

5. THEOREM. For any triangulation of a compact manifold M we have
XM)=ap—o1 4oz — -+ + (—1)"ap.

FPROOF. Iy the manifold V,—, we define a new open set U which consists of
a disjoint union of sets diffeomorphic to R”, one for each (n — 1)-face, joining
the balls of the old U.

|- 7~ components of

new U (n = 2)
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We wilt let ¥;—2 be the complement of arcs, in the new U, joining the centers
of the balls in the old U.

Vi—z is the
complement of

Vu—z is the
complement of

An argument precisely like that which proves the equation
X(M) = X(Va_1) + (~1) "y

also shows thai
XVnot) = x(Va2) + (= 1) e

Similarly, we introduce V,_3,..., Vo: the last of these is a disjoint union of ag
sets each of which is smoothly contractible to a point. Hence x(Vp) = ap, while
in all other cases we have

x(Vi) = x(Vem) + (=D
Combining these equations, we have

X(M) = x(Vasy) + (=1)"ay,
= XVnz2) + [(= 1) ot + (=1)"an]

= xWVo) + [(=1)'ay + -+ + (=1)"atn]
=g — a1+ -+ (=1)"a, &

6. COROLLARY (DESCARTES-EULER). If a convex polyhedron has V
vertices, £ edges, and F faces, then

V-E4+F=2
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If we turn from H* to X we encounter a very different situation. If U ¢ M
is open, a form @ with compact support C M may not restrict to a form with
compact support C U: the inclusion map of U into M is not proper. On the

other hand, if w is a form with compact support C U, then w can be extended
10 M by letting it be 0 outside U; we will denote this extended form by

., support @
v (w).

If C¥(M) denotes the vector space of &-forms with compact support on M, we
can define a new sequence.

7. LEMMA. The sequence

Ju' @&~ iv' +iy
— >

vk k k
ckwyeckvy ——5 ¢y - o

’

0 CkUNY)

is exact.

PROOF. Itis clear that jy’ @ —~ j,/' is one-one; in fact, each map jy' and ji-’
is one-one.

To prove that iy’ +iy’ is onto, let @ be a k-form with compact support on M.
and let {¢u,Pr) be a partition of unity {or the cover {U, V}. Then

®=¢yw+gro

is clearly the image of (pyw,prw) e CK(U) ® Ck(V).
It is clear that image (ju' @ ~ji") C ker(iy’ + iy'). Toprove the converse,
suppose that

(A, A) e CRiy @ CH(V)  satisfies iy’ (Ar) + iv'(A2) = 0.

This mecans that &4 = ~A,. Since support Ay C U and support A; C U. thic
shows that support 2y € U NV and supportds € U NV. So (Ar,A2) is the
image of A € CKUNV). &
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8. THEOREM (MAYER-VIETORIS FOR COMPACT SUPPORTS). Ifthe
manifold M = U UV for U, V open in M, then there is a long exact sequence

§
<o HYU N V) > HYU)e HA(V) > HEk (M) — HKY WUnvy o ..

PROOF. Apply Theorem 2 to the short exact sequence of complexes given by
the Lemma. <

This sequence is much harder to work with than the Mayer-Vietoris sequence.
For example, suppose we want to find H X for R” {0}, which is diffeomorphic to
5" xR. Ifwe write " = UUV in the usual way, so that UNV is diffeomorphic
108" ' xR, then S" xR = (U x R)U(V x R), where (U x R)N (V x R)
is diffeomorphic to $"~' x R2. The only way (o use induction is to find H¥
for all $" x R™, starting with S' x R™. The details will be left to the reader;
we will merely record one further result, for later use. and then proceed to vet
another application of Theorem 2.

9. COROLLARY. If M = U UV for U,V open in M, then there is a dual
long exact sequence

oo HMUNYY 5 BY(M)* S [HYUDe KO — HE(unv) > -

PROOF. We just have to show that if the sequence of linear maps

o B
W — W — W4

s cxact a Wi, then o is the sequence of dual maps and spaces
* ﬁ‘ o
Wi* — W — WX,

Tor any A € Ws* we have
o*B*(A) =a*(hoB)=Aro(Boa)=Ao0=0.

So a* o p* =0.
Now suppose i € Wy* satisfies a*(A) = 0. Then A oo = 0. We claim that

wi—w, P w,

there is A: W3 — R with A = ﬂ"(i), ie, A=fBo A. Given a w € W3 which is
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of the form B(w’), we define

Aw) = M(B).
This makes sense, for if (w’) = B(w”), then w — w” = «(z) for some z, so
AMw) — AMw”) = Aa(z) = 0. This defines A on B(W2) C W;. Now choosc
W C W3 with W = B(W2) @ W, and define Xwbe0on W. ¢

We now consider a rather different situation. Let N C M be a compact sub-
manifold of M. Then M — N is also a manifold. We therefore have the sequencc

i*
ckom - Ny 55 oy s ek,
where e is “extension”. This sequence is nof exact at CF"(M): the kernel of i*
contains all w € Cc"(M) which are 0 on N, while the image of e contains all
(oKX C!"(M) which are 0 in a neighborhood of N.

To circumvent this difficulty. we will have (o use a technical device. Wt
appeal first © a result from the Addendum to Chapter 9. There is a compact
neighborhood V of N and amap z: V — N such that V is a manifold-with-
boundary, and if j: N — V is the inclusion, then 7 o j is the identty of A.
while j o7 is smoothly homotopic to the identity of V. We now construct «
sequence of such neighborhoods V = V; D V, D V3 O .-+ with (", V; = A.

Va N

Now consider two forms w; € C*(V;), wj € CK(V;). We will call &; and w;
equivalent ¥ there & { > i, j such that

iV =wj| V.
Itis clear that we can make the set ofall equivalence classes into a vector space
g"(N], the “germs of k-forms in a neighborhood of M”. Moreover, it is easy
to decfine d: g‘k(N) — Gk+1(N), so that we obtain a complex §. Finally. we
define a map of complexes

P*
ckmy 5 gk (v

in the obvious way: @ > the equivalence class of any w|V;.
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10. LEMMA. The sequence

5 e . "
0-> CH(M — N) — CH(M) — gk(N) > 0
is exact.

PROOF. Clearly e is one-one.

If w e CKM — N). then w = 0 in some neighborhood U of N. Since N is
compact and [);V; = N, there is some i such that ¥; C U, and consequently
® = 0 on V;. This means that i*e(w) = 0. Conversely, suppose A € CC"'(M)
satisfies i*(1) = 0. By definition of 9."(N), this means that A|V; = 0 for some i.
Hence MM — N has compact support C M ~ N,and A = e(A|M — N).

Finally, any element of §*(N) is represented by a form n on some V;. Let
f: M — [0,1] be a C*® function which is 1 on V4, having support / C
nterior V;. Then f5 € Cc"'(M), and 'y represents the same clement of 9"(N)
asJ; consequently this element isi*(fn). %

11. LEMMA. The cohomology vector spaces HX(§) of the complex {G*(N)}
are isomorphic to HY(N) for all k.

PROOF. This follows easily from the fact that j*: HK(V;) =» HK(N) is an
isomorphism for each V;. Details are lefi to the reader. <

12. THEOREM (THE EXACT SEQUENCE OF A PAIR). If NC M isa
compact submanifold of M, then there is an exact sequence

8
o> HY(M — N) - HE(M) - HX(N) — HXP' (M - N)> ...

PROOF. Apply Theorem 2 to the exact sequence of complexes given by Lemma
10, and then use Lemma 11. &

In the proof of this theorem, the de Rham cohomology of the manifold-with-
boundary V; entered enly as an intermediary (and we could have replaced
the V; by their interiors). But in the next theorem, which we will need later, it
is the object of primary interest.

13. THEOREM. Let M be a manifold-with-boundary, with compaét bound-
ary dM. Then therc is an exact sequence

8
oo HN(M - 0M) > HE(M) > HFOM) — HFYY(M - M) - - .
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PROOF. Just like the proof of Theorem 12, using tubular neighborhoods V; of
OM in M. %

As a simple application of Theorem 13, we can rederive #X(R") from a
knowledge of H*(S"~"), by choosing M 10 be the closed ball B in R”, with
HK(B)~ H*(B) =0 for k # 0. The reader may use Theorem 12 1o compute
HE(S"™ x R™), by considering the pair (S” x R™, {p} x R™). Then Theo-
rem 13 may be used to compute the cohomology of S” x S™~! = 3(S" x
closed ball in R™). For our next application we will seek bigger game.

Let M C R™! be a compact #-dimensional submanifold of R™*! (a com-
pact “hypersurface” of R™*). Using Theorem 8-17, the sequence of the pair
(R™1 M) gives

HIR™1) — Hn(M)LH:rH(]RIHI — M)— HPH(RPHY — BT,
I % I
0 R 0

It follows that

(+) number of components of R™! — M = dim H"(M) + 1.
But we also know (Problem 8-25) thai

(#%) number of components of R”*! — M > 2.

14. THEOREM. If M C R"*! is a compact hypersurface, then M is ori-
entable, and R"+! — M has exactly 2 components. Moreover, M is the boundary
of each component.

PROOF. From (x) and (#*) we obtain

dim H"(M) +1 > 2.
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Since dim H"(M) is either 0 or 1, we conclude that dim H" (M) = 1, so M is
orientable; then (x) shows that R"* — M has exactly two components. The
proofin Problem 8-25 shows that every point of M is arbitrarily close to points
in different components of R"+! — M, so every point of M is in the boundary
of each of the two components. <

15. COROLLARY (GENERALIZED [C*] JORDAN CURVE THEOREM).
If M c R™ is a submanifold homeomorphic to S”, then R+ — M has two
components, and M is the boundary of each.

16. COROLLARY. Ncither the projective planc nor the Klein bottle can be
imbedded in R3.

Our next main result will combine some of the theorems we already have.
However, there are a number of technicalities involved, which we will have to
dispose of first.

Consider a bounded open set U C R” which is star-shaped with respect to 0.
Then U can be described ‘as i

U=itx:xeS™" and 0 <1 < p(x))

for a certain function p: S"~' - R. We will call p the radial function of U.

px)

STl

If pis C™, then we can prove that U is diffecomorphic to the open ball B of
radius 1 in R™. The basic idea of the proof is to take tx € B to p(x)t - x € U.
This produces difficulties at 0, so a modification is necessary.

17. LEMMA. If the radial function p of a star-shaped open set U C R" is C®,
then U is diffeomorphic 1o the open ball B of radius 1 in R”.
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PROOF. We can assume, without loss of generality, that p > 1 on §”~!. Let
/:[0,1] = [0,1] be a C™ function with

/ = 0in a neighborhood of 0
/=20
JS)=1
Define h: B - U by
h(xy = [t + (plx) = 1) 1 (1)]x, xeS™!' 0<t<].
Clearly / is a one-one map of B onto U. Itis the identity in a neighborhood
of 0, so it is C°, with a non-zero Jacobian, at 0. At any other point the same

conclusion follows from the fact that 1 = 1 + (p(x) — 1) f (1) is a C*® function
with strictly positive derivative. «»

In general, the function p need not be C; it might not even be continuous.

However, the discontinuities of p can be of a certain form only.

18. LEMMA. At each point x € "', the radial function p of a star-shaped
open set U C R” is “lower semi-continuous™: for every &£ > 0 there is a neigh-
borhood W of x in §77! such that p(y) > p(x) — ¢ for all y € W.

PROOF. Choose tx € U with p(x) —t < . Since U is open, there is an open

T

ball B with x € B C U. There is clearlv a neighborhood W of x with the
property that for y € W the point ¢y is in B, and hence in U. This means that

for y € W we have p(3) 2t > p(x) —¢e. o
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Even when p is discontinuous, it looks as if U should be diffeomorphic to R”.
Proving this turns out to be quite a feat, and we will be content with proving
the following.

19. LEMMA. If U is an open star-shaped set in R”, then H*(U) =~ H¥(R")
and H¥(U) =~ HX(R") for all k.

PROOF. The prooffor H* is clear, since U is smoothly contractible to a point.
We also know that H?(U) ~ R = H(R"). By Theorem 8-17, we just have to
show that H¥(U) =0for0 <k < n.

Let @ be a closed k-form with compact support K C U. We claim that there
is a C* function p: S"™' — R such that 5 < p and

KcV={x:xeS "and0<1 < p(x)}.

This will prove the Lemma, for then V is diffeomorphic to R”, and consequently
@ = dn where 1 has compact support contained in V, and hence in U.

For each x € "7}, choose 1x < p(x) such that all points in K of the form ux
for 0 < u < p(x) actually have u < 15. Since K is closed and p is lower semi-

continuous, there is a neighborhood W of x in S such that 1, may also
be used as 7y for all y € W. Let Wy,,..., Wy, cover SV let ¢1,...,¢, be a
Partition of unity subordinate to this cover, and define

P=ladr+ o+l

Any point x € S"7! is in a certain subcollection of the Wy;, say Wx,,..., Wy,
for convenience. Then pj41(x),...,0,(x) are 0. Each ty,,...,1, & < p(x).
Since g1 (x) +---+¢(x) = L it follows that p(x) < p(x). Similarly, K C V. &
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We can apply this last Lemma in the following way. Let M be a compact
manifold, and choose a Riemannian metric for M. According to Problem 9-32,
every point has a neighborhood U which is geodesically convex; we can also
choose U so that for any p € U the map exp, takes an open subset of M,
diffeomorphically onto U. Let {Uy, ..., U, } be a finite cover by such open sets.
Ifany V = U, N . -NUj;, is non-empty, then V is clearly geodesically convex. If
p €V, then exp, establishes a diffeomorphism of V with an open star-shaped
setin M. It follows from Lemma 19 that V' has the same H* and HX as R”.
In general, a manifold M will be called of finite type if there is a finite cover
{Ur, ..., U} such that each non-empty intersection has the same H* and Hc"'
as R”; such a cover will be called nice.

It is fairly clear that if we consider N = {1,2,3,...} as a subset of R2, then
M = R? — N is not of finite type. To prove this rigorously, we first use the
Mayer-Vietoris sequence for R? = M U V, where V is a disjoint union of balls
around 1,2,3,.... We obtain

H'(R?) —— H'(M)® H'(V) —— H' (M N\ V) — HR?),
I 1 I
0 0 0

where M NV has the same H' as a digjoint union of infinitely many copies
of S?; this shows that H' (M) is infinite dimensional (see Problem 7 for more
information about the cohomology of M). On the other hand,

20. PROPOSITION. If M has finite type, then H* (M) and HX (M) are finite
dimensional for all k.

PROOF. By induction on the number of open sets » in a nicc cover. It is
clear for r = 1. Suppose it is true for a certain », and consider a nice cover
{Ur,...,Ur, U} of M. Then the theorem is true for V = Uy U.-. U U, and
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for U. Itis alsotrue for U NV, since this has the nice cover {U NUy,...,UNU;).
Now consider the Mayer-Vietoris sequence

&
oo HNU V) > BN M) s HRU) @ HE(V) > -

The map @ maps H*(M) onto a finite dimensional vector space, and the kernel
of @ is also finite dimensional. So H* (M) must be finite dimensional.
The proof for HX(M) is similar. 4

For any manifold M we can define (see Problem 8-31) the cup product map
HE(M) x H (M) 2 H* ()
by
([w], () = [@ A 7).

We can also define
HE (M) x HL (M) = HEY (1)

by the same formula, since @ A 7 has compact support if 1 does. Now suppose
that M" is connected and oriented, with orientation . There is then a unique
element of H/(M) represented by any n € C7" (M) with

/ n=1.
(M,u)

It is convenient to also use p to denote both this element of H (M) and the
isomorphism H(M) — R which takes this element to 1 € R. Now every
o € H*(M) determines an element of the dual space Hc"_"(M)* by

ﬂn—»auﬂeHc"(M)L]Rk

We denote this element of H;""(M)* by PD(a), the “Poincaré dual” of @, so
that we have a map

PD: HE(M) — H'k(M)*, PD(@)(B) = pula U B).

One of the fundamental theorems of manifold theory states that £D is always
an isomorphism. We are all set up to prove this fact, but we shall restrict
the theorem to manifolds of finite type, in order not 1o plague ourselves with
additional technical details. As with most big theorems of algebraic topology,
the main part of the proof is called a Lemma, and the theorem itself is a simple
corollary:
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21. LEMMA. If M = UUYV for opensets U and V and PD is an isomorphism
for all k on U, V,and U NV, then PD is also an isomorphism for all k on M.
PROOF. Let! = n—k. Consider the following diagram, in which the top row
is the Mayer-Vietoris sequence, and the bottom row is the dual of the Mayer-
Vietoris sequence for compact supports.

Yy HY-WVy — BN U N V) — BRMY — Ry e BRYV) — BRU N V)
PDePD lPD JPD JPDeaPD JPD
[HEFY Uy e HIF () — B U Yy — By — (Bl Uye B vy — Hlwnvy

By assumption, all vertical maps, except possibly the middle one, are isomor-
phisms. It is not hard to check (Problem 8) that every square in this diagram
commutes up to sign, so that by changing some of the vertical isomorphisms
1o their negatives, we obtain a commutative diagram. We now forget all about
our manifold and use a purely algebraic result.

“THE FIVE LEMMA?”. Consider the following commutative diagram of vec-
tor spaces and linear maps. Suppose that the rows are exact, and that ¢, ¢2.
¢4, ¢s are isomorphisms. Then @3 is also an isomorphism.

[2X] 2%

| QI NG /AL SN VAL NN /L I /A
!

J‘Pl J¢z l(ba l¢4 J¢s

B

W, W, B2 W, B3 Wi Bs W

PROOF. Supposc ¢3(x) = 0 for some x € V3. Then B3y (x) = 0, 0 Psa3(x) =
0. Hence a3(x) = 0, since ¢4 is an isomorphism. By exactness at V3, there is
y € Vawith x = ay(y). Thus 0 = ¢3(x) = ¢iaa(y) = Baga(y). Hence
@2() = Bi(z) for some z € Wy. Moreover, = = ¢ (w) for some w € V. Then

$2(3) = fi(z) = frh (w) = o (w),
which implies that y = e (w). Hence
X = ay(y) = ax(e(w)) = 0.

So ¢35 is one-onc.
The proof that @3 is onto is similar, and is left (o the reader. This proves the
original Lemma. <
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22. THEOREM (THE POINCARE DUALITY THEOREM). If M is a
connected oriented n-manifold of finite type, then the map

PD: H*(M) > HI k(M)
is an isomorphism for all k.

PROOF. By induction on the number r of open sets in a nice cover of M. The
theorem is clearly true for r = 1. Suppose it is true for a certain r, and consider
a nice cover {Uy,...,U,, U} of M. Let V = Uy U-.-UU,. The theorem is true
for U, V, and for U NV (as in the proof of Proposition 19). By the Lemma, it
is true for M. This completes the induction step. %

23. COROLLARY. If M is a connected oriented n-manifold of finite type,
then H*(M) and Hc"_k(M) have the same dimension.

PROOF. Use the Theorem and Proposition 19, noting that V* is isomorphic
to V if V is finite dimensional. <

Even though the Poincaré Duality Theorem holds far manifolds which are not
of finite type, Corollary 23 does not. In fact, Problem 7 shows that H* (R2 — N)
and H[' (R? — N) have different (infinite) dimensions.

24. COROLLARY. If M is acompact connected orientable n-manifold, then
H¥(M) and H"*(M) have the same dimension.

25. COROLLARY. If M is acompact orientable odd-dimensional manifold,
then x(M) = 0.

PROOF. 1n the expression for x(M), the terms (—1)* dim H*(M) and
(=1)""* dim H" k(M) = (=1)k* dim H"* (M)

cancel in pairs. «

A more involved use of Poincaré duality will eventually allow us to say much
more about the Euler characteristic of any compact connected oriented man-
ifold M". We begin by considering a smooth k-dimensional orientable vector
bundle § = n: E — M over M. Oriemations u for M and v for § give an
orientation & @ v for the (n + k)-manifold E. since E is locally a product. If
{Ur,...,U;} isanice cover of M by geodesically convex sets so smallthat each
bundle §|U; is trivial, then a slight modification of the proof for Lemma 19
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shows that {r ' (Uy),...,m " (U,)} is a nice cover of E, so E is a manifold of
finite type. Notice also that for the maps

s = O-section
M

we have

mos = identity of M
som  is smoothly homotopic to identity of E,

so n*: H'(M) — H!(E) is an isomorphism for all /. The Poincaré duality
theorem shows that there is a unique class U € HX(E) such that

7ol =p@ve HHH(E).

This class U is called the Thom dlass of §. Our first goal will be to find a
simpler property to characterize U.

Let F, = m~!(p) be the fibre of £ over any point p € M,and let j,: F, —» E
be the inclusion map. Since j, is proper, there is an element j,*U € H["(Fp).
On the other hand, the orientation v for £ determines an orientation v, for Fj,
and hence an element v, € Hc"(Fp).

26. THEOREM. Let (M,p) be a compact connected oriented manifold, and
&§=m: E— M an oriented k-plane bundle over M with orientation v. Then
the Thom class U is the unique element of HX(E) with the property that for
all p € M we have j,*U = v,. (This condition means that

/ jlo=1,
(Fpvp)

where U is the class of the closed form w.)

PROOF. Pick some closed form w € Cc" (E) representing U, and let n € C"(M)
be a form representing u, so that f(M.u) n = 1. Our definition of U states that

M /n*n/\wzl.
E

Let A C M be an open set whichisdiffeomorphic to R”, so that 4issmoothly
contractible to any point p € 4. Also choose 4 so that there is an equivalence

Jia7H4) > A xRE.
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This equivalence allows us to identify 777! (4) with 4 x F,. Under thisidentifica-
tion, the map ji,: F, — 117" (4) corresponds to the map e > (p,€) for e € F,
which we will continue to denote by j,. We will also use 7,: 4 x F, - F, to
denote projection on the second factor.

Let || || be a norm on F,. By choosing a smaller 4 if necessary, we can
assume that there is some K > 0 such that, under the identification of 7 ~'(4)
with 4 x Fj, the support of wl|117" (A4) is contained in {(g,¢) : g € 4, |le]| < K}.

\r—/\/ support w
]

A

\/\/

Using the fact that 4 is smoothly contractible to p, it is easy to see that there
is a smooth homotopy H: (4 x Fp) x [0,1] - A x F, such that

H(e,0) =e
Hie,1) = (p,ma(e)) = jplima(e));

wejust pull the fibres along the smooth homotopy which makes 4 contractible

to e. Tor the H constructed in this way it follows that
He,1) ¢ support o if |lell = K.

Consequently, the form H*w on (4 x F,) x [0,1] has support contained in
{(g,e,1) : llell < K}. A glance at the definition of / (page 224) shows that the



444 Chapter 11
form JH*w on A x F, has support contained in {(g,e) : |le]] < K}. Theo-
rem 7-14 shows that

(Jpom)'w—w=i*Hw)—i*(H*w)
= d(H*w) + I(dH* )

=d(/H*w).
Thus
(2 7t jptw —w =dh, support A C {(g,€) : lle}] < K.
So
(3 / n*n/\w=/ T AT e — / T AdA.
A% Fp A% Fp AxF,
Now, on the one hand we have (Problem 8-17)
(4) / AL jte = /n*n / Jow.
AxF, 4 Fp

On the other hand, we claim that the last integral in (3) is 0. To prove this, it
clearly suffices to prove that the integral is 0 over 4’ x Fj, for any closed ball
A" C A Since

arundh=xd@mru Adr).

we have

where *p A A has

(5 / a*undh= :t/ d(m*pu A X compact support on
A % Fpy A XFp A x Fp by (2)

=+ / AL by Stokes” Theorem
24" xF,
=0.

because the form w*p A X is clearly 0 on 34’ x F, (since d4’ is (n — 1)-dimen-
sional).
Combining (3), (4), (5) we see thai

/ n*nAw:/n*n~/ Jjiw.
AxF, A Fp
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This shows that an Jp*w isindependent of p, for p € 4. Using connectedness.
it is easy 1o see that it is independent of p for all p € M, so we will denote it
simply by [, j*w. Thus

/ n'n/\w:/n'n-/j*w.
x~1(4) 4 F

Comparing with equation (1), and utilizing partitions of unity, we conclude that

[ o=t
F

which proves the first part of the theorem.
Now suppose we have another class U' € HX(E). Since

HKE) ~ H"(E) ~ H"(M) ~R.
it follows that U’ = ¢U for some ¢ € R. Consequently.
BtV = jpcU = ¢ vp.
Hence U’ has the same property as U only if ¢ = 1 <

The Thom class U of § = m: E —» M can now be used o determine an
element of H¥(M). Lets: M — E be any section; there alwaysis one (namely,
the 0-section) and anv two are clearly smoothly homotopic. We define the Euler
class x(§) € H*(M) of § by

x(§) =s"U.

Notice that if § has a non-zero section s: M — E, and w € Cck(E) rep-
resents U, then a suitable multiple ¢ - s of s takes M to the complement of
support . Hence, in this case

X&) =(c-s)*U =0.

The terminology “Euler class” is connected with the special case of the bundle
TM, whose sections are, of course, vector fields on M. If X is a vector field
on M which has an isolated 0 at some point p (that is, X (p) = 0, but X(g) #0
for g # p in a neighborhood of p), then, quite independently of our previous
considerations, we can define an “index” of X at p. Consider first a vector
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field X onan open set U C R” with an isolated zeroat 0 € U. We can define
a function fx: U —{0} = S"' by fx(p) = X(p)/|1X(p)I. f i: S"! - U
is i(p) = £p, mapping S"~' into U, then the map fx oi: S"! — S"~! has a
certain degree; it is independent of &, for small ¢, since the maps iy,i,: S —
U corresponding to &) and & will be smoothly homotopic. This degree is called
the index of X at 0.

index ~1 index 2 index —2

index ! in R” index (—1)" in R"
Now consider a diffeomorphism i: U — V C R” with /(0) = 0. Recall that
hX is the vector field on V' with
(h*X)(y) = 11*(X;,—|(y)).

Clearly 0 is also an isolated zero of A, X.

27. LEMMA. If h: U — V C R” is a diffeomorphism with A(0) = 0, and X
has an isolated 0 at 0, then the index of /1,X at 0 equals the index of X at 0.
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PROOF. Suppose first that £ is orientation preserving. Define
H:R" x[0,1] > R

by

h(1x) 0<t<1

Dh(0)(x) 1 =0.

This is a smooth homotopy; to prove that it is smooth at 0 we use Lemma 3-2

(compare Problem 3-32). Each map H, = x — H(x,1) is clearly a diffeomor-

phism, 0 < 1 < 1. Note that Hy € SO(n), since h is orientation preserving.

There is also a smooth homotopy {H,}, 1 <t < 2 with each H, € SO(n) and

H, = identity, since SO(n) is connected. So (see Problem 8-25), the map # is

smoothly homotopic to the identity, via maps which are diffeomorphisms. This

shows that fj, x is smoothly homotopic to fx on a sufficiently small region of

R” — {0}. Hence the degree of fj,x o1 is the same as the degree of fx oi.
To deal with non-orientation preserving A, it obviously suffices to check the

theorem for A(x) = (x!,...,x"~}, —x"). In this case

Jrax =ho fxoh™,

which shows that degree fa,x o/ = degree fx oi. %

H(x,l):{

As a consequence of Lemma 27, we can now define the index of a vector field
on a manifold. If X is a vector field on a manifold M, with an isolated zero at
p € M, we choose a coordinate system (x, U) with x(p) = 0, and define the
index of X at p to be the index of x.X at 0.

28. THEOREM. Let M be a compact connected manifold with an orien-
tation p, which is, by definition, also an orientation for the tangent bundle
E=m:TM - M. Let X: M — TM be a vector field with only a finite
number of zeros, and let o be the sum of the indices of X at these zeros. Then

X&) =0-pe H(M).
PROOF. Let pi,...,prbe the zeros of X. Choose disjoint coordinate systems
(Ur, x1), ..., (Ur, xr) with x;(ps) = 0, and let
Bi=x"'(peR :|p| 1}
If w € C/(E) is a closed form representing the Thom class U of &, then we
are trying to prove that

X*w) =0
(M)
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We can clearly suppose that X(g) ¢ support  for g ¢ {; Bi. So

/M X*(w) = ; /B X

thus it suffices to prove that
(%) / X*(w) = index of X at p;.
B;

It will be convenient to drop the subscript i from now on.

We can assume that TM is trivial over B, so that 7171(B) can be identified
with B x M. Let j, and 12 have the same meaning as in the proof of The-
orem 26. Also choose a norm || || on M, We can assume that under the
identification of 717!(B) with B x M, the support of w|x~'(B) is contained
in {(¢g,v) : g € 4, |lvll <1}. Recall from the proof of Theorem 26 that

ot —w=dh support A C {(¢,v) : vl <13,

Since we can assume that X(¢) ¢ support A for ¢ € 3B, we have

0 [xtw =[xt - Jxan

= / X**(jptw) — / X*) by Stokes’ Theorem
B aB

= / X0 (jptw).
B
On the manifold M, we have

pan (n— 1)}form on M,

Jo'w=dp (with non-compact support).

If D C M, is the unit disc (with respect to the norm || |) and S denotes
dD C My, then

(2. / p=/ p=fdp
Su-t aD D
=/ jptw
D

by Theorem 26, and the fact
that support j,*w C D.
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Now, for g € B —{p}, we can define
X(g) = X(@)/1X (),

and X: 38 — TM is smoothly homotopic to X: 4B — TM. So
®  [xmie = [ xwtas
B B

= / X*m*p by Stokes” Theorem
aB

=/ X'HZ’P
3B

= / (20 X)*p.
9B

From the definition of the index of a vector field, together with equation (2), it
follows that

“4) / (m2 0 X¥*)p = index of X at p.
aB
Equations (1), (3), (4) together imply (x). <

29. COROLLARY. If X and Y are two vector fields with only finitely many
2eros on a compact orientable manifold, then the sum of the indices of X equals
the sum of the indices of Y.

At the moment, we do not even know that there is a vector field on M with
finitely miany zeros, nor do we know what this constant sum of the indices is
(although our terminology certainly suggests a good guess). To resolve these
questions, we consider once again a triangulation of M. We can then find a
vector field X with just one zero in each k-simplex of the triangulation. We
begin by drawing the integral curves of X along the I-simplexes, with a zero at
cach 0-simplex and a one point in each 1-simplex. We then extend this picture
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to include the integral curves of X on the 2-simplexes, producing a zero at onc

ZIN

point in cach of them. We then continue similarly until the n-simplexes are

filled.

30. THEOREM (POINCARI:]—HOPF)A The sum of the indices of this vector
field (and hence of any vector field) on M is the Euler characteristic x(M).
Thus, for § =n: TM — M we have x(§) = x(M) - u.

PROOF. At each 0-simplex of the triangulation, the vector field looks like

with index I.

Now consider the vector field in a neighborhood of the place where it is zero
on a I-simplex. The vector field looks like a vector field on R” = R! x R~
which points direcfly inwards on R! x {0} and directly outwards on {0} x R"~".

L)r=3
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For 17 = 2, the index is clearly —1. To compute the index in general, we note
that fx takes the “north pole” N = (0,...,0,1) to itself and no other point
goes to N. By Theorem 8-12 we just have to compute signy fx. Now at N we
can pick projection on R"~! x {0} as the coordinate system. Along the inversc
image of the x'-axis the vector field looks exactly like figure (a) above, where we
already know the degree is —1, 50 fx, takes the subspace of Sy consisting of
tangent vectors to this curve into the same subspace, in an orientation reversing
way. Along theinverse image of the x2-, .. ., x"~!-axes the vector field looks like

s0 fx takes the corresponding subspaces of S"~' into themselves in an ori-
entation preserving way. Thus signy fy = =1, which is therefore the index of
the vector field.

In general, near a zero within a k-simplex, X looks like a vector field on
R” = RF x R"~* which points directly inwards on R¥ x {0} and directly outwards
on {0} x R"*, The same argument shows that the index is (—1).

Consequently, the sum of the indices is

Q=1 +az— = x(M). %

We end this chapter with one more observation, which we will need in the
last chapter of Volume V! Let § =n: E — M be a smooth oriented k-plane
bundle over a compact connected oriented n-manifold M, and let ( , ) be a
Riemannian metric for £. Then we can form the “associated disc bundle” and
“associated sphere bundle”

D={e:(e,e) <1) ( { \

S={e:(e,e)=1). )\J

Itis easy tosee that D is a compact oriented (n + k)-manifold, with dD = S;
moreover, the D constructed for any other Riemannian metric is diffeomorphic
1o this one. We let mo: S — M be m|S.




452 Chapter 11

31. THEOREM. A class @ € H* (M) satisfies mo*(a) = 0 if and only if & is a
multiple of x(§).

PROOF. Consider the following picture. The top row is the exact sequence

HE(D — §) —4—s HY(D) —L— HK(S)
\ 5,,1 (xID)}
H* (M)

for (D, S) given by Theorem 13. The map s: M — D — S is the 0-section,
while §: M — D is the same 0-section. Note that everything commutes.
no* = i* o (n| D)* since g = (n|D) o1,

since extending a form to D
does not affect its value on s(M),

' =35,0¢

and that
5 o (n|D)* = identity of H* (M),

since (| D) o § is smoothly homotopic to the identity.

Now let @ € H¥(M) satify mo* (@) = 0. Then i*(x|D)*a = 0, so (x| D)*a €
imagee. Since D — S is diffeomorphic to E, and every element of HX(D — S)
is a multiple of the Thom class U of £, we conclude that

(n|D)*a =c-e(U) for some ¢ € R.
Hence

a=§(n|D)a=c-5*WU))=c s*U
=c-x(&).

The proof of the converse is similar. <
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PROBLEMS

1. Find A*(S! x ... x S!) by induction on the number n of factors. [Answer:

2. (a) Use the Mayer-Vietoris sequence to determine H¥(M — {p}) in terms
of H*(M), for a connected manifold M.

(b) If M and N are two connected n-manifolds, let M # N be obtained by
joining M and N as shown below. Find the cohomology of M # N in terms of
that of M and N.

(c) Find x for the n-holed torus. [Answer: 2 — 211.]

3. (a) Find #*(Maobius strip).

(b) Find H*(P2),

(c) Find H*¥(P"). (Use Problem 1-15(b); it is necessary to consider whether a
neighborhood of P#~! in P is orientable or not.) [Answer: dim F* (P") = |
if k even and < n, = 0 otherwise.]

(d) Find #*(Klein bottle).

(e) Find the cohomology of M # (Mébius strip) and M # (Klein bottle) if M
is the n-holed torus.

4. (a) The figure below is a triangulation of a rectangle. If we perform the
indicated identifications of edges we do 70! obtain a triangulation of the torus.
Why not?
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(b) The figure below does give a triangulation of the torus when sides are iden-
tified. Find o, @1, a2 for this triangulation; compare with Theorem 5 and
Problem 1.

AN

AN

/
/
/

5. (a) Tor any triangulation of a compact 2-manifold M, show that

3ap = 201
a; = 3(ao — x(M))
@lao=1 @

) 2
a0 > 3(7+ VA9 = FAX(HD)).
(b) Show that for triangulations of S? and the torus 72 = S! x S! we have
S w24 m26 w24
T2 @27 @221 ap> 14
Find triangulations for which these incqualities are all equalities.

6. (a) Find H%(S" x R™) by induction on 1. using the Mayer-Vietoris sequence
for compact supports.

(b) Use the exact sequence of the pair (S” x R”, {p} x R™) to compute the
same vector spaces.

() Compute H¥(S" x S”~1), using Theorem 13.

7. (a) The vector space H'(R? — N) may be described as the set of all se-
quences of real numbers. Using the exact sequence of the pair (R?,N), show
that H!(R? — N) may be considered as the set of all real sequences {a,} such
that a, = 0 for all but finitely many n.

(b) Describe the map PD: HY(R? - N) —» H!(R? — N)* in terms of these
descriptions of H'(R?2-N) and H](R%-N). and show that it is an isomorphism.
(c) Clearly HCI(IR2 - N) has a countable basis. Show that H!'(R2 — N) does
not. Hint: If v; = {a;’} € H'(R? = N), choose (b1,b2) € R? linearly indepen-
dent of (a1',a1?); then choose (b3,b4,b5) € R® linearly independent of both
(ar, %, a1%) and (423, a2%, a2%); etc.



LExcursion in the Realm of Algebraic Topology 455

8. Show that the squares in the diagram in the proof of Lemma 21 commute,
except for the square

HEN U N V) ——— HY ()
lPD lpo

HYWwnv)y Hi(M)*

which commutes up to the sign (—1)¥, (Itwill be necessary to recall how various
maps are defined, which is a good exercise; the only slightly difficult maps are
the ones involved in the above diagram.)

9. (a) Let M = M{UM2UM;3U--- be adisjoint union of oriented »-manifolds.
Show that H[/‘(M) ~@; H["(M,»), this “direct sum” consisting of all sequences
(a1, a2,a3,...) with a; € H["(M,') and all but finitely many o; =0 € Hf(Mi).
(b) Show that H*(M) = []; HK(M,), this “direct product” consisting of all
sequences (@1,02,03,...) with a; € HY(M;).

(c) Show that if the Poincaré duality theorem holds for each M, then it holds
for M.

(d) The figure below shows a decomposition of a triangulated 2-manifold into
three open sets Uo, Uj, and Uz. Use an analogous decomposition in n dimen-
sions to prove that Poincaré duality holds for any triangulated manifold.

Uo is union of shaded

U, is union of ulshaded/

U, is union of shaded
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10. Let £ =n: E - Mand § = n': E' - M be oriented k-plane bundles.
over a compact oriented manifold M, and (f, /) a bundle map from &’ to ¢
which is an isomorphism on each fibre.

@ If U € H*(E) and U’ € H¥(E’) are the Thom classes, then f*(U) = U".
(b) f*(x(&)) = x(§"). (Using the notation of Problem 3-23, we have f*(x(£)) =
X(f*(8)).)

11. (a) Let § = n: E > M be an oriented k-plane bundle over an oriented
manifold M, with Thom class U. Using Poincaré duality, prove the Thom
Isomorphism Theorem: The map HI(E) > HC"""'(E) givenby e > a v U is
an isomorphism for all /.

(b) Since we can also consider U as being in H*(E), we can form U u U €
HZ2K(E). Using anticommutativity of A, show that this is 0 for k odd. Conclude
that U represents 0 € H*(E), so that x(¢) = 0. It follows, in particular, tha
X&) =0whent{ =n: TM — M for M of odd dimension, providing another
proof that x(M) = 0 in this case.

12. 1f a vector field X has an isolated singularity at p € M", show that the
index of =X at p is (=1)" times the index of X at p. This provides another
proof that x(M) = 0 for odd 7.

13. (@) Let p1,...,pr € M. Using Problem 8-26, show that there is a subsel
D C M difleomorphic to the closed ball, such that all p; € interior D.

(b) If M is compact, then there is a vector field X on M with only one singu-
larity.

(c) Ttis a fact that a C map f: "' — S"7! of degree 0 is smoothly lo-
motopic to a constant map. Using this, show that if x(M) = 0, then there is a
nowhere 0 vector field on M.

(d) If M is connected and not compact, then there is a nowhere 0 vector field
on M. (Begin with a triangulation to obtain a vector field with a discrete set of
zeros. Join these by a ray going to infinity, enclose this ray in a cone, and push
everything ofl to infinity.)

(e) f M is a connected manifold-with-boundary. with dM # 0, then there is a
nowhere zero vector field on M.
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14. This Problem proves de Rham’s Theorem. Basic knowledge of singular
cohomology is required. We will denote the group of singular X-chains of X
by Sx(X). Fora manifold M, we let Sg°(M) denote the C* singular k-chains,
and let i SZ°(M) — Sx(M) be the inclusion. It is not hard to show that therc
is a chain map t: Sg(M) - S{°(M) so that T o i =identity of S{°(M), while
i o1 is chain homotopic to the identity of Sk (M) [basically, T is approximation
by a C® chain]. This means that we obtain the correct singular cohomology
of M if we consider the complex Hom(S,E”(M), R).

(a) If w is a closed k-form on M, let Ri(w) € Hom(Sg° (M), R) be
Ri(w)(c) = /w4
(4

Show that Rk is a chain map from {Ck(M)} 10 {Hom(Sg° (M), R)). (Hmt:
Stokes’ Theorem.) It follows that there is an induced map Rk from the de Rham
cohomology of M to the singular cohomology of M.

(b) Show that Rk is an isomorphism on a smoothly contractible manifold (Lem-
mas 17, 18, and 19 will not be necessary for this.)

(c) Imitate the proof of Theorem 21, using the Mayer-Vietoris sequence for
singular cohomology, o show that if Rk is an isomorphism for U, V, and UNYV,
then it is an isomorphism for U U V.

(d) Conclude that Rk is an isomorphism if M is of finite type. (Using the
method of Problem 9, it follows that R/ is an isomorphism for any triangulated
manifold.)

(e) Check that the cup product defined using A corresponds to the cup product
defined in singular cohomology.
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CHAPTER 1

Following the suggestions in this chapter, we will now define a manifold 10 be
a topological space M such that

(1) M is Hausdorf],

(2) For each x € M there is a neighborhood U of x and an integer n > 0
such that U is homeomorphic 1o R”.

Condition (1) is necessary, for there is even a 1-dimensional “manifold” which is
not Hausdorfl. 1t consists of RU {*} where * ¢ R, with the following topology:
A set U is open if and only if

() UNRis open,
(2) If % € U. then (U NR) U {0} is a neighborhood of 0 (in R).

Thus the neighborhoods of *look just like neighborhoods of 0. This space may
also be obtained by identifying all points except 0 in one copy of R with the
corresponding point in another copy of R. Although non-Hausdorfl manifolds
are important in certain cases, we will not consider them.

We have just seen that the Hausdorfl property is not a “local property”, but
local compactness is, so every manifold is locally compact. Moreover, a Haus-
dorflocally compactspace is regular, so every manifold is regular. (By the way,
this argument does not work for “infinite dimensional” manifolds, which are lo-
cally like Banach spaces; these need not be regular even if they are Hausdorff)
On the other hand, there are manifolds which are not normal (Problem 6). Ev-
ery manifold is also clearly locally connected, so every component is open, and
thus a manifold itself. Before exhibiting non-metrizable manifolds, we first note
that almost all “nice” properties of a manifold are equivalent.

THEOREM. The following properties are equivalent for any manifold M:

(a) Each component of M is o-compact.

(b) Each component of M is second countable (has a countable base for the
topology).

(c) M is metrizable.

(d) M is paracompact.

(In particular. a compact manifold is metrizable.)
459
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FIRST PROOF. (a)= (b) follows immediately from the simple proposition thai
a o-compact locally second countable space is second countable.

(b) = (c) follows from the Urysohn metrization theorem.

(c) = (d) because anv metric space is paracompact (Kelley. General Topuolegy.
pg. 160). The second proof does not rely on this difficult theorem.

(d) = (a) is a consequence of the following.

LEMMA. A connecied. locally compact, paracompact space is o-compacl.

Puof. There is a locally finite cover of the space by open sets with compact clo-
sure. If Uois one of these. then Up can intersec1 onlyva finite number Uy, . . ., Uy,
of 1he others. Similarly UoU Uy U --- U Uy, intersects only Un 1. ..., Una: and
so on. The union

Uou,..uﬁmU.A.UU,,:LJ“.:UOU,A,UU"IU..AUU":UM

is clearly open. It is also closed. for if x is in 1he closure, then x must be in
the closure of a finite union of these U;. becausc v has a neighborhood which
intersects only finitely many: Thus x is in the union.
Since the spacc is connecied, i1 equals this countable union of compact sets.
This proves the Lemma and the Theorem.

SECOND PROOF. (a) = (b) = (c) and (d) = (a) as before.

(¢) = (a) is Theorem 1-2.

(a)=(d). Les M = C,UC2U- - . where each C; is compact. Clearly C) has
an open neighborhood U with compact closure. Then U, U C; has an open
neighborhood U, with compact closure. Continuing in this way, we obtain open
sets U; with U; compact and Ui c Ui 41. whose union contains all C;, and hence
is M. It is easy 1o show from this that M is paracompact. <

It 1urns out thai there are even 1-manifolds which are no1 paracompact. The
construction of these examples requires the ordinal numbers, which are bricfly
explained here. (Ordinal numbers will no1 be needed for a 2-dimensional ex-
ample to come later.

ORDINAL NUMBERS

Recall that an ordering < on a set 4 is a relation such thai

() @ < band b < cimpliesa < ¢ foralla,b,c € A (ransitivitv:
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(2) Forall «,b € A, one and only one of the following holds:
Na=tb
() a<h (richotomy).
(i) b < a (also written ¢ > b-

An orderedsetis just apair (4, <) where < is an ordering on 4. Two ordered
sets (A, <) and (B. <) are order isomorphic if there is a one-one onto function
/1A — Bsuchthata < bimplies f(a) < f(b): the map f itselfis called an
order isomorphism. and f ! is easily seen to be an order isomorphism also.

An ordering < on A is a well-ordering if every non-empty subset B C 4
has a firsi clement. that is. an element b such that b < b’ for all b’ € B, Some
well-ordered sets are illustrated below: in this scheme we donotlist any of the <
relations which are consequences of the ones already Jisted.

[4]

{0}

0<1 (4 =10,1})
0<i<? (4 =1{0,1,2
0<1<2<3 ete

0<l<2?<.---<w (w is some set #0,1,2,3....,

(w+ 11s, for the presem.
0<i<2<«-<w<w+]l just a set distinct from
those already mentioned:

0<l<2<---<w<w+l<w+2<-.-

(=}
A
A
[N

Ko<+ l<w+l2<oo-<w-?

OA
A
A

<w<w+l<o+2<io<w2<w241<..-
0<1<2< - <w<w+l<w+2<-- <w-2<w-24+1<---<w

0<i<2< v <wWw<.t+<W-2<+ - <W-3<e- <

0<l<?2<...<@w< -+ <wW:2<--<wW-3<-+.<... <k
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Any subset of a well-ordered set is. of course, also a well-ordered set with tht
same ordering. In particular. a subset B of a well-ordered set 4 is called an
(initial) segment if b € B and ¢ < b imply ¢ € B. It is easy to see thatif Bis=
segment of A. then either B = A or else there is some @ € A such that

B={d€A:d <a):

in fact. a is the first element of A — B. Notice that each set on our list is a
scgment of the succeeding ones. It is not hard 1o see that no two sets on our st
are order isomorphic. For example.

0<l<..<w and 0<I<---<w<w+l

arc not order isomorphic because the second has both a last and a next to last
element. while the first does not. But there is a much more general proposition
which will setile all cases at oncc:

1. PROPOSITION. If B # A is a segment of A. then B is not order isomor-
phic to A. In fact, the only order isomorphism from B to a segmeni of A is the
identity.

PROOF. If /' B - B’ C A is an order isomorphism and B’ is a segmem
of A. then for the first clemem b of B (and hence of A) we clearly musi have
J(by="b. Then f(b’) mustbe b’. where b’ is the second element. And so on.
cven for the “w™ element (the first one after the first, second, third, etc.)! The
way we prove this rigorously is amazingly simple: If /(b) # b for some b € B.
just consider the first element of {b € B : f(b) # b}: an outright contradiction
appears almost immediately. <

Proposition | has a companion. which makes the study of well-ordered sets
simply delightful.

2. PROPOSITION. If (A, <) and (B, <) are well-ordered sets, then one is
order isomorphic to a segment of the other.

PROOF. We match the first element of A with the first of B, the second with
the second, ..., the “w™ with the “@™, etc, until we run out of one set.
To do this rigorously, consider order isomorphisms from segments of A onto
segments of B. It is easy to show that any two such order isomorphisms agrec
on the smaller of their two domains (just consider the smallest element wherc
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they don'). So all such order isomorphisms can be put together to give another.
which is clearly the largest of all. I it i defined on all of 4 we are done. 1f it
is not, then its range must be all of B (or we could easily extend it) and we arc
still done.

Suppose we define a relation < between well-ordered sets by stipulating that
(A.<) < (B,<) when (4. <) is order isomorphic to a proper segment of
(B. <). Transitivity of < is obvious, and Propositions ! and 2 show that we al-
most have trichotomy. “Almost”, because the condition “(4, <) = (B, <)* mus!
be replaced by “(4, <) order isomorphic to (B. <)”. To obviate this difficulty
we need only work with order isomorphism classes of well-ordered sets, instead
of with the well-ordered sets themselves. These order isomorphism classes arc
called ordinal numbers. They are beautif ul:*

3. PROPOSITION. < is a well-ordering of the ordinal numbers.

PROOF. Given a non-empty set o of ordinal numbers, let (4, <) be a well-
ordered set representing one of its elements a. To produce a smallest element
of A we can obviously ignore elements = «. Every element < « is represented
by an ordered set which is order isomorphic 10 some proper segment of 4:
cach of these is the segment consisting of elements of 4 less that some ¢ € 4.
Consider the least of these @’s. It determines a segment which represents some
B € A. This B is the smallest element of A,

Notice that if « is an ordinal number, represented by a well-ordered set
(A. <), then the well-ordered set of all ordinals § < « has a particularly simple
representation: it is order isomorphic to the set (4. <)! Roughly speaking: An
ordinal number is order isomorphic to the set of all ordinals less than it.

If @ is an ordinal number, we will denote by a+ 1 the smallest ordinal after «
(if « is represented by the well-ordered set (4, <). then « + 1 is represented
by a well-ordered set with just one more element. larger than all members
of A). Notice that some ordinals are not of the form a + 1 for any «; these
are called limit ordinals, while those of the form « + 1 are called successor

*Only ene feature mars the beauty of the erdinal numbers as presented here. Each
ordinal number is a horribly large set; it weuld be much nicer e cheese ene specific well-
ordered set from each erder isomorphism class, and define these specific sets te be the
ordinal numbers. There is a panticularly elegant way te do this, due te ven Neumann,
which can be found in the Appendix te Kelley, Genera/ Topology.
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ordinals. We will also denote some ordinals by the symbols appearing before:
0,1,2.3....,0,0+ 1,..., et

Oun list of well-ordered sets only begins to suggest the complexity which well-
ordered sets can achieve. With a little thought, one can see how the symbols
3, . ... would appear (symbols like @® + w? -3+ w - 4+ 6 would be used

somewhere between w? and w?): after all these one would need
w
[/

and after all these the symbol o pops up. After

2 .3
€0 ,%0 .

one comes to
T T SR TN SV I

and this is only the beginning!
All the well-ordered sets mentioned so far are countabie. There are indeed an
enormous number of countable well-ordered sets:

4. PROPOSITION. Let € be the collection of all countable ordinals (ordinals
represented by a countable well-ordered set). Then § is uncountable.

PROOF. By Proposition 3. (. <) is a well-ordered set. If it were countable. i1
would represent a countable ordinal @ € Q. By the remark af ter Proposition 3.
this would mean that € is orcler isomorphic to the collection of ordinals < .
i.c.. 10 a proper scgment o fitscll. contradicting* Proposition . #

We have thus established the existence of an uncountable ordinal. Our spe-
cific exainple. represented by Q. is clearly the first uncountable ordinal; any
member of Q is countable, and consequently has onlv countably many pre-
decessors. (1t is hopcless 10 try 10 “reach” € by continuing the listing of well-
ordered sets begun above. for one would have to go uncountably far, and en-
counter scts with an uncountable number of degrees of complexity. A leap of
faith is required.)

Although the countable ordinals exhibit uncountably: many degrees of com-
plexity. they are each simple in one way:

* By deleting the words countable and imeountable in this proof one obiains the “Burali-
Forti Paradox™: the se1 Ord of all ordinal numbers is well-ordered, so it represents an
ordinal @ € Ord. and hence is order isomorphic to an initial segment of (rd. Tor a
resohuion of 1his paradox, see Kelley's Appendix.
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5. PROPOSITION. If a € Q is a limit ordinal. then there is a sequence B <
B2 < B3 < -+ < @, such that every B < « satisfies B < B, for some n (we say
that {B,} is “cofinal” in «).

PROOF. Since « is countable, all its members can be listed (in not-necessarily
increasing order) ¥y, ¥2, ¥a. - - - Let Bt = y and let Bnyy be the first y in the

list which comes after Bn- €

6. COROLLARY. If a € Q. thena is represented by some well-ordered subset
of R. However, no subset of R is order isomorphic 1o Q.

PROOF. Suppose there were one, and hence a smallest, « € Q not represented
by some subset of R. h cannot happen that @ = B + 1, for then 8 would be
represented by a subset of R, thus also by a subset of (—00,0) and a could
by represented by a subset of R. So by Proposition 5, there is a sequence
Bi < B2 < B3 < -+ < a cofinal in a. Then B; is represented by a subset of
(—00.7), and we can easily arrange that the subset representing f; is a segment
of the subset representing B; for i < j. The union of all these sets would then
represent @, a contradiction.

If a subset of R were order isomorphic to §, then there would be uncountably
many disjoint intervals in R, namely those between the points representing o
and a + 1 foralla € Q. This is impossible. €»

The first example of a non-metrizable manifold is defined in terms of Q.
Consider € x [0, 1), with the order < defined as follows:

(a,s) < (B.1) fa<Borifa=Bands <t.

‘This can be pictured as follows:

(0.0) (1.0) .0) (@.0) (w+1.0) (w+2.0) {w-2,0)

The set Q x [0, 1) with tlie order topology (a subbase consists of sets of the form
{v :x < xo} and {x : ¥ > xo)) is called the closed long ray (with “origin” (0, 0)).
and LT =Q x [0, 1) — {(0,0)} is the (open) long ray. The disjoint union of two
copies of the closed long rav with their origins identified is the long line L. To
distinguish L+ and L. the names “half-long linc” and “long line” may also be
used. The Corollary to Proposition 5 implies easily' that the long ray and the
long line are 1-dimensional mauifolds; aside firom the line and the circle, therc
are no other connected I-manifolds.
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Quite a few new 2-manifolds can now be constructed:

L+ x S' (half-long cvlinder), Lx S' (long cylinder).

Ltx K (half-long strip,. L xR  (long strip),

LxL (big planc;. L x Lt (bighalf-plane),

Lt x L% (bigquadrant).
ldentifying all points ((0,0),8) in the product of the closed long ray and S*
produces another 2-manifold. which might be called the “big disc”.

There is another way of producing a non-metrizable 2-manifold which does
not use § at all. We begin with the open upper half-plane R%‘_ ={(x,y)e R?:
» > 0} and another copy R? x {0} of the plane: we will denote this set by R3.
and denote the point (x, ),0) by (x, ¥)o. Define amap fo: (R2); — R% by

Jol(x, 3)0) = (X3, 1)

Consider the disjoint union of R?,_ and RZ, with p € (R2)4 and fo(p) € RS,
identifed. This is a Hausdorfl manifold; the following diagram shows two
open sets homeomorphic to R The manifold itself is, in fact, homeomorphic

N
R3

i

g
.

10 &% we could have thrown away R to begin with since it is identified by a
homeomorphism with (R2) .

But consider now, for each a € R, another copy of R?, say R? x {a}, which
we will denote by R2. Define fo: (R2)4 — R2 by

Jal(x,)a) = (@ + yv.¥).
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In the disjoint union of R and a// R2, a € ’ we wish to identify each p € (R2).+
with fa(p) € RA. We may dispense with RZ completely, and in the digjoint
union of all R? identify each (x,3)a and (x’,3’)s for which y = 3 > 0 and
x¥+a = x'y+b. The equivalence classes, of course. are a space homeomorphic
1o R%, so we will consider R a subset of the resulting space. This space is
still a Hausdorfl manifold, but it cannot be second countable, for it has an
uncountable discrete subset, namely the set {(0,0),]. This manifold, the Priifer
manifold, and related manifolds, have some verv strange properties, developed
in the problems.

PROBLEMS

1. (a) A well-ordered set cannot contain a decreasing infinite sequence xy >
X2 > X35> e

(b) If we denote (& + 1)+ 1 by a + 2, (@ + 2) + 1 by a + 3, etc., then any «
equals B + n for a unique limit ordinal B and integer n > 0. (Thus one can
define even and odd ordinals.)

2. Let ¢ be a “choice function”, i.e., ¢(A4) is defined for each set 4 £ @, and
c(A) € A forall 4. Given a set X, a well-ordering < on a subset Y of X will
be called “distinguished” if for all y € Y.

y=cY -p'eY )y <y}).

(a) Show that of anv two distinguished well-orderings, one is an extension of
the other.

(b) Show that there is a well-ordering on X. (Zorn’s Lemma may be deduced
from this fact fairly easily.)

(c) Given two sets, show that one of them is equivalent to (can be put in one-one
correspondence with) a subset of the other.

(d) Show that on anv infinite set there is a well-ordering which represents a
limit ordinal.

(e) From (d), and Problem 1, show that if X and Y are disjoint equivalent
infinite sets, then X UY is equivalent t0 Y.

3. (a) L* and L are not metrizable.

(b) If x; < x2 < X3 < --- Is a sequence in L*. then {x,} converges to some
point. Consequently, anv sequence has a convergent subsequence (but L+ is
not compact!).



468 Appendix A

() If {xn} and {y,} are sequences in L* with x,, < y, < x4 for all n, then
both sequences converge to the same point.

(d) L7 (and also L) are normal. (Use (c)).

(€) More generally, any order topology is normal (completely different proof).
(f) If f: Lt — R is continuous, and 7 > s, then one of the sets /' ((—c0,s])
and /' ([r,00)) is countablc.

(g} If f: L* — R is continuous, then J is eventually constant.

4. (a) L* isnotcontractible. Hint: Given H: L+x[0,1] - L+ with H(x,0) =
x for all x, show that for every 1 we have {H(x,1)} = L.

(b) m(L*) =m (L) =0. Similarly for L¥ xR, LxR, LxL, Lx L+ L+xL*,
(@) 7 (LT x SH=m(Lx S")y=2.

5. (a) L* and L are not homeomorphic. Hini: Imitating Problem 1-19, defin(
“paracompact ends”.

(b) L+ x R and L x R are not homeomorphic; L* x S’ and L x S are not
homeomorphic,

(c) Of the 2-manifolds constructed from L+ or L with m, = 0 and one para-
compact end, only L* x R has the homotopy type of L+.

(d) The Stone-Cech compactifications of L x L, L+ x L, L* x L+, and the
big disc arc all distinct. (Using Problem 3(g), one can explicitly construct thesc
Stone-Cech compactifications.

6. (a) Show that the Prifer manifold P is Hausdorfl.

(b) P does not have a countable dense subset.

(c) Let U be an open set in R which is the union of “wedges” centered ai
(a.0) forevery irrational a. Show that U includes a whole rectangle of the form

v

a

(a.b)x (0.€). Hinix Let A, = {a: the wedge centered at @ has width > 1/n}.
Since R = QU |, An. some A, is not nowhere dense.
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(d) Let Gi,C; C P be

Gy = {(0,0), : a irrational}
C, ={(0,0), : a rational}.

Show that Cy and C; are closed, but that they are not contained in disjoint
open sets.
(e) Define H: P x [0,1] > P by

(R EE) e
H((x,¥)a,5) = Thsy "V =s+sy ],

(x\/l - 52, V1 —sz)a ify<o.

Show that H is well-defined and that H(p, 1) € R2 U {(0,0),} forall p € P.
Conclude that P is contractible.

(1) P —{(x,y)a : ¥ <0} is a manifold-with-boundary P’, whose boundary is a
disjoint union of uncountably many copies of R.

(8) The disjoint union of two copies of P’, with corresponding points on the
boundary identified, is a manifold which is not metrizable, but which has a
countable dense subset. Its fundamental group is uncountable.

7. Itisknown that every second countable contractible 2-manifold is S2 or R2.
Hence the result of constructing the Priifer manifold using only copies R2 for
rational @ must be homeomorphic 1o R2, Describe a homeomor phism of this
manifold onto R?.

8. Let M be a connected Hausdorfl manifold which is not a point.

(@) If A C M has cardinality ¢ (the cardinality of R), then the closure 4 has
cardinality c.

(b) If C € M isclosed and has cardinality ¢, then C has an open neighborhood
with cardinality .

(c) Let p € M. There is a function f: Q — (set of subsets of M) such that
/(@) has cardinality ¢ for all @ € 2, and such tha

J) ={p}
/(@) is an open neighborhood of the closure of | Jgo /(B)-

(Consider functions defined on initial segments of  with these same properties,
and apply Zorn’s Lemma. Alternatively, one can require f(a) to be the result of
applying the choice function to the set of all open neighborhoods of the closurc
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of Upg<e /(B) with cardinality ¢. Then there is a unique f with the required
properties. This is an example of defining a function by “transfinite induction”.)
(d) A function f: Q — (set of subsets of [0, 1]) with the properties of the func-
tion in part (c) is eventually constant.

(e) M has cardinality ¢, (Given p’ € M, consider an arc from p to p’.)

9. (a) A connected 1-manifold whose topology is the order topology for some
order, is homeomorphic 1o either the real line, the long line, or the half-long
line.

(b) Every I-manifold M contains a maximal open submanifold N whose topol-
ogy is the order topology for some order.

(c) If M is connected and N # M, then M is homeomorphic to S*.
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CHAPTER 2

The long ray L+ can be given a C* structure, and even a C* structure.
To see this we need the result of Problem 9-24—any C® [or C*] structure
on a manifold M homeomorphic to R is diffeomorphic to R with the usual
structure. This implies that it is also diffeomorphic to (0, 1), and consequently
that the structure on M can be extended if M is a proper subset of L*. An
easy application of Zorn’s Lemma then shows that C* and C* structures exist
on L+,

1 do not know whether all C* structures on L+ are diffeomorphic. It is
known that there are uncountably many inequivalent C* structures on L+, If
p € L. and L, denotes all points < p, then L+ — L+ is clearly homeomor-
phic to L+, If O isa C* structure for L¥, then it vields a C* structure for
L+ — L+, and hence far L*. These are all distinct, in other words, there is
no C® map

AR RS AN A A g>p

with a C¢ inverse. In fact, we must have f(¢) > ¢, and then it is easy to see

r q

\f(:;)

q

that we must also have f(S(¢)) > f(g), FU S (¢)) > (S (¢}, etc. The
increasing sequence ¢, f(¢), / (/(¢)),... has a limit point xo € L+ — L+,
and [f(xo) = xo. Now j cannot be the identity on all points > xo (for then
it would be the identity everywhere, since it is C%). So for some ¢ > xo we
have [(g1) # ¢1; we can assume f(g1) > ¢, since we can consider /' in
the contrary case. Reasoning as before, we obtain x; > xo with f(x1) = x1.
Continuing in this way, we obtain xp < x3 < x2 < ..- with f(x,) = xx. This
sequence has a limit in L+ — L%, but this implies that f(x) = x for all x, a
contradiction.

A C* structure exists on the Pritfer manifold; this follows immediately from
the fact that the maps f;. used for identifying points in various (R2)4 with
points in R%, are all C%. 1 do not know whether every 2-manifold has a C®
structunc.

Using the C¥ structure on L™, we can geta C¥ structure on L+ x L+. How-
ever, the method used for obtaining a C* structure on L+ will not yield a complex
anapvitc struclure on L™ x L+; the problem is that a complex analytic structure
on R? mav be conformally equivalent 1o the disc, and hence extendable, but it
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may also be equivalent to the complex plane, and not extendable. In fact, it
is a classical theorem of Rado that every Riemannian surface (2-manifold with
a complex analvtic structure) is second countable. On the other hand, a mod-
ification of the Priifer manifold vields a non-metrizable manifold of complex
dimension 2. References to these matters are to be found in

Calabi and Rosenlicht, Complex Analytic Manifolds without Countable Base, Proc.
Amer. Math. Soc. 4 (1953), pp. 335-340.

H. Kneser. Anafvtische Strucktur und Abzihlbarkeit, Ann. Acad. Sic. Fennicae Se-
ries A, 1 251/5 (1958), pp. 1-8.

PROBLEMS

10. Prove that for ¢ > p there is no non-constant C*¥ map f: L+ - L%, —»
Lt — L%,

11. Let (¥, p) be a metric spacc and let f: X — Y be a continuous locally
one-one map. where X is Hausdorfl. connected, locally connected, and locally
compact.

(a) Every two points x, ) € X are comained in a compact connected C C X.
(b) Let d(x, ») be the greatest lower bound of the diameters of f(C) (in the
p-metric) for all compact connected C containing x and y. Show that d is a
metric on X which gives the same topology for X.

12. Of the various manifolds mentioned in the previous section, try to deter-
mine which can be immersed in which.
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CHAPTER 6

Problem A-6(g) describes a non-paracompact 2-manifold in which two open
half-planes are a dense set. We will now describe a 3-dimensional verson with
a twist.

Let A ={(x,y,z) € R* : y 3 0}, and for each a € R let R3 be a copy of R,
pointsin R3 being denoted by (x, 3, z)4. In the disjoint union of 4 and all R3.
a € R we identify

(X,9,2)a fory>0 with (a+yx,y,z+a)
(x,%,2)a fory<0 with (a+yx,y,z—a).

The equivalence classes form a 3-dimensional Hausdorfl manifold M. On this
manifold there is an obvious function “z”, and the sets z = constant form a
foliation of M by a 2-dimensional manifold N. The remarkable fact about this
2-dimensional manifold N is that it is connected. For, the set of points (x, y,¢) €
A with y > 0 is identified with the set of points (x, y.c — @), € R} with y > 0.
Now the folium containing {(x, y,¢ — a)a} contains the points (x, y,c — a)q
with ¥ < 0. and these are identified with the set of points (x, y,c — 2a) € 4
with y < 0. Since we can choose a = ¢/2, we see that all leaves of the foliation
are the same as the leaf containing {(x, y,0): y <0} C 4.

This example is due 10 M. Kneser, Beispie/ einer dinensignserhohenden anapytis-
chen Abbildung zwischen iiberdbzaltbaren Mannigfaltigheiten. Archiv. Math. 11 (1960),
pp. 280-281.
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CHAPTERS 7, 9, 10

1. We have seen that any paracompact C* manifold hasa Riemannian metric.
The converse also holds, since a Riemannian metric determines an ordinary
metric.

2. Problem A-1} implies that a manifold N immersed in a paracompact mani-
fold M is paracompact, but a much easier proof is now available: Let ( , ) be
a Riemannian metric on M;if /: N — M is an immersion, then N has the
Riemannian metric /*( , ).

We can now dispense with the argument in the proof of Theorem 6-6 which
was used to show that each folium of a distribution on a metrizable manifold is
also metrizable, for the folium is a submanifold, and hence paracompact.

3. Since there is no Riemannian metric on a non-paracompact manifold M.
the tangent bundle TM cannot be trivial. Thus the tangent bundle of the long
line is not trivial, nor is the tangent bundle of the Priifer manifold, even though
the Priifer manifold is contractible. (On the other hand, a basic result about
bundles says that a bundle over a paracompact contractible space is trivial.
Compare pg. V.272.)

4. The tangent bundle of the long line L is clearly orientable, so there can-
nol be a nowhere zero 1-form @ on L, for o and the orientation would de-
termine a nowhere zero vector field, contradicting the fact that the tangem
bundle is not trivial. Thus, Theorem 7-9 fails for L. Notice also that if M
is non-paracompact, then TM is definitely not equivalent to 7*M, sSnce an
equivalence would determine a Riemannian metric. So there are at least two
inequivalent non-trivial bundles over M.

5. Although the results in the Addendum to Chapter 9 can be extended 1o
closed. not necessarily compact. submanifolds, they cannot be extended to non-
paracompact manifolds, as can be seen by considering the 0-dimensional sub-
manifold {(0.0)4} of the Priifer manifold.

6. A Lie group is automatically paracompact, since its tangent bundle is trivial.
More generally, a locally compact connected topological group is o-compac
(Problem 10-4;.
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7. 1tis not clear that a non-paracompact manifold cannot have an indefini
metric (a non-degenerate inner product on each tangent space). This will be
proved in Volume II (Chapter 8, Addendum 1).

PROBLEM

13. Is there a nowhere zero 2-form on the various non-paracompact 2-mani-
folds which have been described?
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INDEX

Abelian Lie algebra, 376, 382, 395 quadrant, 466
Adams, J.F., 100 Bi-invariant metric, 40]
Adjoint T of a linear transformation Boundary, 19, 248, 252
T, 103 Bounded manifold, 19
Ado, 1.D., 380 Boy’s Surface, 6f)
Alexander’s Horned Sphere, 55 Bracket, 154
Algebra. Fundamental Theorem of. in gl(n, R), 376
285, 293 in o(n,R), 379
Algebraic inequalities, principle of Bundle
irrelevance of, 233 cotangent, 109
Alternating dual, 108
covariant tensor field, 207 fibre, 309
multilinear function, 201 induced, 10]
Alternation, 202 map, 73
Analytic manifold, 34 n-plane, 7]
Annihilator, 228 normal, 344
Annulus. & of contravariant tensors, 120
Antipodal of covariant tensors, 117
map, 27¢ tangent, 77
point, 1) trivial, 72, 210
Arclength, 312 . vector, 7]
function, 313, 332 Burali-Forti Paradox, 464

Arcwise connected, 20

subgroup of a Lie group, 409
Area, generalized, 246
Associated

; Calabi, E.,, 472
disc bundle, 45] e AL
sl;sllireurlzuri’:lle, 45) Calculus of variations, 316

Atlas, 98 Cartan, Elie, 39, 348, 360
ma,ximal. 2 Cartan’s Lemma, 230
Auslander, L., 106 Cauchy-Riemann equations, 200
Cayley numbers, 100
Chain, 248, 285
Chain Rule, 35, 38
Change, infinitely smal), 111

Banach space. 145 Chart, 28
Base spacc, 7) Choice, 283
Basit Choice function, 467
dual, 107 Circle, 6
for Mp*, 208 Closed
for Qk(p), 208 form, 218, 252
Belongs to a distribution, (9] geodesic, 367
Besicovitch, A. S, 179 half-space, 19
Big long ray, 465
disc, 460 manifold, 19
half-plane. 466 subgroup of a Lie group, 391

plane, 460 submanifold, 49
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Closed {(continued,

up to first order, 16¢
Cofinal, 465
Cohomology, 419

de Rham, 263

group of M with real coefficients.

263

of a complex, 421
Commutative diagram, 65, 420
Cominutative Lie algebra. 370
Complete, geodesically. 34]
Complex, 42]

analytic structure, 47)

numbers of norm 1. 3
Conjugate, 358
Constants of structure, 390
Continuous homomorphism, 387
Contractible, 220, 225. 236
Contraction, 121, 139. 227

Lemma, 139
Contravariant

functor, 130

tensor field, 120

vector field, 113
Convex

geodesically, 363

polyhedron, 429
Coordinate lines, 1549
Coordinate system, 28. 158
Coordinates, 28
Cotangent bundle, 109
Covariant

functor, 130

tensor field, 117

vector field, 113
Cover

locally finite, 50

point-finite, 60

refinement of, 50
Cramer’s Rule, 372
Critical poiny, 40

in the calculus of variations, 320
Critical value, 40
Cross section, 227
Cross-cap, 14
Cross-product, 299
Cube, singular, 240

73

Index

Cup product, 299, 439
Curl, 238
Cylinder, 8
C' manifold, 34
C° manifold, 34
cx
distribution, 179
form, 207
function, 32
manifold, 29
manifold-with-boundary, 32
Riemannian metric, 308
structure on TM, 82
C%-related, 28

Darboux

integrable, 283

integral, 283
Darboux’s Theorem, 284
Debauch of indices, 39, 123
Decomposable, 228
Definition, invariant, 214
Deformation retraction, 279
Degenerate, 286
Degree, 275

mod2, 295
Densiry

even scalar, 133, 209

odd scalar, 133, 259

relative scalar, 231

scalar, 133
Derivation, 39, 78

of a ring, 83
Derived set, 25
Descartes-Euler Theorem, 429
Determinant, 232
Diffeomorphic, 30
Dilleomorphism, 30

one-parameter group of, 148
Differentiable, 27, 28, 31, 32

at a point, 31

manifold, 29

structure, 30

on the longline, 471
on P”, 32



Diflerentiable (continued
(structure continued ,
on R”, 29
on 8", 30
Differential, 210
equation, 136, 164
depending on parameters, 169
linear, 165
forms, 201
of a function, 109
Dimension, 4
Direct sum, 421
Disc bundle, associated, 451
Discriminant, 233
Disjoint union, 4, 20
Distribution, 179, 181
ideal of, 215
on torus, 180
Divergence, 238
Theorem, 352
Domain, 3
Du Bois Reymond’s Lemma, 355
Dual
basis, 107
space, 107
vector bundle, 108

Einstein summation convention, 39
Elements of norm 1, 308
Elliptical non-Euclidean geometry, 367
Embedding, 44
End, 23

paracompact, 468
Endomorphism, 121
Energy, 324
Envelope, 35¢
Equations depending on parameters.

69

Equations of structure. 404
Equivalence (ol vector bundles), 72
weak, 96
Euclidean
metric, 305, 315
motion. 374
n-space, |

Index

483

Euler, 429
characteristic, 428
class, 445
Euler’s Equation, 320
Even
ordinal, 467
relative scalar, 231
relative tensor, 134, 231
scalar density, 133, 209
Exact
form, 218
sequence, 419, 422
of a pair, 433
of vector bundles, 103
Exponential map, 334, 385
Exponential of matrices, 384
Extension, 432
Extremal, 320

Faith, leap of, 464
Fibre, 64, 68, 71
Finite
characteristic, 205
type, 438
First element, 46l
First variation, 319, 327
Five Lemma, 440
Fixed point, 139
Foliation, 194
Folium, 194
Force field, 240
Form, 207
differential, 201
left invariant, 374
right invariant, 400
[-related, 190
Frobenius Integrability Theorem, 192,
215
Fubini’s theorem, 254
Functor, 130
Functorites, 89
Fundamental Theorem of Algebra.
285, 293
Fundamental Theorem of Calculus,
259



484 Index

Gauss’s Lemma, 337 Hyperbolic

General linear group, 61, 37¢ cosine, 356

Generalized area, 246 sine, 356

Geodesic, 333 tangent, 356
closed, 367

reversing map, 401
Geodesically complete, 341

Geodesically convex. 363 Ideal of a Lie algebra, 410
Geodesy, 333 Identification, 10
Germs of k-forms, 432 Imbedding, 49
Global theory of integral manifold:. topological, 14
194 Immersed submanifold, 47
Gradient, 237 Immersion, 46
Gram-Schinidt orthonormalization wpological, 14, 46
process, 304 Implicit function theorem, 60
Grok. 84 Indefinite metric, 350
Group Independent infinitesimals, 314
Lie. 371 Index of inner product, 349
matrix, 372 Index of vector field
opposite, 407 on a manifold, 447
orthogonal, 372 on R, 446
topological, 371 Indices
Guillemin, V. W, 106 debauch of, 39, 123
raising and lowering, 35!
Induced
bundle, 10]
orientation, 260
Ha!m—Banach theorem, 145 Inequalities, principle of irrelevance of
Hair. 69 algebraic, 233
Half—]'onp Inertia, Sylvester’s Law of, 349
cylinder. 466 Infinite volume, 312
lm?: 465 Infinitely small change, 111
strip, 460 Infinitely small displacements, 314
Half-space, 19 Infinitesimal generator, 148
Handle, & Infinitesimals, independent, 314
Hardy, G. H, 179 Initial conditions, 136
Hasone end, 23 of integral curve, 136
Heiulein, Robert A., 84 Initial segincnt, 462
Hausdorfl, 459 Inner product, 227, 30]
Homogeneous, 7 preserving, 304, 372
Homomorphism usual, 301
continuous, 387 Inside, 21
of Lie algebras, 380 Integrability conditions, 189
Homotopic, 104, 277 Integrable distribution, 192
Homotopy, 104, 277 Imegrable function
Hopf, H., 342, 450 Darboux, 283

Hopf-Rinow-de Rham Theorem, 342 Riemann, 283



Integral
curve, 136
Darboux, 283
line, 239, 243
manifold, 179, 18]
maximal, 194
of a differential equation, 136
Riemann, 283
surface, 245
Integration, 136, 226, 239
Invariance of Domain,
Invariant, 128, 232
definition, 214
Irrelevance of algebraic inequalities,
principle of, 233
Isometry, 340
Isomorphic Lie groups. locally, 382
Jsomorphism, natural. 10
Jsotopic, 294

Jacobi identity, 155, 376

for the brackeu in any ring, 378
Jacobian mairix, 40
Jordan Curve Theorem, 21, 435

Kelley, J., 460, 463, 464
Kink, 366

Klein bottle, 18, 435
Kneser, H., 472
Kneser, M., 473

Lang, S,, 145
Laplace’s expansion, 230
Laplacian, 58
Law of Inertia, Sylvester’s, 349
Leaf, 194
Leap of faith, 464
Left invariant
form, 394
n form, 400

485

vector field, 374

Lelt translation, 374

Length, 243, 305, 312
of a curve, 59

Lie algebra, 376
abelian, 376, 382, 395
commutative, 376
homomorphism of, 380
ideal of, 410
opposite, 407

Lie derivative, 150

Lie group, 371
arcwise connected subgroup of, 409
closed subgroup of, 391
local, 415
normal subgroup of, 410
topologically isomorphic, 388

Lie subgroup, 373

Lie’s fundamental theorem

firs,, 414

second, 415

third. 416
Limit

ordinal, 463

set. 60

Line integral, 239, 243
Linear differential equations, 165
systems of, 17]
Linear transformation
adjoint of, 103
contraction of, 121
positive definite, 104
positive semi-definite, 104
Linking number, 296
Lipschitz condition, 138
Littlewood, J.E., 179
Lives at points, 119
Lobachevskian non-Euclidean geome-
try, 368
Local
flow, 144
Lie group, 415
one-parameter group of local diffeo-
morphism, 148
spanned locally, 179
wriviality, 71
Local theory of integral manifolds, 190
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Locally Mayer-Vietoris Sequence, 424
compact, 20 for compact supports, 43]
comected, 20 Measure zero, 40, 4]
finite cover, 50 Mesh, 239
isomorphic Lie groups, 382 Metric
Lipschitz. 139 bi-invariant, 401
one-one, 13 Euclidean, 305, 315
pathwise connected, 20 indefinite, 350

Long Riemannian, 308, 311
cylinder, 466 usual, 312
line, 465 spaces, disjoint union of, 4, 20
ray, 460 Milnor, J.W,, 42

closed. 465 Mod 2 degree, 295
open, 465 Mobius surip, 10
Lower sum, 283 generalized, 100

Muli-index, 208
Multilinear funciion. 115
Munkres,J.R., 34. 106

MacKenzie. R.E., 106
Magic, 214
Manifoid, 1. 459

analytic, 34 n-dimensional, 4
atlas for. 28 n-forms, left invariant, 400
boundary of. 19 n-holed torus, 9
bounded. 19 n-manifold, 4
closed. 19 n-plane bundle, 71
Cr, 34 n-sphere, 7
Co, 34 n-torus. 7
C® 94 Natural g-valued 1-form, 403
differentiable, 20 Natural isomorphisim, 108
dimension of. 4 Neighborhood, tubular, 345
imbedding in RY. 52 Newman, M.H.A.. 3
integral. 179, 181 Nice cover, 438
maximal, 194 Non-bounded, 19
non-metrizable, 465, 466 Non-degenerate, 301
orientation of. 86 Non-Euclidean geometiv
smooth. 24 elliptical, 367
Manifold-with-baundary. 19 Lobachevskian. 368
Cc>, 3¢ Non-metrizable manifold, 4635, 466
Map Non-oriemable
between complexes. 421 bundle, 86
bundle. 73 manifold, 80
rank of. 40 Norm, 303
Massey. W.S., 3 preserving, 304, 372

Marrix groups. Normal
Maximal imcgral manifold, 194 bundle, 344



Normal (continued)
space, 459
subgroup of a Lie group, 410
outward unit, 351

Nowhere zero section, 209

Odd

ordinal, 467

relative tensor, 134, 288

scalar density, 133, 259
One-dimensional distribution, 17¢
One-dimensional sphere, 6
One-parameter group

of diffeomorphisms, 148

of local diffeomorphisms, local. 148
One-parameter subgroup, 384
Open

long ray, 465

map, 60

submanifold, 2
Opposite

group, 407

Lie algebra, 407
Order

isomorphic, 461

isomorphism, 461

topology, 465
Ordered set, 461
Ordering, 460
Ordinal numbers, 463
Orientable

bundle, 86

manifold, 86
Orientation

of a bundle, 85

of a manifold, 86

of a vector space, 84

preserving, 84, 85, 88, 105, 248

reversing, 84, 88, 248
Orthogonal group, 61, 372
Orthonormal, 304, 348
Orthonormalization process, Gram-

Schmidt, 304

Osgood’s Theorem, 284

Index 487

Outside, 21
Outward pointing, 260
Outward unit normal, 351

Palais, R.S., 100, 225
Paracompact, 210, 459

end, 468
Parameter curves, special, 167
Parameterized by arclength, 313
Partial derivatives, 35
Partition, 239, 245

of unity, 52
Pathwise connected, 20
Piecewise smooth, 312
Pig, ycllow, 434
Poincaré, H., 450
Poincaré dual, 439
Poincaré Duality Theorem, 441
Poincaré-Hopf Theorem, 450
Poincaré Lemma, 225
Poincaré upper half-plane, 367
Point

inward, 98

outward, 98, 260
Point-derivation, 39
Poinu-finite cover, 60
Polar coordinates, 36

integration in, 266
Polarization, 304
Pollack, A., 106
Positive definite, 104, 301
Positive element of norm 1, 308
Positive semi-definite, 104

Product
of vector bundles, 102
tensor, 116

Projection, 7, 30, 32
Projective
plane, 11, 435
space, 19, 88
Proper map, 60, 275
Prifer manifold, 467
Pseudometric. 95
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Quaternions, 100
of norm 1, 3732

Radial function, 435
Rado, T, 472
Rank

of a form, 224

of a map, 40, 98
Rectifiable, 59
Refinement of a cover, 50
Regular

point, 40

space, 459

value, 40
Related vector fields. 190
Relative

scalar, 134, 231

tensor, 134, 231, 288
Reparameterization, 244, 248
Retraction, 264

deformation, 279
Revolution, surface of, 8, 321
de Rham, G., 342
de Rham cohomology vector spaces.

263

with compact supports, 268
de Rham’s Theorem, 263, 457
Riemann

integrable, 283

integral, 283

sum, 283
Riemannian metric, 308, 311

usual, 312
Right invariant »-form, 400
Right translation, 374
Rinow; W,, 342
Roman surface, 17. 26
Rosenlichy, M., 472
Rotation group. 62

Index

Sard’s Theorem, 42, 294
Scalar, relative, 134, 231
Scalar density, 133
Schwarz, H., 354
Schwarz inequality, 303, 362
Second countable, 459
Section of a vector bundle, 73
zero, 96
Segment, initial, 462
Self-adjoint linear transformation, 104
Semi-definite, positive, 104
Separate points and closed sets, 95
Sequence
exact, 419, 422
of vector bundles, 103
Mayer-Vietoris, 424
for compact supports , 43]
of a pair, 433
Shrinking Lemma, 5]
Shrinking Lemma, 60
Shuffle permutation, 227
Simplex
of a triangulation, 427
singular, 285
Simply-connected, 287
Lie group, 382

Singular
cube, 246
simplex, 285
Skew-symmetric, 20], 378
Slice, 194
Slicemaps, 54
Smooth, 28
homotopy, 277
manifold, 29
piecewise, 312
Smoothly

contractible, 220
homotopic, 277
isotopic, 294
Solid angle, 290
Space filling curve, 58
Spanned locally, 179
Special linear group, 6]
Special orthogonal group, 62
Sphere, 7
Sphere hundle, associated, 451
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n-simplex, 4206

singular cube, 246
Star-shaped, 221
Steiner’s surface, 17, 26
Sternberg, S., 42, 106
Stokes’ Theorem, 253, 261, 285, 352
Stone-Cech compactification, 468
Structure constants, 396
Subalgebra of a Lie algebra, 379
Subbundle, 198
Subcover, 50
Subgroup

Lie, 373

one-parameter, 384
Submanifold, 49

C®, 49

closed, 4%

immersed, 47

open, 2
Successor ordinal, 464
Sum of vector bundles, Whitney, 101
Support, 33, 147
Surface, 7

area, 354

integral, 239

of revolution, 8, 321
Sylvester’s Law of Inertia, 349
Symmetric bilinear form, 30!

System of linear differential equations.

171
o-compact, 4, 459

Tangent bundle, 77
Tangent space of R”, 64
Tangent vector

inward pointing, 98

of a manifoid, 76

of R", 64

outward pointing, 98, 260

to a curve, 63, 66

Inden

489

Tensor
contravariant, 120
covariant, 113
even relative, 134, 231
odd relative, 134, 288
Tensor field
classical definition of, 123
contravariant, 120
covariant, 113
mixed, 121,122
Tensor product, 116
Thom class, 442
Thom Ysomorphism Theorem, 456
Topological
group, 37]
imbedding, 14
immersion, 14, 46
Topologically isomorphic Lie groups,
388
Torus, 7, 8
n-holed, 7, 9
Total space, 71
Totally disconnected, 25
Transitivity, 460
Translation
left, 374
right, 374
Triangle inequality, 303
Triangulation, 426
simplex of, 427
Trichotomy, 46]
Trivial vector bundle, 72
Tubular neighborhood, 345
Two-holed torus, 8

Vick, J. W, 3

Wedge product, 203
Whitney, H,, 106
Whitney sum, 101
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CORRECTIONS FOR VOLUME I

pg- 3, line 3—: change di(x,») < 1 to di(x,») < 1.
pg 14: relabel the lower left part of the central figure as

pg- 19: replace the next-to-last paragraph with the following:

The set of points in a manifold-with-boundary that do not have a neighborhood homeomorphic to R” {but only one homeomorphic
to H") is called the boundary of M and is denoted by M. Equivalently, x € M if and only if there is a neighborhood V of x and
a homeomorphism ¢ : V — H" such that ¢(x) = 0. If M is actually a manifold, then 8M = g, and M itself is always a manifold
{without boundary).

pg- 22 Replace the top left figure with

pg- 43: Replace the last line and displayed equation with the following:
Since rank f = k in a neighborhood of p, the lower rectangle in the matrix

10

(M) = D ¥ +... Dpyy™

X

Pps. 60, Problem 30: Change part(f) and add part(g):

D,,'l[lk'H ... Dpym

{f) If M is a connected manifold, there is a proper map f: M — R; the function f can be made C* if M is a C°° manifold.
{g) The same is true if M has at most countably many components.

pg 61, Problem 32: For clarity, restate part {c) as follows:
{c) This is false if f: M) — R is replaced with f: M, — N for a disconnected manifold N.

pg. 70: Replace the last two lines of page 70 and the first two lines of page 71 with the following:

theorem of topology). If there were a way to map T(M,i), fibre by fibre, homeomorphically onto M x R2, then each v, would
correspond to (p, v(p)) for some v(p) € R?, and we could continuously pick w(p) € R2, corresponding to a dashed vector, by using the
criterion that w(p) should make a positive angle with v(p).

pg- 78: the third display should read:

0= £0) = &/ h) = f(p)e(h) +h(p)e(S) =0 +£(S).
pg- 103, Problem 29(d). Add the hypothesis that M is orientable.
pg 117: After the next to last display, A(X1,..., Xx)(p) = A(P)(X1(P); ..., Xk(p)), add:

If Ais C™, then Alis C®, in the sense that E(X],...,Xk) is a C® function for all C® vector fields X1,..., Xk.

pg. 118: Add the following to the statement of the theorem: If 4 is C®, then A is also.



pg- 119: Add the following at the end of the proof:
Smoothness of A follows from the fact that the function 4., is A(3/9x4,. .., 8/8xi,).
pg- 131, Problem 9: Let F be a covariant functor from V, ... .

pg- 133. Though there is considerable variation in terminology, what are here called “odd scalar densities” should probably simply be
called “scalar densities”; what are called “even scalar densities” might best be called “signedscalar densixes”.

In part (c) of Problem 10, we should be considering the A of part (a), not the # of part {(b) Thus conclude that the bundle of signed
scalar densities (ot the scalar densities) is not trivial if M is not orientable.

pg- 134. Extending the changed terminology from pg. 133, we should probably speak of the bundle of “signed tensor densities of type

(’,‘) and weight w” (though sometimes the term relative tensor is used instead, restricting densities to those of weight 1), when the
transformation rule involves (det 4)¥, omitting the modifier “signed” when it involves | det 4|¥.

pg- 143. The hypothesis of Theorem 3 should be changed so thatitreads:
Let x € U and let ), @ be two maps on some open interval / such that ay(/),a2(l) C U,

o) = flau®)) =12

and a1 (to) = 2(to) for some tg € 1.

And the first sentence of the proof should be deleted.

pg- 177. Problem 17, part (d) should begin:

{d) Let f: M — N, and suppose that f,, = 0. For X,,Y, e M, and....

pg. 198. In Problem 5, we must also assume that each A; @ A is integrable.

pg- 226. In the comutative diagram, the lower right entry should be “I-forms on N”.
pg- 233. The reference “pg. V.375” refers to pg. 375 of Volume V.

pg- 237. In Problem 26, replace parts {b) and (c) with:

{b) Determine the ith component of v; X -+ X vp—) in terms of the (n — 1) x (n — 1) submatrices of the matrix
( : )
Un

vXw= (vzw3 - v3wz, P! - vlw

In particular, for R3, show that

3 2

, viw? — vPul).

Pg 292. In Problem 20, the condition U; NU; # B should be U; N Uy # 6.

pg. 408. Problem 16 (b) should read: “For any Lie group G, show that...”.

pp- 408-410. For consistency with standard usage, 4ut should be replaced with Aut, and then replace End with End. In part(g) of
Problem 19, add the hypothesis that H is a connected Lie subgroup.

pg- 411. The display in Problem 21, part (c) should read:

(=17 [w Al AN+ (=D¥ A AL+ (=DM A ARl =0.
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